導航:首頁 > 物理學科 > 鑽井中運用油層物理哪些知識

鑽井中運用油層物理哪些知識

發布時間:2022-06-09 19:16:45

㈠ 石油鑽井技術

《中國國土資源報》2007年1月29日3版刊登了「新型地質導向鑽井系統研製成功」的消息。這套系統由3個子系統組成:新型正脈沖無線隨鑽測斜系統、測傳馬達及無線接收系統、地面信息處理與決策系統。它具有測量、傳輸和導向三大功能。在研製過程中連續進行了4次地質導向鑽井實驗和鑽水平井的工業化應用,取得成功。這一成果的取得標志著我國在定向鑽井技術上取得重大突破。

2.3.1.1 地質導向鑽井技術

地質導向鑽井技術是20世紀90年代發展起來的前沿鑽井技術,其核心是用隨鑽定向測量數據和隨鑽地層評價測井數據以人機對話方式來控制井眼軌跡。與普通的定向鑽井技術不同之處是,它以井下實際地質特徵來確定和控制井眼軌跡,而不是按預先設計的井眼軌跡進行鑽井。地質導向鑽井技術能使井眼軌跡避開地層界面和地層流體界面始終位於產層內,從而可以精確地控制井下鑽具命中最佳地質目標。實現地質導向鑽井的幾項關鍵技術是隨鑽測量、隨鑽測井技術,旋轉導向閉環控制系統等。

隨鑽測量(MWD)的兩項基本任務是測量井斜和鑽井方位,其井下部分主要由探管、脈沖器、動力短節(或電池筒)和井底鑽壓短節組成,探管內包含各種感測器,如井斜、方位、溫度、震動感測器等。探管內的微處理器對各種感測器傳來的信號進行放大並處理,將其轉換成十進制,再轉換成二進制數碼,並按事先設定好的編碼順序把所有數據排列好。脈沖器用來傳輸脈沖信號,並接受地面指令。它是實現地面與井下雙向通訊並將井下資料實時傳輸到地面的唯一通道。井下動力部分有鋰電池或渦輪發電機兩種,其作用是為井下各種感測器和電子元件供電。井底鑽壓短節用於測定井底鑽壓和井底扭矩。

隨鑽測井系統(LWD)是當代石油鑽井最新技術之一。Schlumberger公司生產的雙補償電阻率儀CDR和雙補償中子密度儀CDN兩種測井系統代表了當今隨鑽測井系統的最高水平。CDR和CDN可以單獨使用也可以兩項一起與MWD聯合使用。LWD的CDR系統用電磁波傳送信息,整套系統安裝在一特製的無磁鑽鋌或短節內。該系統主要包括電池筒、伽馬感測器、電導率測量總成和探管。它主要測量並實時傳輸地層的伽馬曲線和深、淺電阻率曲線。對這些曲線進行分析,可以馬上判斷出地層的岩性並在一定程度上判斷地層流體的類型。LWD的CDN系統用來測量地層密度曲線和中子孔隙度曲線。利用這兩種曲線可以進一步鑒定地層岩性,判斷地層的孔隙度、地層流體的性質和地層的滲透率。

旋轉導向鑽井系統(Steerable Rotary Drilling System)或旋轉閉環系統(Rotary Closed Loop System,RCLS)。常規定向鑽井技術使用導向彎外殼馬達控制鑽井方向施工定向井。鑽進時,導向馬達以「滑行」和「旋轉」兩種模式運轉。滑行模式用來改變井的方位和井斜,旋轉模式用來沿固定方向鑽進。其缺點是用滑行模式鑽進時,機械鑽速只有旋轉模式鑽進時的50%,不僅鑽進效率低,而且鑽頭選擇受到限制,井眼凈化效果及井眼質量也差。旋轉導向閉環鑽井系統完全避免了上述缺點。旋轉導向鑽井系統的研製成功使定向井鑽井軌跡的控制從藉助起下鑽時人工更換鑽具彎接頭和工具面向角來改變方位角和頂角的階段,進入到利用電、液或泥漿脈沖信號從地面隨時改變方位角和頂角的階段。從而使定向井鑽井進入了真正的導向鑽井方式。在定向井鑽井技術發展過程中,如果說井下鑽井馬達的問世和應用使定向鑽井成為現實的話,那麼可轉向井下鑽井馬達的問世和應用則大大提高了井眼的控制能力和自動化水平並減少了提下鑽次數。旋轉導向鑽井系統鑽井軌跡控制機理和閉環系統如圖2.5所示。

目前從事旋轉導向鑽井系統研製的公司有:Amoco、Camco、Baker Hughes Inteq、Cambridge Drilling Automation以及DDD Stabilizers等。這些公司的旋轉導向閉環鑽井系統按定向方法又可分為自動動力定向和人工定向。自動動力定向一般由確定鑽具前進方向的測量儀表、動力源和調節鑽具方向的執行機構組成。人工定向系統定向類似於導向馬達定向方法,需要在每次連接鑽桿時進行定向。兩種定向系統的定向控制原理都是通過給鑽頭施加直接或間接側向力使鑽頭傾斜來實現的(圖2.6)。按具體的導向方式又可劃分為推靠式和指向式兩種。地質導向鑽井技術使水平鑽井、大位移鑽井、分支井鑽井得到廣泛應用。大位移井鑽井技術和多分支井鑽井技術代表了水平鑽井技術的最新成果水平。

圖2.5 旋轉導向閉環系統

(1)水平井鑽井技術

目前,國外水平鑽井技術已發展成為一項常規技術。美國的水平井技術成功率已達90%~95%。用於水平井鑽進的井下動力鑽具近年來取得了長足進步,大功率串聯馬達及加長馬達、轉彎靈活的鉸接式馬達以及用於地質導向鑽井的儀表化馬達相繼研製成功並投入使用。為滿足所有導向鑽具和中曲率半徑造斜鑽具的要求,使用調角度的馬達彎外殼取代了原來的固定彎外殼;為獲得更好的定向測量,用非磁性馬達取代了磁性馬達。研製了耐磨損、抗沖擊的新型水平井鑽頭。

圖2.6 旋轉導向鑽井系統定向軌跡控制原理

(2)大位移井鑽井技術

大位移井通常是指水平位移與井的垂深之比(HD/TVD)≥2的井。大位移井頂角≥86°時稱為大位移水平井。HD/TVD≥3的井稱為高水垂比大位移井。大位移井鑽井技術是定向井、水平井、深井、超深井鑽井技術的綜合集成應用。現代高新鑽井技術,隨鑽測井技術(LWD)、旋轉導向鑽井系統(SRD)、隨鑽環空壓力測量(PWD)等在大位移井鑽井過程中的集成應用,代表了當今世界鑽井技術的一個高峰。目前世界上鑽成水平位移最大的大位移井,水平位移達到10728m,斜深達11287m,該記錄是BP阿莫科公司於1999年在英國Wytch Farm油田M-16井中創造的(圖2.7所示)。三維多目標大位移井也有成功的例子。如挪威Gullfalks油田B29大位移井,就是將原計劃用2口井開發該油田西部和北部油藏的方案改為一口井開采方案後鑽成的。為了鑽成這口井,制定了一套能夠鑽達所有目標並最大限度地減少摩阻和扭矩的鑽井設計方案。根據該方案,把2630m長的水平井段鑽到7500m深度,穿過6個目標區,總的方位角變化量達160°。

圖2.7 M-16井井身軌跡

我國從1996年12月開始,先後在南海東部海域油田進行了大位移井開發試驗,截至2005年底,已成功鑽成21口大位移井,其中高水垂比大位移井5口。為開發西江24-1含油構造實施的8口大位移井,其井深均超過8600m,水平位移都超過了7300m,水垂比均大於2.6,其中西江24-3-A4井水平位移達到了8063m,創造了當時(1997年)的大位移井世界紀錄。大位移井鑽井涉及的關鍵技術有很多,國內外目前研究的熱點問題包括:鑽井設備的適應性和綜合運用能力、大斜度(大於80°)長裸眼鑽進過程中井眼穩定和水平段延伸極限的理論分析與計算、大位移井鑽井鑽具摩擦阻力/扭矩的計算和減阻、成井過程中套管下入難度大及套管磨損嚴重等。此外大位移井鑽井過程中的測量和定向控制、最優的井身剖面(結構)設計、鑽柱設計、鑽井液性能選擇及井眼凈化、泥漿固控、定向鑽井優化、測量、鑽柱振動等問題也處在不斷探索研究之中。

(3)分支井鑽井技術

多分支井鑽井技術產生於20世紀70年代,並於90年代隨著中、小曲率半徑水平定向井鑽進技術的發展逐漸成熟起來。多分支井鑽井是水平井技術的集成發展。多分支井是指在一個主井眼(直井、定向井、水平井)中鑽出若干進入油(氣)藏的分支井眼。其主要優點是能夠進一步擴大井眼同油氣層的接觸面積、減小各向異性的影響、降低水錐水串、降低鑽井成本,而且可以分層開采。目前,全世界已鑽成上千口分支井,最多的有10個分支。多分支井可以從一個井眼中獲得最大的總水平位移,在相同或不同方向上鑽穿不同深度的多層油氣層。多分支井井眼較短,大部分是尾管和裸眼完井,而且一般為砂岩油藏。

多分支井最早是從簡單的套管段銑開窗側鑽、裸眼完井開始的。因其存在無法重入各個分支井和無法解決井壁坍塌等問題,後經不斷研究探索,1993年以來預開窗側鑽分支井、固井回接至主井筒套管技術得到推廣應用。該技術具有主井筒與分支井筒間的機械連接性、水力完整性和選擇重入性,能夠滿足鑽井、固井、測井、試油、注水、油層改造、修井和分層開採的要求。目前,國外常用的多分支系統主要有:非重入多分支系統(NAMLS),雙管柱多分支系統(DSMLS),分支重入系統(LRS),分支回接系統(LTBS)。目前國外主要採用4種方式鑽多分支井:①開窗側鑽;②預設窗口;③裸眼側鑽;④井下分支系統(Down Hole Splitter System)。

2.3.1.2 連續管鑽井(CTD)技術

連續管鑽井技術又叫柔性鑽桿鑽井技術。開始於20世紀60年代,最早研製和試用這一技術鑽井的有法國、美國和匈牙利。早期法國連續管鑽進技術最先進,1966年投入工業性試驗,70年代就研製出各種連續管鑽機,重點用於海洋鑽進。當時法國製造的連續管單根長度達到550m。美國、匈牙利製造的連續管和法國的類型基本相同,單根長度只有20~30m。

