❶ 循环水处理的微生物危害
循环冷却水中的微生物来自两个方面。一是冷却塔在水的蒸发过程中需要引入大量的空气,微生物也随空气带入冷却水中,二是冷却水系统的补充水或多或少都会有微生物,这些微生物也随补充水进入冷却水系统中。
藻类在日光的照射下,会与水中的二氧化碳、碳酸氢根等碳源起光合作用,吸收碳素作营养而放出氧,因此,当藻类大量繁殖时,会增加水中溶解氧含量,有利于氧的去极化作用,腐蚀过程因此而加速。微生物在循环水系统中的大量繁殖,会使循环水颜色变黑,发生恶臭,污染环境。同时,会形成大量黏泥使冷却塔的冷却效率降低,木材变质腐烂。黏泥沉积在换热器内,使传热效率降低和水头损失增加,沉积在金属表面的黏泥会引起严重的垢下腐蚀,同时它还隔绝了缓蚀阻垢剂对金属的作用,使药剂不能发挥应有的缓蚀阻垢效能。微生物黏泥除了会加速垢下腐蚀外,有些细