早期研製的連續管有兩種形式。一種是供孔底電鑽使用,由4層組成,最內層為橡膠或橡膠金屬軟管的心管,孔底電機動力線就埋設在心管內;心管外是用2層鋼絲和橡膠貼合而成的防爆層;再外層是鋼絲骨架層,用於承受拉力和扭矩;最外層是防護膠層,其作用是防水並保護鋼絲。另一種是供孔底渦輪鑽具使用的,因不需要埋設動力電纜,其結構要比第一種簡單得多。第四屆國際石油會議之後,美國等西方國家把注意力集中在發展小井眼井上,限制了無桿電鑽的發展。連續管鑽井技術的研究也放慢了腳步。我國於20世紀70年代曾開展無桿電鑽和連續管鑽井技術的研究。勘探所與青島橡膠六廠合作研製的多種規格的柔性鑽桿,經過單項性能試驗後,於1975年初步用於渦輪鑽。1978年12月成功用於海上柔性鑽桿孔底電鑽,並建造了我國第一台柔桿鑽機鑽探船。1979~1984年勘探所聯合清華大學電力工程系、青島橡膠六廠研究所和北京地質局修配廠共同研製了DRD-65型柔管鑽機和柔性鑽桿。DRD-65型柔管鑽機主要有柔性鑽桿、Φ146mm潛孔電鑽、鑽塔、柔桿絞車及波浪補償器、泥漿泵、電控系統和液控系統等部分組成。研製的柔性鑽桿主要由橡膠、橡膠布層、鋼絲繩及動力線組成。拉力由柔桿中的鋼絲骨架層承擔,鋼絲繩為0.7mm×7股,直徑2.1mm,每根拉力不小於4350N,總數為134根,計算拉力為500kN,試驗拉力為360kN。鑽進過程中,柔性鑽桿起的作用為:起下鑽具、承受反扭矩、引導沖洗液進入孔底、通過設於柔性鑽桿壁內的電纜向孔底電鑽輸送電力驅動潛孔電鑽運轉、向地表傳送井底鑽井參數等。

柔性鑽桿性能參數為:內徑32mm;抗扭矩不小於1030N·m;外徑85~90mm;單位質量13kg/m;抗內壓(工作壓力)40kg/cm2,曲率半徑不大於0.75m,抗外壓不小於10kg/cm2;彎曲度:兩彎曲形成的夾角不大於120°;額定拉力1000kN;柔桿內埋設動力導線3組,每組15mm2,信號線二根;柔桿單根長度為40、80m兩種規格。

Φ146mm型柔桿鑽機由Φ127mm電動機、減速器、液壓平衡器和減震器組成。動力是潛孔電鑽,它直接帶動鑽頭潛入孔底鑽井。Φ146mm孔底電鑽是外通水式,通水間隙寬5mm,通水橫斷面積為2055mm2

與常規鑽井技術相比,連續管鑽井應用於石油鑽探具有以下優點:欠平衡鑽井時比常規鑽井更安全;因省去了提下鑽作業程序,可大大節省鑽井輔助時間,縮短作業周期;連續管鑽井技術為孔底動力電鑽的發展及孔底鑽進參數的測量提供了方便條件;在製作連續管時,電纜及測井信號線就事先埋設在連續管壁內,因此也可以說連續管本身就是以鋼絲為骨架的電纜,通過它可以很方便地向孔底動力電鑽輸送電力,也可以很方便地實現地面與孔底的信息傳遞;因不需擰卸鑽桿,因此在鑽進及提下鑽過程中可以始終保持沖洗液循環,對保持井壁穩定、減少孔內事故意義重大;海上鑽探時,可以補償海浪對鑽井船的漂移影響;避免了回轉鑽桿柱的功率損失,可以提高能量利用率,深孔鑽進時效果更明顯。正是由於連續管鑽井技術有上述優點,加之油田勘探需要以及相關基礎工業技術的發展為連續管技術提供了進一步發展的條件,在經過了一段時間的沉寂之後,20世紀80年代末90年代初,連續管鑽井技術又呈現出飛速發展之勢。其油田勘探工作量年增長量達到20%。連續管鑽井技術研究應用進展情況簡述如下。

1)數據和動力傳輸熱塑復合連續管研製成功。這種連續管是由殼牌國際勘探公司與航空開發公司於1999年在熱塑復合連續管基礎上開始研製的。它由熱塑襯管和纏繞在外面的碳或玻璃熱塑復合層組成。中層含有3根銅質導線、導線被玻璃復合層隔開。碳復合層的作用是提供強度、剛度和電屏蔽。玻璃復合層的作用是保證強度和電隔離。最外層是保護層。這種連續管可載荷1.5kV電壓,輸出功率20kW,傳輸距離可達7km,耐溫150℃。每根連續管之間用一種特製接頭進行連接。接頭由一個鋼制的內金屬部件和管子端部的金屬環組成。這種連續管主要用於潛孔電鑽鑽井。新研製的數據和動力傳輸連續管改變了過去用潛孔電鑽鑽井時,電纜在連續管內孔輸送電力影響沖洗液循環的缺點。

2)井下鑽具和鑽具組合取得新進展。XL技術公司研製成功一種連續管鑽井的電動井下鑽具組合。該鑽具組合主要由電動馬達、壓力感測器、溫度感測器和震動感測器組成。適用於3.75in井眼的電動井下馬達已交付使用。下一步設想是把這種新型電動馬達用於一種新的閉環鑽井系統。這種電動井下鑽具組合具有許多優點:不用鑽井液作為動力介質,對鑽井液性能沒有特殊要求,因而是欠平衡鑽井和海上鑽井的理想工具;可在高溫下作業,振動小,馬達壽命長;閉環鑽井時藉助連續管內設電纜可把測量數據實時傳送到井口操縱台,便於對井底電動馬達進行靈活控制,因而可使鑽井效率達到最佳;Sperry sun鑽井服務公司研製了一種連續管鑽井用的新的導向鑽具組合。這種鑽具組合由專門設計的下部陽螺紋泥漿馬達和長保徑的PDC鑽頭組成。長保徑鑽頭起一個近鑽頭穩定器的作用,可以大幅度降低振動,提高井眼質量和機械鑽速。泥漿馬達有一個特製的軸承組和軸,與長保徑鑽頭匹配時能降低馬達的彎曲角而不影響定向性能。在大尺寸井眼(>6in)中進行的現場試驗證明,導向鑽具組合具有機械鑽速高、井眼質量好、井下振動小、鑽頭壽命長、設備可靠性較高等優點。另外還研製成功了一種連續軟管欠平衡鑽井用的繩索式井底鑽具組合。該鑽具組合外徑為in上部與外徑2in或in的連續管配用,下部接鑽鋌和in鑽頭。該鑽具組合由電纜式遙控器、穩定的MWD儀器、有效的電子定向器及其他參數測量和傳輸器件組成。電纜通過連續管內孔下入孔底,能實時監測並處理工具面向角、鑽井頂角、方位角、自然伽馬、溫度、徑向振動頻率、套管接箍定位、程序狀態指令、管內與環空壓差等參數。鑽具的電子方位器能在鑽井時在導向泥漿馬達連續旋轉的情況下測量並提供井斜和方位兩種參數。

其他方面的新進展包括:連續管鑽井技術成功用於超高壓層側鑽;增加連續管鑽井位移的新工具研製成功;連續管鑽井與欠平衡鑽井技術結合打水平井取得好效果;適於連續管鑽井的混合鑽機研製成功;連續管鑽井理論取得新突破。

2.3.1.3 石油勘探小井眼鑽井技術

石油部門通常把70%的井段直徑小於177.8mm的井稱為小井眼井。由於小井眼比傳統的石油鑽井所需鑽井設備小且少、鑽探耗材少、井場佔地面積小,從而可以節約大量勘探開發成本,實踐證明可節約成本30%左右,一些邊遠地區探井可節約50%~75%。因此小井眼井應用領域和應用面越來越大。目前小井眼井主要用於:①以獲取地質資料為主要目的的環境比較惡劣的新探區或邊際探區探井;②600~1000m淺油氣藏開發;③低壓、低滲、低產油氣藏開發;④老油氣田挖潛改造等。

2.3.1.4 套管鑽井技術

套管鑽井就是以套管柱取代鑽桿柱實施鑽井作業的鑽井技術。不言而喻套管鑽井的實質是不提鑽換鑽頭及鑽具的鑽進技術。套管鑽井思想的由來是受早期(18世紀中期鋼絲繩沖擊鑽進方法用於石油勘探,19世紀末期轉盤回轉鑽井方法開始出現並用於石油鑽井)鋼絲繩沖擊鑽進(頓鑽時代)提下鑽速度快,轉盤回轉鑽進井眼清潔且鑽進速度快的啟發而產生的。1950年在這一思想的啟發下,人們開始在陸上鑽石油井時,用套管帶鑽頭鑽穿油層到設計孔深,然後將管子固定在井中成井,鑽頭也不回收。後來,Sperry-sun鑽井服務公司和Tesco公司根據這一鑽井原理各自開發出套管鑽井技術並制定了各自的套管鑽井技術發展戰略。2000年,Tesco公司將4.5~13.375in的套管鑽井技術推向市場,為世界各地的油田勘探服務。真正意義的套管鑽井技術從投放市場至今還不到10年時間。

套管鑽井技術的特點和優勢可歸納如下。

1)鑽進過程中不用起下鑽,只利用絞車系統起下鑽頭和孔內鑽具組合,因而可節省鑽井時間和鑽井費用。鑽進完成後即等於下套管作業完成,可節省完井時間和完井費用。

2)可減少常規鑽井工藝存在的諸如井壁坍塌、井壁沖刷、井壁鍵槽和台階等事故隱患。

3)鑽進全過程及起下井底鑽具時都能保持泥漿連續循環,有利於防止鑽屑聚集,減少井涌發生。套管與井壁之間環狀間隙小,可改善水力參數,提高泥漿上返速度,改善井眼清洗效果。

套管鑽井分為3種類型:普通套管鑽井技術、階段套管或尾管鑽井技術和全程套管鑽井技術。普通套管鑽井是指在對鑽機和鑽具做少許改造的基礎上,用套管作為鑽柱接上方鑽桿和鑽頭進行鑽井。這種方式主要用於鑽小井眼井。尾管鑽井技術是指在鑽井過程中,當鑽入破碎帶或涌水層段而無法正常鑽進時,在鑽柱下端連接一段套管和一種特製工具,打完這一段起出鑽頭把套管留在井內並固井的鑽井技術。其目的是為了封隔破碎帶和水層,保證孔內安全並維持正常鑽進。通常所說的套管鑽井技術是指全程套管鑽井技術。全程套管鑽井技術使用特製的套管鑽機、鑽具和鑽頭,利用套管作為水利通道,採用繩索式鑽井馬達作業的一種鑽井工藝。目前,研究和開發這種鑽井技術的主要是加拿大的Tesco公司,並在海上進行過鑽井,達到了降低成本的目的。但是這種鑽井技術目前仍處於研究完善階段,還存在許多問題有待研究解決。這些問題主要包括:①不能進行常規的電纜測井;②鑽頭泥包問題嚴重,至今沒有可靠的解決辦法;③加壓鑽進時,底部套管會產生橫向振動,致使套管和套管接頭損壞,目前還沒有找到解決消除或減輕套管橫向振動的可靠方法;④由於套管鑽進不使用鑽鋌,加壓困難,所以機械鑽速低於常規鑽桿鑽井;部分抵消了套管鑽進提下鑽節省的時間;⑤套管鑽井主要用於鑽進破碎帶和涌水地層,其應用范圍還不大。

我國中石油系統的研究機構也在探索研究套管鑽井技術,但至今還沒有見到公開報道的成果。目前,套管鑽井技術的研究內容,除了研製專用套管鑽機和鑽具外,重點針對上述問題開展。一是進行鑽頭的研究以解決鑽頭泥包問題;二是研究防止套管橫向振動的措施;三是研究提高套管鑽井機械鑽速的有效辦法;四是研究套管鑽井固井辦法。

套管鑽井應用實例:2001年,美國謝夫隆生產公司利用加拿大Tesco公司的套管鑽井技術在墨西哥灣打了2口定向井(A-12和A-13井)。兩井成井深度分別為3222×30.48cm和3728×30.48cm。為了進行對比分析,又用常規方法打了一口A-14井,結果顯示,同樣深度A-14井用時75.5h,A-13井用時59.5h。表層井段鑽速比較,A-12 井的平均機械鑽速為141ft/h,A-13井為187ft/h,A-14井為159ft/h。這說明套管鑽井的機械鑽速與常規方法機械鑽速基本相同。但鑽遇硬地層後套管鑽井,鑽壓增加到6.75t,致使擴眼器切削齒損壞,鑽速降低很多。BP公司用套管鑽井技術在懷俄明州鑽了5口井。井深為8200~9500ft,且都是從井口鑽到油層井段。鑽進過程中遇到了鑽頭泥包和套管振動問題。

此外,膨脹套管技術也是近年來發展起來的一種新技術,主要用於鑽井過程中隔離漏失、涌水、遇水膨脹縮經、破碎掉塊易坍塌等地層以及石油開采時油管的修復。勘探所與中國地質大學合作已立項開展這方面的研究工作。

2.3.1.5 石油鑽機的新發展

國外20世紀60年代末研製成功了AC-SCR-DC電驅動鑽機,並首先應用於海洋鑽井。由於電驅動鑽機在傳動、控制、安裝、運移等方面明顯優於機械傳動鑽機,因而獲得很快的發展,目前已經普遍應用於各型鑽機。90年代以來,由於電子器件的迅速發展,直流電驅動鑽機可控硅整流系統由模擬控制發展為全數字控制,進一步提高了工作可靠性。同時隨著交流變頻技術的發展,交流變頻首先於90年代初成功應用於頂部驅動裝置,90年代中期開始應用於深井石油鑽機。目前,交流變頻電驅動已被公認為電驅動鑽機的發展方向。

國內開展電驅動鑽機的研究起步較晚。蘭州石油化工機器廠於20世紀80年代先後研製並生產了ZJ60D型和ZJ45D型直流電驅動鑽機,1995年成功研製了ZJ60DS型沙漠鑽機,經應用均獲得較好的評價。90年代末期以來,我國石油系統加大鑽機的更新改造力度,電驅動鑽機取得了較快發展,寶雞石油機械廠和蘭州石油化工機器廠等先後研製成功ZJ20D、ZJ50D、ZJ70D型直流電驅動鑽機和ZJ20DB、ZJ40DB型交流變頻電驅動鑽機,四川油田也研製出了ZJ40DB交流變頻電驅動鑽機,明顯提高了我國鑽機的設計和製造水平。進入21世紀,遼河油田勘探裝備工程公司自主研製成功了鑽深能力為7000m的ZJ70D型直流電驅動鑽機。該鑽機具有自動送鑽系統,代表了目前我國直流電驅動石油鑽機的最高水平,整體配置是目前國內同類型鑽機中最好的。2007年5月已出口亞塞拜然,另兩部4000m鑽機則出口運往巴基斯坦和美國。由寶雞石油機械有限責任公司於2003年研製成功並投放市場的ZJ70/4500DB型7000m交流變頻電驅動鑽機,是集機、電、數字為一體的現代化鑽機,採用了交流變頻單齒輪絞車和主軸自動送鑽技術和「一對一」控制的AC-DC-AC全數字變頻技術。該型鑽機代表了我國石油鑽機的最新水平。憑借其優良的性能價格比,2003年投放市場至今,訂貨已達83台套。其中美國、阿曼、委內瑞拉等國石油勘探公司訂貨達42台套。在國內則佔領了近2~3年來同級別電驅動鑽機50%的市場份額。ZJ70/4500DB型鑽機主要性能參數:名義鑽井深度7000m,最大鉤載4500kN,絞車額定功率1470kW,絞車和轉盤擋數I+IR交流變頻驅動、無級調速,泥漿泵型號及台數F-1600三台,井架型式及有效高度K型45.5m,底座型式及檯面高度:雙升式/旋升式10.5m,動力傳動方式AC-DC-AC全數字變頻。

㈡ 鑽井過程中,錄井、測井、試井的作用各是什麼他們喲什麼區別拜謝!!!

錄井就是記錄這口井的數據,多少米是什麼岩石,多少米有油層顯示,就是俗稱地址,從震動篩中撈沙子。測井就是鑽完這口井了,看看裡面到底是什麼,具體到多少米是什麼,固井質量啥的,俗稱電測,試井就是試試能不能彩出油來,就是試油。

㈢ 鑽井液的功用有哪些常用的鑽井液類型有哪些鑽井液的主要性能參數包括哪些

鑽井液是鑽探過程中,孔內使用的循環沖洗介質。鑽井液是鑽井的血液,又稱鑽孔沖洗液。鑽井液按組成成分可分為清水、泥漿、無粘土相沖洗液、乳狀液、泡沫和壓縮空氣等。清水是使用最早的鑽井液,無需處理,使用方便,適用於完整岩層和水源充足
(1)穩定泡沫鑽井液技術
(2)無固相欠平衡鑽井液技術
(3)廣譜型屏蔽暫堵保護油層技術
(4)有機鹽鑽井液技術
(5)環保型正電聚醇鑽井液技術
(6)水平井保護油層技術
(7)大位移定向井鑽井液技術
(8)環保型合成基鑽井液技術
(9)有機正電膠鑽井液
(10)硅基防塌鑽井液技術
(11)陽離子聚合物鑽井液體系

㈣ 鑽井技術是什麼

為滿足不同條件的鑽井需要,優質、安全、快速鑽進,鑽井工作者幾十年來研究了各種鑽井技術,現已發展成為以噴射鑽井及優化參數鑽井為核心的鑽井綜合配套技術。下面重點介紹噴射鑽井技術、優選參數鑽井技術、直井防斜技術、定向井技術、鑽井取心技術等。

一、噴射鑽井技術

噴射鑽井技術在我國是從1978年開始試驗並在生產上逐漸推廣的。噴射鑽井的實質就是鑽井水力參數的優化。噴射鑽井的一個顯著特點是從鑽頭噴射出來的鑽井液射流具有很高的噴射速度,井底得到較大的沖擊力和水功率,從而及時清除井底岩屑,破碎井底岩石,提高鑽井速度。

(一)射流對井底的水力作用

1.射流特性

圖4-7射流結構

射流是指通過管嘴或孔口,過水斷面周界不與固體壁接觸的液流,見圖4-7。射流出噴嘴後,由於摩擦作用,射流流體與周圍流體產生動量交換,帶動周圍流體一起運動,使射流的周界直徑不斷擴大。射流縱剖面上周界母線的夾角稱為射流擴散角(α)。α越小,則射流的密集性越高,能量就越集中。在射流中心,各點的流速等於出口流速(vjo)部分稱等速核。在射流的任一橫截面上,從等速核向外速度很快降低,到射流邊界上速度為零。超過等速核以後,射流軸線上的速度迅速降低。當射流撞擊井底後,形成井底沖擊壓力波和井底漫流。L為射流軸線上某點距出口的距離,vjm為距出口L處的最大射液速度。

2.射流對井底的清洗作用

射流撞擊井底後形成的井底沖擊壓力波和井底漫流是射流對井底清洗的兩種主要形式。

(1)射流的沖擊壓力作用。射流撞擊井底後形成的沖擊壓力波並不是作用在整個井底,而是作用在如<ahref="">圖4-8</a>所示的小圓面積上,井底岩屑所受沖擊壓力極不均勻。極不均勻的沖擊壓力使岩屑產生一個翻轉力矩,從而離開井底,如<ahref="">圖4-9</a>所示,這就是射流對井底岩屑的沖擊翻轉作用。

(2)漫流的橫推作用。射流撞擊井底後形成的漫流是一層很薄的高速液流層,具有附面射流的性質。這層具有很高速度的井底漫流,對井底岩屑產生一個橫向推力,使其離開原來的位置。因此,井底漫流對井底清洗有非常重要的作用。

圖4-18取心工具組成示意圖

1—取心鑽頭;2—岩心爪;3—內岩心筒;4—外岩心筒;5—扶正器;6—回壓閥;7—懸掛軸承;8—懸掛裝置

取心鑽頭是鑽進地層、形成岩心的關鍵工具。取心鑽頭可分為刮刀式取心鑽頭、牙輪取心鑽頭、金剛石取心鑽頭三種。

岩心筒是取心工具的重要部分之一,包括內岩心筒、外岩心筒、扶正器、回壓閥及懸掛總成等部件。外岩心筒為優質無縫鋼管製成,上接鑽柱,下接取心鑽頭。內岩心筒的作用是在取心鑽進時接受、儲存和保護岩心。

懸掛總成包括懸掛軸承組和懸掛裝置。

岩心爪的作用是在取心鑽進結束後用以割斷岩心,並在起鑽時承托已割取的岩心以防其脫落。

㈤ 鑽遇油層時為何鑽井液粘度上升

水基鑽井液遇到油,兩相不相溶,鑽井液粘度和切力就會升高,油很多時會使鑽井液粘切急劇上升,嚴重影響鑽井液性能,加入乳化劑可使油均勻的分散在鑽井液中,粘切下降!

㈥ 常用井下物理測井方法介紹

1.視電阻率測井

(1)視電阻率測井原理

在實際測井中,岩層電阻率受圍岩電阻率、鑽井液電阻率、鑽井液沖洗帶電阻率的影響,井下物探測得的電阻率不是岩層的真電阻率,這種電阻率稱為視電阻率。視電阻率測井主要包括三部分:供電線路、測量線路和井下電極系,如圖4-6所示。

圖4-6 視電阻率測井原理圖

在井下將供電電極(A,B)和測量電極(M,N)組成的電極系A,M,N或 M,A,B放入井內,而把另一個電極(B或N)放在地面泥漿池中。當電極系由井底向井口移動時,由供電電極A,B供給電流,在地層中造成人工電場。由測量電極M ,N測得電位差ΔUMN。M ,N兩點的電位差直接由它所在位置的岩層電阻率所決定,岩層電阻率越高,測得的電位差就越大;岩層電阻率越低,測得的電位差就越小。電位差的變化,反映了不同地層電阻率的變化。視電阻率測井實際上就是對電位差的連續測量,經過計算就可求得視電阻率。

(2)視電阻率曲線形態

視電阻率曲線形態與電極系的分類有關。當井下測量電極系為A,M,N時,稱為梯度電極系;當井下測量電極系為M,A,B時,稱為電位電極系。由供電電極到電極系記錄點的距離稱為電極距,常用的有2.5m梯度電極系和0.5m電位電極系。梯度電極系根據成對電極系(AB或 MN)與不成對電極系(AM或MA)的位置又分為頂部梯度電極系和底部梯度電極系。

實際測井中,底部梯度電極系曲線形態如圖4-7所示。頂部梯度電極系曲線形態正好相反。

電位電極系曲線形態如圖4-8所示,曲線沿高阻層中心對稱,A表示異常幅度,A/2稱為半幅點,岩層上下界面與半幅點位置對應。

圖4-7 底部梯度電極系視電阻率曲線形狀

圖4-8 電位電極系視電阻率測井曲線形狀

(3)視電阻率測井的應用

1)確定岩性。一般純泥岩電阻率低,砂岩稍高,碳酸鹽岩相當高,岩漿岩最高。根據視電阻率曲線幅度的高低,可以判斷地下岩層的岩性。但當岩層中含高礦化度的地下水時,其對應的視電阻率相應降低。由於影響視電阻率的因素很多,曲線具有多解性,要結合岩屑、岩心等其他錄井資料綜合判斷。

2)劃分地層。實際應用中,以底部梯度電極系曲線的極大值劃分高阻層的底界面,以極小值劃分高阻層的頂界面,單純用視電阻率曲線劃分頂界面往往有一定誤差,應結合其他曲線進行劃分。視電阻率曲線確定高電阻岩層的界面比較准確,而對電阻率較低的地層則准確度較差。

2.自然電位測井

(1)自然電位測井原理

地層中有3種自然電位,即擴散吸附電位、過濾電位和氧化還原電位。擴散吸附電位主要發生在地熱、油氣井中,是我們主要測量的對象;過濾電位很小,常忽略不計;氧化還原電位主要產生在金屬礦井中,這里不做研究。

在砂岩儲層地熱井中,一般都含有高礦化度的地熱流體。地熱流體和鑽井液中都含有氯化鈉(NaCl)。當地熱流體和鑽井液兩種濃度不同的溶液直接接觸時,由於砂岩地層水中的正離子(Na+)和負離子(Cl-)向井液中擴散,Cl-的遷移速度(18℃時為65×105cm/s)比Na+的遷移速度(18℃時為43 ×105cm/s)大,所以隨著擴散的進行,井壁的井液一側將出現較多的Cl-而帶負電,井壁的砂岩一側則出現較多的Na+而帶正電。這樣,在砂岩段井壁兩側聚集的異性電荷(砂岩帶正電荷,鑽井液帶負電荷)就形成了電位差。

與砂岩相鄰的泥岩中所含的地層水的成分和濃度一般與砂岩地層水相同,泥岩中高濃度的地層水也向井內鑽井液中擴散。但由於泥質顆粒對負離子有選擇性的吸附作用,一部分氯離子被泥岩表面吸附在井壁側帶負電,井壁的井液一側將出現較多的Na+而帶正電。這樣,在泥岩段井壁兩側聚集的異性電荷(泥岩帶負電荷,鑽井液帶正電荷)就形成了電位差。

由於正負電荷相互吸引,這種帶電離子的聚集發生因地層岩性不同,在兩種不同濃度溶液的接觸(井壁)附近,形成自然電位差(圖4-9)。用一套儀器測量出不同段的自然電位差,就可以研究出地下岩層的性質。

(2)自然電位曲線形態

在滲透性砂岩地層中,若岩性均勻,自然電位曲線的形態與地層中點是對稱的。異常幅度大小等於自然電流在井內的電位降。一般用異常幅度的半幅點確定地層頂底界面,如圖4-9所示。

圖4-9 井內自然電位分布與自然電位曲線形狀

(3)自然電位測井的應用

A.劃分滲透層

自然電位曲線異常是滲透性岩層的顯著特徵。當地層水礦化度大於鑽井液礦化度時(地熱水多為此例),滲透層自然電位曲線呈負異常,泥岩層自然電位曲線呈正異常。當地層水礦化度小於鑽井液礦化度時則相反。

劃分滲透層一般以泥岩自然電位為基線,砂岩中泥質含量越少,自然電位幅度值愈大,滲透性愈好;砂岩中泥質含量越多,自然電位幅度值就愈小,滲透性就變差。

劃分地層界面一般用半幅點確定。但當地層厚度h小於自然電位曲線幅度Am時,自1/3幅點算起;地層厚度h≥自然電位曲線幅度5Am時,自上、下拐點算起。

B.劃分地層岩性

岩石的吸附擴散作用與岩石的成分、結構、膠結物成分、含量等有密切關系,故可根據自然電位曲線的變化劃分出地層岩性。如砂岩岩性顆粒變細,泥質含量越多,自然電位幅度值就降低,據此可劃分出泥岩、砂岩、泥質砂岩等。

3.感應測井

(1)感應測井原理

感應測井是研究地層電導率的測井方法。井下部分主要測井儀器有:發射線圈、接收線圈和電子線路,如圖4-10所示。在下井儀器中,當振盪器向發射線圈輸出固定高頻電流(I)時,發射線圈就會在井場周圍的地層中形成交變電磁場,在交變電磁場的作用下,地層中就會產生感應電流(I),感應電流又會在地層中形成二次電磁場(或叫次生電磁場),在次生電磁場的作用下,接收線圈會產生感應電動勢,地面記錄儀將感應電動勢的信號記錄下來,就成為感應測井曲線。

圖4-10 感應測井原理圖

(2)感應測井曲線形態

由於感應電流大小與地層電導率成正比,所以,地層電導率大,感應測井曲線幅度高;地層電導率小,感應測井曲線幅度低。

(3)感應測井的應用

A.確定岩性

與其他曲線配合,可區分出砂岩、泥岩、泥質砂岩、砂質泥岩等岩性。劃分厚度大於2m的地層,按半幅點確定其界面;厚度小於2m的地層,因用半幅點分層較麻煩,實際中往往不用感應曲線分層。

注意的是,感應曲線上讀的是電導率,其單位是毫歐姆/米(mΩ/m)。它的倒數才是視電阻率,單位是歐姆米(Ω·m)。

B.判斷含水儲層,劃分界面

感應測井曲線對地層電阻率反應極為靈敏。由於電阻率的變化導致電導率的變化,水層電導率明顯升高,分界面往往在曲線的急劇變化處。

4.側向測井

(1)側向測井原理

側向測井是視電阻率方式之一,不同的是它的電極系中除有主電極系外,還有一對屏蔽電極,其作用是使主電流聚成水平層狀電流(又稱聚焦測井),極大地降低了鑽井液、沖洗帶和圍岩的影響,能解決普通電極測井不能解決的問題,如在碳酸岩地層、鹽水鑽井液以及薄層交互剖面中提高解釋效果。

側向測井有三側向、六側向、七側向、八側向和微側向。下面僅介紹常用的七側向、八側向、雙側向和微側向。

(2)七側向測井

1)七側向測井是一種聚焦測井方法,其主電極兩端各有一個屏蔽電極,屏蔽電極使主電流成薄層狀徑向地擠入地層,此時,井軸方向上無電流通過,七側向測井曲線就是記錄在不變的主電流全部被擠入地層時,所用的電壓值。當地層電阻率較大時,主電流不易被擠入地層,所用的電壓值就大;相反,當地層電阻率較小時,主電流容易被擠入地層,所用的電壓值就小。在測井曲線上,對應高阻層,曲線有較高的視電阻率;對應低阻層,曲線有較低的視電阻率。

2)七側向測井曲線的應用

七側向測井曲線的特點是正對高阻層,曲線形狀呈中心對稱,曲線上有兩個「尖子」,解釋時取地層中點的視電阻率作為該高阻層的視電阻率值,取突變點作為地層的分界線,如圖4-11所示。

七側向測井可分為深、淺兩種側向。深側向能反映地層深部的電阻率;淺側向能反映井壁附近地層的電阻率變化。對於熱儲層而言,它僅反映鑽井液沖洗帶附近的電阻率變化。根據七側向測井的特點,將它們組合起來,就能較好地劃分地層所含流體的性質。此外,還可以求出地層的真電阻率。七側向測井常用於孔隙型地層測井中。

圖4-11 七側向測井曲線形狀圖

(3)八側向測井

八側向測井是側向測井的一種,原理與七側向測井相同,實際為一探測深度很淺的七側向測井,只是電極系尺寸大小和供電迴路電極距電極系較近,因此看起來很像一個八個電極的電極系,故名八側向。八側向探測深度為0.35m,應用地層電阻率范圍0~100Ωm,且泥漿電阻率大於0.1Ωm(魏廣建,2004)。因八側向探測深度淺,縱向分層能力較強。它是研究侵入帶電阻率的方法,通常不單獨使用,而是和感應測井組合應用,稱為雙感應-八側向測井,是目前井下地球物理測井的主要測井項目。

(4)雙側向測井

雙側向電極系結構:由七個環狀電極和兩個柱狀電極構成。

雙側向探測深度:雙側向的探測深度由屏蔽電極A1,A2的長度決定,雙側向採用將屏蔽電極分為兩段,通過控制各段的電壓,達到增加探測深度的目的。側向測井由於屏蔽電極加長,測出的視電阻率主要反映原狀地層的電阻率;淺側向測井探測深度小於深側向,主要反映侵入帶電阻率。

雙側向縱向分層能力:與O1,O2的距離有關,可劃分出h>O1,O2的地層電阻率變化。

雙側向影響因素:層厚、圍岩對深、淺雙側向的影響是相同的,受井眼影響較小。

雙側向測井資料的應用:

1)劃分地質剖面:雙側向的分層能力較強,視電阻率曲線在不同岩性的地層剖面上,顯示清楚,一般層厚h>0.4m的低阻泥岩,高阻的緻密層在曲線上都有明顯顯示。

2)深、淺側向視電阻率曲線重疊,快速直觀判斷油(氣)水層。

由於深側向探測深度較深,深、淺測向受井眼影響程度比較接近,可利用二者視電阻率曲線的幅度差直觀判斷油(氣)、水層。在油(氣)層處,曲線出現正幅度差;在水層,曲線出現負幅度差。如果鑽井液侵入時間過長,會對正、負異常差值產生影響,所以,一般在鑽到目的層時,應及時測井,減小泥漿濾液侵入深度,增加雙側向曲線差異。

3)確定地層電阻率。

根據深、淺雙側向測出的視電阻率,可採用同三側向相同的方法求出地層真電阻率Rt和侵入帶直徑Di。

4)計算地層含水飽和度。

5)估算裂縫參數。

(5)微側向測井

微側向裝置是在微電極繫上增加聚焦裝置,使主電流被聚焦成垂直井壁的電流束,電流束垂直穿過泥餅,在泥餅厚度不大的情況下可忽略不計,測量的視電阻率接近沖洗帶的真電阻率。

由於主電流束的直徑很小(僅4.4cm),所以,微側向測井的縱向分辨能力很強。因此,應用微側向測井曲線可以劃分岩性,劃分厚度為5cm的薄夾層、緻密層,常用於碳酸鹽岩地層測井中。

5.聲波時差測井

(1)聲波時差測井原理

聲波時差測井原理如圖4-12所示,在下井儀器中有一個聲波發射器和兩個接收裝置。當聲波發射器向地層發射一定頻率的聲波時,由於兩個接收裝置與發射器之間的距離不同,因此,初至波(首波)到達兩個接收器的時間也不同。第一個接收器先收到初至波,而第二個接收器在第一個接收器初至波到達Δt時間後才收到初至波。Δt的大小隻與岩石的聲波速度有關,而與泥漿影響無關。通常兩接收器之間的距離為0.5m,測量時儀器已自動把Δt放大了一倍,故Δt相當於穿行1m所需的時間。這個時間又叫做聲波時差,單位是μs/m (1s=106μs)。聲波時差的倒數就是聲波速度。

圖4-12 聲波時差測井原理圖

(2)聲波時差測井的應用

A.判斷岩性

岩石越緻密,孔隙度越小,聲波時差就越小;岩石越疏鬆,孔隙度越大,聲波時差就越大。因此,可以利用聲波時差曲線判斷岩性,從泥岩、砂岩到碳酸鹽岩聲波時差是逐漸減小的(泥岩252~948μs/m;砂岩300~440μs/m;碳酸鹽岩125~141μs/m)。

B.劃分油、氣、水層

當岩層中含有不同的流體時,由於流體密度存在差異,聲波在不同流體中傳播速度不同。因此,在其他條件相同的前提下,沉積地層中的流體性質也影響聲波時差,如淡水聲波時差為620μs/m,鹽水為608μs/m,石油為757~985μs/m,甲烷氣為2260μs/m。同樣,岩石中有機質含量也可影響聲波的速度,一般情況下,泥頁岩中有機質含量越高,所對應的聲波時差值越大(操應長,2003)。

實際應用中,氣層聲波時差較大,曲線的特點是產生周波跳躍現象。油層與氣層之間聲波時差曲線的特點油層小,氣層大,呈台階式增大;水層與氣層之間聲波時差曲線的特點是水層小,氣層大,也呈台階式增大。但水層一般比油層小10%~20%,如圖4-13所示。

C.劃分滲透性岩層

當聲波通過破碎帶或裂縫帶時,聲波能量被強烈吸收而大大衰減,使聲波時差急劇增大。根據這個特徵,可以在聲波時差曲線上將滲透性岩層劃分出來。

D.沉積地層孔隙度、地層不整合面研究

在正常埋藏壓實條件下,沉積地層中孔隙度的對數與其深度呈線性關系,聲波時差對數與其深度也呈線性關系,並且隨埋深增大,孔隙度減小,聲波時差也減小,若對同一口井同一岩性的連續沉積地層,表現為一條具有一定斜率的直線。但是,有的井聲波時差對數與其深度的變化曲線並不是一條簡單的直線,而是呈折線或錯開的線段,可能就是地層不整合面或層序異常界面。

圖4-13 聲波時差測井曲線應用

6.自然伽馬測井

(1)自然伽馬測井原理

在自然界中,不同岩石含有不同的放射性。一般地,岩石的泥質含量越高放射性越強,泥質含量越低放射性越弱。其射線強度以γ射線為最。

自然γ測井中,井下儀器中有一γ閃爍計數器,計數器將接收到的岩層自然γ射線變為電脈沖,電脈沖由電纜傳至地面儀器的放射性面板,變為電位差,示波儀把電位差記錄成自然伽馬曲線。岩層的自然伽馬強度用脈沖/分表示,如圖4-14所示。

圖4-14 自然伽馬測井裝置及曲線形狀圖

h—岩層厚度;d0—井徑

(2)自然伽馬曲線形態

1)自然伽馬曲線對稱於地層層厚的中點;

2)當地層厚度大於3倍井徑時,自然伽馬曲線極大值為一常數,用半幅點確定岩層界面;

3)當地層厚度小於3倍井徑時,自然伽馬曲線幅度變小,小於0.5倍井徑時,曲線表現為不明顯彎曲,岩層越薄,分層界限越接近於峰端,如圖4-14所示。

(3)自然伽馬測井的應用

A.劃分岩性

在砂泥岩剖面中,泥岩、頁岩自然伽馬曲線幅度最高,砂岩最低,而粉砂岩、泥質砂岩則介於砂岩和泥岩之間,並隨著岩層泥質含量增多而曲線幅度增高(見圖4-15)。

在碳酸鹽岩剖面中,泥岩、頁岩自然伽馬曲線值最高,純灰岩、白雲岩最低;而泥質灰岩、泥質白雲岩則介於二者之間,並隨著泥質含量的增加而自然伽馬值也增加。

圖4-15 應用自然伽馬和中子伽馬曲線判別岩性

B.判斷岩層的滲透性

根據自然伽馬曲線的幅度可判斷泥質膠結砂岩滲透性的好壞,也可間接判斷碳酸鹽岩裂縫的發育程度,劃分裂縫段。

C.進行地層對比

由於自然伽馬曲線不受井眼、鑽井液、岩層中流體性質等因素的影響,所以,在其他測井曲線難以對比的地層中,可用自然伽馬曲線進行地層對比。

D.跟蹤定位射孔

由於自然伽馬測井不受套管、水泥環的影響,所以,在下完套管之後的射孔作業中,將下套管的自然伽馬測井曲線與裸眼測井曲線對比,確定跟蹤射孔層位。

㈦ 鑽井過程中油氣層保護技術要注意那些方面

鑽井過程中,針對鑽井工藝技術措施中影響儲層損害因素,可以採取降低壓差,實現近平衡壓力鑽井,減少鑽井液浸泡時間,優選環空返速,防止井噴井漏等措施來減少對儲層的損害。
1.建立四個壓力剖面,為井身結構和鑽井液密度設計提供科學依據
地層孔隙壓力、破裂壓力、地應力和坍塌壓力是鑽井工程設計和施工的基礎參數,依據上述四個壓力才有可能進行合理的井身結構設計,確定出合理的鑽井液密度,實現近平衡壓力鑽井,從而減少壓差對儲層所產生的損害。
2.確定合理井身結構是實現近平衡壓力鑽井的基本保證
井身結構設計原則有許多條,其中最重要的一條是滿足保護儲層實現近平衡壓力鑽井的需要,因為我國大部分油氣田均屬於多壓力層系地層,只有將儲層上部的不同孔隙壓力或破裂壓力地層用套管封隔,才有可能採用近平衡壓力鑽進儲層。如果不採用技術套管封隔,裸眼井段仍處於多壓力層系。當下部儲層壓力大大低於上部地層孔隙壓力或坍塌壓力時,如果用依據下部儲層壓力系數確定的鑽井液密度來鑽進上部地層,則鑽井中可能出現井噴、坍塌、卡鑽等井下復雜情況,使鑽井作業無法繼續進行;如果依據上部裸眼段最高孔隙壓力或坍塌壓力來確定鑽井液密度,盡管上部地層鑽井工作進展順利,但鑽至下部低壓儲層時,就可能因壓差過高而發生卡鑽、井漏等事故,並且因高壓差而給儲層造成嚴重損害。綜上所述,選用合理的井身結構是實現近平衡鑽進儲層的前提。
3.實現近平衡壓力鑽井,控制儲層的壓差處於安全的最低值
平衡壓力鑽井是指鑽井時井內鑽井液柱有效壓力pd等於所鑽地層孔隙壓力pp,即壓差p=pd-pp=0。此時,鑽井液對油層損害程度最小。
鑽進時
(9-4)
式中:pm——鑽井液靜液柱壓力,Mpa;
pa——鑽井液環空流動阻力,MPa;
pw——鑽井液中所含岩屑增加的壓力值,MPa。
起鑽時,如果不調整鑽井液密度,則
(9-5)
式中:pd——井內鑽井液柱有效壓力,MPa;
ps——抽吸壓力,MPa。
從式(9-5)清楚看出,當鑽井液柱有效壓力大大小於地層孔隙壓力時,就可能發生井噴和井塌等惡性事故。因而,在實際鑽井作業中,為了既 確保安全鑽進,又盡可能將壓差控制至安全的最低值,往往採取近平衡壓力鑽井。即井內鑽井液靜液柱壓力略高於地層孔隙壓力。即

式中:S——附加壓力系數;
H——井深,m;
——鑽井液密度,g/cm3。
鑽儲層時 S=0.05~0.10
鑽氣層時 S=0.07~0.15
為了盡可能將壓差降至安全的最低限,對一般井來說,鑽進時努力改善鑽井液流變性和優選環空返速,降低環空流動阻力與鑽屑濃度;起下鑽時,調整鑽井液觸變性,控制起鑽速度,降低抽吸壓力。對於地層孔隙壓力系數小於0.8的低壓儲層,可依據 實際的地層孔隙壓力,分別選用充氣鑽井、泡沫流體鑽井、霧流體或空氣鑽井,降低壓差,甚至可採用負壓差鑽井,減少對儲層的損害。
4.降低浸泡時間
鑽井過程中,儲層浸泡時間從鑽開儲層開始直至固井結束,包括純鑽進時間、起下鑽接單根時間、處理事故與井下復雜情況時間、輔助工作與非生產時間、完井電測、下套管及固井時間。為了縮短浸泡 時間,減少對儲層的損害,可從以下幾方面著手。
(1)採用優選參數鑽井,並依據地層岩石可鑽性選用合適類型的牙輪鑽頭或PDC鑽頭及噴咀,提高機械鑽速。
(2)採用與地層特性相匹配的鑽井液,加強鑽井工藝技術措施及井控工作,防止井噴、井漏、卡鑽、坍塌等井下復雜情況或事故的發生。
(3)提高測井一次成功率,縮短完井時間。
(4)加強管理,降低機修、組停、輔助工作和其它非生產時間。
5.搞好中途測試
為了早期及時發現儲層,准確認識儲層的特性,正確評價儲層產能。中途測試是一項最有效打開新區勘探局面,指導下一步勘探工作部署的技術手段。大量事實表明,只要在鑽井中採用與儲層特性相匹配的優質鑽井液,中途測試就有可能獲得儲層真實的自然產能。表9-10列舉某油田部分探井中途測試結果,除26井因鑽井液選配不妥,油層受到損害外,其它各井儲層基本上沒有受到損害。1988~1994年,塔里木盆地29口重大油氣發現井中,有20口井是中途測試發現的。
6.搞好井控、防止井噴井漏對儲層的損害
鑽井過程中一旦發生井噴就會誘發出大量儲層潛在損害因素,如因微粒運移產生速敏損害、有機垢或無機垢堵塞、應力敏感損害、油氣水分布發生變化而引起相滲透率下降等,使儲層遭受嚴重損害。如壓井措施不妥更加劇損害程度。因而鑽井過程應嚴格搞好井控工作。
鑽進儲層過程中,一旦發生井漏,大量鑽井液進入儲層,造成固相堵塞,其液相與岩石或流體作用,誘發潛在損害因素。因而鑽進易發生漏失的儲層時,盡可能採用較低密度的鑽井液保持近平衡壓力鑽進。亦可預先在鑽井液中加入能解堵的各種暫堵劑和堵漏劑來防漏,一旦發生漏失,盡量採用在完井投產時能用物理或化學解堵的堵漏劑進行堵漏。
7.鑽進多套壓力層系地層所採用的保護儲層鑽井技術
前面已經闡述我國許多裸眼井段仍然存在多套壓力層系,由於受到各種條件的制約,已不可能再下套管封隔儲層以上地層。因而在鑽開儲層時難以實行近平衡壓力鑽井,壓差所造成的儲層損害難以控制。對此類地層中採取以下幾種方法減輕儲層的損害,這些方法不一定是最佳的保護儲層技術方案,但往往在經濟效益上是可行的。
(1)儲層為低壓層,其上部存在大段易坍塌高壓泥岩層。對此類地層可依據上部地層坍塌壓力確定鑽井液密度,以確保井壁穩定。為了減少對下部儲層的損害,可在進入儲層之前,轉用與儲層相匹配的屏蔽暫堵鑽井液。
(2)裸眼井段上部為低壓漏失層或破裂壓力低的地層;下部為高壓儲層,其孔隙壓力超過上部地層的破裂壓力。對此類地層,可在進入高壓儲層之前進行堵漏,提高地層承壓能力,堵漏結束後進行試壓,證明上部地層承受的壓力系數與下部地層相當時,再鑽開下部儲層。否則一旦用高密度鑽井液鑽開儲層就可能發生井漏,誘發井噴,對儲層產生損害。
(3)多層組高坍塌壓力泥頁岩與多層組低壓易漏失 儲層相間。應提高鑽井液抑制性,降低坍塌壓力,按此值確定鑽井液密度。為了減少對儲層損害,應盡可能提高鑽井液與儲層配伍性,採用屏蔽暫堵保護儲層鑽井液技術。
多壓力層系地層有多種多樣,可參考上述原則來確定技術措施。

㈧ 石油鑽井方法有哪些

目前,世界上廣泛採用鑽井方法來取得地下的石油和天然氣。隨著石油工業的不斷發展,鑽井深度不斷增加,油氣井的建設速度也隨之加快,促使鑽井方法、技術和工藝得到很大改進。從已鑽成的千百萬口油氣井的資科中可以看到變化過程:頓鑽逐漸被旋轉鑽代替,井身結構從復雜到簡單,井眼直徑日趨縮小等等。

一、鑽井工藝發展概況和趨勢石油鑽井是油田勘探和開發的重要手段。一個國家石油工業的發展速度,常與它的鑽井工作量及科學技術水平緊密相關。近20年來,世界石油產量和儲量劇增,鑽井工作量相應地大幅度增加,鑽井科學技術水平也得到了飛速發展。在此期間鑽井技術發展的特點是從經驗鑽井進展到科學化鑽井。鑽井深度、斜度、區域和地區也有長足的發展。從鑽淺井、中深井發展到鑽深井和超深井;從鑽直井和一般斜井發展到鑽大斜度井和叢式井;從陸上鑽井發展到近海和深海鑽井;從地面條件好的地區鑽井發展到條件惡劣的地區(如沙漠、沼澤和寒冷地區)鑽井。在鑽井技術發展的同時,設備、工具和測量儀表也得到了相應的發展。

美國鑽井工作者曾將旋轉鑽井技術的發展進程分為四個時期:

(1)概念時期(1900—1920年)。這個時期開始把鑽井和洗井兩個過程結合在一起,開始使用牙輪鑽頭並用水泥封固套管。

(2)發展時期(1920—1948年)。這個時期牙輪鑽頭有所改進,提高了進尺和使用壽命。固井工藝和鑽井液有了進一步的發展,同時出現了大功率的鑽機。

(3)科學化鑽井時期(1948—1968年)。這個時期大力開展鑽井科學研究工作,鑽井技術飛速發展。該時期的主要技術成就有:發展和推廣了噴射鑽井技術;發展了鑲齒、滑動、密封軸承鑽頭;應用低固相、無固相不分散體系鑽井液;發展了地層壓力檢測技術、井控技術和固控技術,提出了平衡鑽井的理論及方法。

(4)自動化鑽井時期(1968年至今)。這個時期發展了自動化鑽機和井口自動化工具。鑽井參數自動測量和計算機在鑽井工程中得到廣泛應用,最優化鑽井和全盤計劃鑽井也初具規模。

目前,鑽井人員一般把鑽井技術發展的前兩個時期稱為經驗鑽井階段,把後兩個時期稱為科學化鑽井階段。時期的劃分直觀地描述了鑽井技術發展的過程,揭示了其發展規律。

任何一門科學和技術都有其自身的發展規律和要達到的主要目標。鑽井工作是為油田勘探和開發服務的重要手段。鑽井技術的發展首先要保證鑽井質量,即所鑽油氣井要滿足油氣田勘探和開發的要求,要在此基礎上來提高鑽井速度、縮短鑽井周期、降低鑽井成本。

近20年來的實踐證明,現代鑽井工藝技術將圍繞以下三個方面發展:

(1)提高鑽井速度,降低生產成本;(2)保護生產層,減少油氣層的污染和損害;(3)改善固井、完井技術,適應採油要求,延長油氣井壽命。

新中國成立以來,我國鑽井技術發展較快。特別是1978年推廣噴射鑽井、低固相優質鑽井液、四合一牙輪鑽頭等新技術後,我國的鑽井技術水平又有顯著提高,進入了科學化的鑽井階段,但與國外先進水平相比,還存在一定的差距。為了使我國的鑽井水平能滿足勘探開發的需要,努力趕上世界先進水平,必須要向鑽井技術進步要速度、要質量、要經濟效益,為加速勘探開發步伐、不斷增加油氣產量作出貢獻。

二、沖擊鑽井方法沖擊鑽井是一種古老的鑽井方法,也是旋轉鑽井方法出現以前唯一的鑽油氣井的方法。它是將破碎岩石的工具(鋼質尖頭鑽頭)提至一定高度,借鑽頭本身的重力沖向井底,擊碎岩石。然後撈取被擊碎的岩屑,以便繼續鑽進。因此,沖擊鑽井方法又被稱為頓鑽。

由於沖擊鑽井時,破碎岩屑與清除岩屑必須間斷地進行,因此鑽井速度很慢,不能滿足石油生產發展的需要。沖擊鑽井現在已基本上被旋轉鑽井所代替,僅在一些埋藏淺、壓力低的油田還能見到。

三、旋轉鑽井方法提高鑽速的根本途徑是改變鑽井方法,這正是旋轉鑽井法產生的原因。旋轉鑽井法的實質是:鑽頭在壓力作用下吃入岩石,同時在轉動力矩的作用下連續不斷地破碎岩石;被破碎的岩屑由地面輸入的鑽井液(泥漿、水、空氣等)及時帶走,鑽井液可以連續不斷地清除岩屑。這樣,一隻鑽頭可以在井底連續鑽進十幾米、幾十米甚至數百米後才起至地面進行更換。由於使用了鑽井液,可長時間穩定井眼、控制復雜地層。旋轉鑽井的鑽井速度高,能適應多種復雜情況,目前世界上大多使用這種方法鑽油氣井。旋轉鑽井通常也稱為轉盤鑽。

利用鑽桿和鑽鋌(厚壁鋼管)的重力對鑽頭加壓,鑽壓要使鑽頭能夠吃入岩石。破碎岩石所需的能量是從地面通過沉重的鋼性鑽柱傳給鑽頭的。起、下鑽的過程比較繁瑣,必須將鑽柱拆卸成許多立柱,才能起出鑽頭;而下鑽時又必須逐根接上。為了連續洗井,鑽井液從轉動的空心鑽柱里流向井底,再帶著岩屑從鑽柱外部與井壁形成的環形空間返回地面。鑽頭鑽進、清洗井底以及起、下鑽所需的動力全部由安裝在地面上的相應設備提供,這些機器設備總稱為鑽機。

現代旋轉鑽井的工藝過程表現為四個環節,即鑽進、獲取地質資料、完井和安裝。

鑽進環節由一系列按嚴格的順序重復的工序組成:把鑽柱下入井裡;旋轉和送進鑽頭使其在井底破碎岩石,同時循環鑽井液;隨著井筒的加深而接長鑽柱;起、下鑽柱以更換被磨損的鑽頭;洗井,凈化或配製鑽井液,處理復雜情況和事故等輔助作業。

為了獲得全面准確的地質資料,鑽井過程中不僅需要進行岩屑、鑽時、鑽井液錄井工作,而且還要進行鑽取岩心、測井等工作。通過各種地球物理測井方法,可以獲得井徑、井斜、方位、岩性等基本數據,掌握和了解井眼質量以及地層和油氣層的某些特性。

在鑽穿油氣層以後,需要下入油層套管,並注入水泥以隔離油氣層與其他地層,使油氣順利地流到地面上來。根據油氣井生產的要求做好井底完成工作是很重要的一道工序。

從確定井位開始,就需要平整井場、挖基礎坑、泥漿池、圓井等土方工程;為運輸機器設備而修築公路;鋪設油、水、氣管線,架設電線,以輸送油、水、氣和電力;打好地基以安裝設備、井架等。基礎工作完成後,要進行大量的井架、設備等搬運和安裝工作,還需做好開鑽前的一切准備工作,如檢查機器設備、試車、固定導管、鑽鼠洞、調配鑽井液、接好鑽具等。

旋轉鑽井過程中,驅動鑽柱旋轉、克服鑽柱與井壁的摩擦消耗了部分能量。為了減少這些無益的能量損失,1940年前後出現了井下動力鑽井方法。井下動力鑽井所用設備與旋轉鑽井基本相同,只是鑽頭不再由轉盤帶動旋轉,而是由井下動力鑽具直接驅動。典型的井下動力鑽具是渦輪鑽具,因此井下動力鑽井又常稱為渦輪鑽井。目前,井下動力鑽井在定向鑽井技術中得到了廣泛的應用。

近年來,一些工業發達國家還競相開展了熱力鑽井、高壓沖蝕鑽井、等離子射流鑽井和激光鑽井等新型鑽井方法的研究。隨著科學技術的進步,新的鑽井方法還將不斷涌現,鑽井工程也必將進入一個全新的科學化時期。

四、井身結構井身結構是油氣井全部基本數據的總稱。它包括以下數據:從開鑽到完鑽所用的鑽頭、鑽柱尺寸和鑽柱長度;套管的層次、直徑;各層套管的下入深度、鋼級和壁厚;各層套管注水泥的數據。由此可見,井身結構是全部鑽井過程計劃和施工的重要依據。圖5-1為井身結構的示意圖。

圖5-1井身結構

首先下入長度約4~6m的短套管,也稱導管,用於加固地表以免被鑽井液沖毀,保護井口完整。同時將循環的鑽井液導入泥漿凈化系統內。

第二次下入的套管叫表層套管,用於封隔地表不穩定的疏鬆地層或水層、安裝井口防噴器。一般深度為40~60m,有時可達500~600m。

當裸眼(未被套管隔離的井眼)長度超過2000~3000m或者地層剖面中存在高、低壓油層、氣層、水層和極不穩定的地層時,鑽進過程中為避免發生工程事故需要下入中間套管,又叫技術套管。目的是封隔復雜地層,防止噴、漏、卡、塌等惡性事故發生,保證安全鑽井。技術套管的層次和下入的深度根據地質和鑽井條件確定。

最後下入的套管叫油層套管,用於採油、采氣或者向生產層注水、注氣,封隔油層、氣層和水層,保證油氣井正常生產。油層套管的下入深度取決於井底的完成方法。油層套管一般從井口下到生產層底部或者只從生產層頂部下到底部。實際工作中對部分下入的油層套管,根據作用取不同的名稱,如尾管、篩管、濾管以及襯管等。

井身結構是由鑽井方法、鑽井目的、地質條件與鑽井技術水平決定的。周密考慮各種影響因素,制定合理的井身結構,是保證高速度鑽井與油氣井投產後正常產出的關鍵。

綜上所述,現代石油鑽井工程是一項復雜的系統工程。由多工序、多工種聯合作業,需要各種先進的科學技術和生產組織管理水平。

㈨ 鑽井領域技術有哪些

一、海洋鑽井設備
1.石油鑽機
石油鑽機是一組十分復雜的大型成套設備,製造難度大、成套范圍廣,用於海洋鑽井的石油鑽機還要能夠承受海水腐蝕、海浪沖刷等惡劣的自然條件。目前,美國是製造成套石油鑽機最具實力的國家。
隨著交流變頻調速技術的迅猛發展,交流變頻電驅動鑽機(AC-GTO-AC石油鑽機)憑借其自身的優越性,正在取代現有的可控硅直流電驅動鑽機,成為海洋石油鑽機發展的換代產品。交流變頻電驅動鑽機在工作性能方面,實現了無級變速,恆功率寬調速,簡化了鑽機機械結構,提高了鑽機提升能力和處理事故的能力;在操作性方面,交流電動機體積小,單機容量大,容易實現鑽機的自動化、智能化和對外界變化的自適應控制,易於操作管理;在安全性方面,交流變頻技術本身對電動機具有安全保護功能,易於安裝、拆卸,搬遷方便靈活,安全性高。目前,世界主要鑽機製造商均發展了交流變頻電驅動大功率石油鑽機,將其配備在鑽深能力為10668米(35000英尺)及以上的深水(工作水深大於2438米,即8000英尺)的半潛式鑽井平台或鑽井浮船上。
另外,新型液壓石油鑽機也在不斷地推廣和使用。新型液壓鑽機是由挪威海事液壓公司於1996年開發的一種新型鑽機。該鑽機作為提升機械,取消了傳統的絞車、井架和游車等常規設備,用升降液缸代替了絞車,同時也替代了浮式鑽井的龐大的鑽柱運動補償器,從而大大降低了鑽機的質量和製造成本(據報道可降低成本30%)。除此以外,該鑽機還可以與計算機組合實現鑽井和鑽具升降操作的機械化和自動化,操作人員數量明顯減少。
目前激光石油鑽機還處於研發階段。激光鑽井技術具有降低成本、提高鑽速、改善井控,減少鑽機工作時間、鑽頭磨損和起下鑽時間,精確控制鑽眼,以及在井眼周圍形成一層堅硬的玻璃化外皮,最大限度地減少或取消同心套管等其他鑽機無法比擬的優點。據悉,美國芝加哥天然氣研究所(GRI)與美科羅拉多礦業學院、麻省理工學院、雷克伍德公司、菲利普斯及美國空軍和陸軍合作,聯合開展了有關激光鑽機的研究,並計劃在21世紀使用上激光鑽井。
隨著石油鑽機的不斷發展,作為石油鑽機的關鍵設備的鑽井絞車、轉盤、頂驅和鑽井泵也得到了快速的發展。
2.井絞車
為適應海洋石油鑽探和開采向深水推進的需要,鑽井絞車的提升能力和鑽探能力也在不斷提高。
3.轉盤和頂驅
鑽井裝置旋轉系統中的兩個互補設備的轉盤和頂驅,也在實踐中逐漸完善,功能不斷增強。
4.鑽井泵
對於海洋鑽井,特別是深海鑽井來說,鑽井泵是鑽井液設備中的關鍵設備。21世紀初National-Oilwell公司成功開發出了新一代鑽井泵——HEX鑽井泵,它代表了未來鑽井泵的發展趨勢,該鑽井泵配有兩台交流變頻驅動電動機,採用六個缸套,與傳統鑽井泵相比具有輸出流量穩定、超高壓、超高流量、尺寸小等優點。此外,高強度鋼和耐磨陶瓷在鑽井泵的泵體、液缸、活塞等零件上的使用,可顯著降低泵的體積、質量,同時延長泵的使用壽命,成為未來鑽井泵的又一發展方向。
5.PDC鑽頭的新技術
對於PDC鑽頭來說,現在需要具備的條件是能鑽達更深、更硬,地下環境更異常的區域,這必然對現代鑽井工藝又提出了更高的要求。這些鑽頭包括自磨式PDC鑽頭,具有超強的抗磨性,能很好地延緩鑽頭的磨損,同時輕型的鑽頭可鑽達更深、更硬的地層。另外還有耐高溫的PDC鑽頭。
6.井控設備
鑽井井下控制裝置需要滿足海洋鑽井的需要,如需要可以關閉正在鑽探的井卻不需要取出鑽桿;需要滿足不斷增加的工作壓力,降低質量,減小尺寸;還需要適應新的欠平衡鑽井的井控設備。
二、鑽井技術
1.油氣井力學與過程式控制制方面
(1)向信息化、智能化方向發展。
井下智能鑽井系統的最終發展目標,是「地下鑽掘機器人」。這種地下鑽掘機器人不同於一般的機器人,它必須能夠在地下極其復雜的地質環境及非常惡劣的工況下進行有效的工作。它必須能夠精確探測前方和周圍的地質環境及本身的狀態,進而做出正確的分析和決策,並且能夠自動適應所處的工作環境,沿著「預定的路線」或要求沖向「地下目標」,勝利完成人類賦予它實地探察地下資源並加以開採的神聖任務。這種地下鑽掘機器人,是自動化鑽井的核心,將是多種高新技術和新產品的進一步研究和開發及其微型化集成的結果,代表著未來鑽井與掘進技術的發展趨勢,可望在21世紀前半葉實現並達到比較理想的成熟度。
(2)向多學科緊密結合、提高勘探發現率和提高油井產量與採收率方向發展。
以近年來發展迅速、技術先進的水平井為例,水平井設計程序和框圖是1992年11月由美國石油工程協會和地質家協會、地球物理家協會和測井分析家協會共同開會約定的,該設計內容是由地質、鑽井、採油油藏、成本核算四部分人員共同合作完成的。應用水平井技術勘探和開發整裝油氣田,是20世紀90年代水平井應用發展的主要趨勢之一,它不僅可顯著提高油田產量,更可以有效地提高油田採收率。
(3)向有效勘探和開采特殊油氣藏方向發展。
特殊油氣藏包括低滲油氣藏、斷塊油氣藏、稠油油藏、高含水油氣藏、薄油層等。以低滲油氣藏為例:我國已探明儲量中,低滲油氣藏占總探明儲量25%,近3~4年新增探明儲量中,約60%為低滲油氣藏,其低孔、低滲的兩低特性使其勘探發現難度極大,而且儲層傷害問題貫穿於鑽井、完井和測試全過程。因此,研究發展低壓低滲探井鑽井過程中儲層傷害機理及評價方法、鑽井液化學與儲層保護技術、最大限度發現和保護儲層的全過程欠平衡鑽井優化設計和適應性等,是有效勘探和開采特殊油氣藏的鑽井工程核心問題。
2.復雜油氣多相流與高壓水射流方面
(1)復雜油氣水多相流本質認識更深入,模型研究更科學、更接近實際。
近年來國內外在多相流基礎理論方面的研究內容主要涉及多相流流型、流型圖、壓力降、截面含氣率、截面含液率、特種管件內的多相流、液汽、噴汽及數值計算等,理論研究發展迅速。為了掌握油氣兩相流在水平井中的流動特性,包括沿井長的壓力降、持液率及流體從儲油層中流出的狀況,研究人員進行了一系列試驗和理論研究工作,並提出了計算模型。如研究傾斜管中油水兩相流不穩定性,提出了一種瞬態兩流體模型來模擬管內彈狀流的流動工況;通過對孔隙率波、流動湍流度、平均含氣率的測量和信號分析,得到流型轉化機理的特點和規律。由於多相流體在環空中的不同井段流型不一樣,因而其靜液壓力、摩阻壓降、加速壓力計算非常煩鎖,對這些不同流型段、不同的井段,需要用不同的計算模型。美國莫爾公司開發了一套多相流水力學軟體來進行這種復雜的多相流計算,使模型研究更科學、更接近實際。
(2)復雜井筒多相流理論研究的指導作用越來越大。
復雜井筒多相流理論研究將指導水平井段設計和產能預測,能夠實時地監控欠平衡鑽井井下的復雜流動情況,並能夠編制出智能化的軟體系統,幫助鑽井人員監測和控制流動參數,科學進行生產系統優化設計。相信隨著科學技術的不斷發展和對多相流動本質了解的不斷深入,在不遠的未來,必然能夠利用多相流動知識促進石油工程相關理論和技術的發展。
(3)高壓超高壓射流破岩鑽井和增產應用越來越廣泛。
隨著高壓水射流理論、技術和設備的發展與進步,新型射流種類將不斷出現,高壓超高壓射流紊流動力學和流動規律的研究和認識將不斷深入,應用范圍和領域將不斷擴大。在石油工程中,高壓超高壓射流技術將不僅應用於輔助破岩鑽井,進一步提高鑽井速度,而且將應用於油氣井增產改造,如水力深穿透射孔、定向噴射輔助壓裂、徑向水平微小井眼開采等。同時,高壓水射流技術在煤炭、化工、冶金、建築、機械、軍工等十多個工業領域的水力採煤采礦、切割鑽孔破碎、清洗除垢除銹等場合也有越來越廣泛的應用。

㈩ 石油鑽井專業術語解釋

鑽頭
鑽頭主要分為:刮刀鑽頭;牙輪鑽頭;金剛石鑽頭;硬質合金鑽頭;特種鑽頭等。衡量鑽頭的主要指標是:鑽頭進尺和機械鑽速。

鑽機八大件
鑽機八大件是指:井架、天車、游動滑車、大鉤、水龍頭、絞車、轉盤、泥漿泵。

鑽柱組成及其作用
鑽柱通常的組成部分有:鑽頭、鑽鋌、鑽桿、穩定器、專用接頭及方鑽桿。鑽柱的基本作用是:(1)起下鑽頭;(2)施加鑽壓;(3)傳遞動力;(4)輸送鑽井液;(5)進行特殊作業:擠水泥、處理井下事故等。

鑽井液的性能及作用
鑽井液的性能主要有:(1)密度;(2)粘度;(3)屈服值;(4)靜切力;(5)失水量;(6)泥餅厚度;(7)含砂量;(8)酸鹼度;(9)固相、油水含量。鑽井液是鑽井的血液,其主作用是:1)攜帶、懸浮岩屑;2)冷卻、潤滑鑽頭和鑽具;3)清洗、沖刷井底,利於鑽井;4)利用鑽井液液柱壓力,防止井噴;5)保護井壁,防止井壁垮塌;6)為井下動力鑽具傳遞動力。

常用的鑽井液凈化設備
 常用的鑽井液凈化設備:(1)振動篩,作用是清除大於篩孔尺寸的砂粒;(2)旋流分離器,作用是清除小於振動篩篩孔尺寸的顆粒;(3)螺桿式離心分離機,作用是回收重晶石,分離粘土顆粒;(4)篩筒式離心分離機,作用是回收重晶石。

鑽井中鑽井液的循環程序
鑽井 液罐 經泵→地面 管匯→立管→水龍帶、水龍頭→鑽柱內→鑽頭→鑽柱外環形空間→井口、泥漿(鑽井液)槽→鑽井液凈化設備→鑽井液罐。

鑽開油氣層過程中,鑽井液對油氣層的損害
主要有以下幾種損害:(1)固相顆粒及泥餅堵塞油氣通道;(2)濾失液使地層中粘土膨脹而堵塞地層孔隙;(3)鑽井液濾液中離子與地層離子作用產生沉澱堵塞通道;(4)產生水鎖效應,增加油氣流動阻力。

預測和監測地層壓力的方法
(1)鑽井前,採用地震法;(2)鑽井中,採用機械鑽速法,d、dc指數法,頁岩密度法;(3)完井後,採用密度測井,聲波時差測井,試油測試等方法。

鑽井液靜液壓力和鑽井中變化
靜液壓力,是由鑽井液本身重量引起的壓力。鑽井中變化,岩屑的進入會增加液柱壓力,油、氣水侵會降低靜液壓力,井內鑽井液液面下降會降低靜液壓力。防止鑽井液靜液壓力變化的方法有:有效地凈化鑽井液;起鑽及時灌滿鑽井液。

噴射鑽井
噴射鑽井是利用鑽井液通過噴射式鑽頭噴嘴時,所產生的高速射流的水力作用,提高機械鑽速的一種鑽井方法。

影響機械鑽速的因素
(1)鑽壓、轉速和鑽井液排量;(2)鑽井液性質;(3)鑽頭水力功率的大小;(4)岩石可鑽性與鑽頭類型。

鑽井取心工具組成
(1)取心鑽頭:用於鑽取岩心;(2)外岩心筒:承受鑽壓、傳遞扭矩;(3)內岩心筒:儲存、保護岩心;(4)岩心爪:割斷、承托、取出岩心;(5)還有懸掛軸承、分水流頭、回壓凡爾、扶正器等。

取岩心
取岩心是在鑽井過程中使用特殊的取心工具把地下岩石成塊地取到地面上來,這種成塊的岩石叫做岩心,通過它可以測定岩石的各種性質,直觀地研究地下構造和岩石沉積環境,了解其中的流體性質等。

平衡壓力鑽井
 在鑽井過程中,始終保護井眼壓力等於地層壓力的一種鑽井方法叫平衡壓力鑽井。

井噴
是地層中流體噴出地面或流入井內其他地層的現象。引起井噴的原因有:(1)地層壓力掌握不準;(2)泥漿密度偏低;(3)井內泥漿液柱高度降低;(4)起鑽抽吸;(5)其他措施不當等。

軟關井
 就是在發現溢流關井時,先打開節流閥,後關防噴器,再試關緊節流閥的一種關井方法。因為這樣可以保證關井井口套壓值不超過允許的井口套壓值,保證井控安全,一旦井內壓力過大,可節流放噴。

鑽井過程中溢流
(1)鑽井液儲存罐液面升高;(2)鑽井液出口流速加快;(3)鑽速加快或放空;(4)鑽井液循環壓力下降;(5)井下油、氣、水顯示;(6)鑽井液在出口性能發生變化。

溢流關井程序
 (1)停泵;(2)上提方鑽桿;(3)適當打開節流閥;(4)關防噴器;(5)試關緊節流閥;(6)發出信號,迅速報告隊長、技術員;(7)准確記錄立柱和套管壓力及泥漿增量。

鑽井中井下復雜情況
鑽進中由鑽井液的類型與性能選擇不當、井身質量較差等原因,造成井下遇阻、遇卡、以及鑽進時嚴重蹩跳、井漏、井噴等,不能維持正常鑽井和其他作業的正常進行的現象。

鑽井事故
是指由於檢查不周、違章操作、處理井下復雜情況的措施不當或疏忽大意,而造成的鑽具折斷、頓鑽、卡鑽及井噴失火等惡果。

井漏
井漏主要由下列現象發現,(1)泵入井內鑽井液量>返出量,嚴重時有進無出;(2)鑽井液罐液面下降,鑽井液量減少;(3)泵壓明顯下降。漏失越嚴重,泵壓下降越明顯。
卡鑽及造成原因
卡鑽就是在鑽井過程中因地質因素、鑽井液性能不好、技術措施不當等原因,使鑽具在井內長時間不能自由活動,這種現象叫卡鑽。主要有黏附卡鑽、沉砂卡鑽、砂橋卡鑽、井塌卡鑽、縮徑卡鑽、泥包卡鑽、落物卡鑽及鑽具脫落下頓卡鑽等。

處理卡鑽事故的方法
(1)泡油解卡;(2)使用震擊器震擊解卡;(3)倒扣套銑;(4)爆炸松扣;(5)爆炸鑽具側鑽新眼等。

固井
固井就是向井內下入一定尺寸的套管串,並在其周圍注入水泥漿,把套管固定的井壁上,避免井壁坍塌。其目的是:封隔疏鬆、易塌、易漏等復雜地層;封隔油、氣、水層,防止互相竄漏;安裝井口,控制油氣流,以利鑽進或生產油氣。

井身結構
包括:(1)一口井的套管層次;(2)各層套管的直徑和下入深度;(3)各層套管相應的鑽頭直徑和鑽進深度;(4)各層套管外的水泥上返高度等等。

套管柱下部結構
(1)引鞋:引導套管入井,避免套管插入或刮擠井壁;(2)套管鞋:引導在其內部起鑽的鑽具進入套管;(3)旋流短節:使水泥漿旋流上返,利於替泥漿,提高注水泥質量;(4)套管回壓凡爾:防止水泥漿迴流,下套管時間阻止泥漿進入套管;(5)承托環:承托膠塞、控制水泥塞高度;(6)套管扶正器:使套管在鑽井中居中,提高固井質量。

注水泥施工工序
下套管至預定深度→裝水泥頭、循環泥漿、接地面管線→打隔離液→注水泥→頂膠塞→替泥漿→碰壓→注水泥結束、候凝。

完井井口裝置
(1)套管頭--密封兩層套管環空,懸掛第二部分套管柱和承受一部分重量;(2)油管頭--承座錐管掛,連接油層套管和採油樹、放噴閘門、管線;(3)採油樹--控制油氣流動,安全而有計劃地進行生產,進行完井測試、注液、壓井、油井清蠟等作業。

尾管固井法
尾管固井是在上部已下有套管的井內,只對下部新鑽出的裸眼井段下套管注水泥進行封固的固井方法。尾管有三種固定方法:尾管座於井底法;水泥環懸掛法;尾管懸掛器懸掛法。

試油
在鑽井發現油、氣層後,還需要使油、氣層中的油、氣流從井底流到地面,並經過測試而取得油、氣層產量、壓力等動態資料,以及油、氣、水性質等工作,稱做試油(氣)。

射孔
鑽井完成時,需下套管注水泥將井壁固定住,然後下入射孔器,將套管、水泥環直至油(氣)層射開,為油、氣流入井筒內打開通道,稱做射孔。目前國內外廣泛使用的射孔器有槍彈式射孔器和聚能噴流式射孔器兩大類。

井底污染
井底污染又稱井底損害,是指油井在鑽井或修井過程中,由於鑽井液漏失或水基鑽井液的濾液漏入地層中,使井筒附近地層滲透率降低的現象。

誘噴
射孔之前,為了防止井噴事故,油、氣井內一般灌滿壓井液。射孔後,為了將地層中液體導出地面,就必需降低壓井液的液柱,減少對地層中流體的壓力。這一過程是試油工作中的一道工序,稱為誘噴。誘噴方法有替噴法、抽吸法、提撈法、氣舉法等。

鑽桿地層測試
鑽桿地層測試是使用鑽桿或油管把帶封隔器的地層測試器下入井中進行試油的一種先進技術。它既可以在已下入套管的井中進行測試,也可在未下入套管的裸眼井中進行測試;既可在鑽井完成後進行測試,又可在鑽井中途進行測試。

電纜地層測試
在鑽井過程中發現油氣顯示後,用電纜下入地層測試器可以取得地層中流體的樣品和測量地層壓力,稱做電纜地層測試。這種測試方法比較簡單,可以多次地、重復地進行。

油管傳輸射孔
油管傳輸射孔是由油管將射孔器帶入井下,射孔後可以直接使地層的流體經油管導致地面,不必在射孔時向井內灌入大量壓井液,避免井底污染的一種先進技術。

岩石孔隙度
岩石的孔隙度是指岩石中未被固體物質充填的空間體積Vp與岩石總體積Vb的比值。用希臘字母Φ表示,其表達式為:Φ=V孔隙 / V岩石×100%=Vp / Vb×100%。

地層原油體積系數
地層原油體積系數βo,又稱原油地下體積系數,或簡稱原油體積系數。它是原油在地下的體積(即地層油體積)與其在地面脫氣後的體積之比。原油的地下體積系數βo總是大於1。

流體飽和度學習
某種流體的飽和度是指:儲層岩石孔隙中某種流體所佔的體積百分數。它表示了孔隙空間為某種流體所佔據的程度。岩石中由幾相流體充滿其孔隙,則這幾相流體飽和度之和就為1(100%)。

閱讀全文

與鑽井中運用油層物理哪些知識相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1422
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1006
武大的分析化學怎麼樣 瀏覽:1256
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1666
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071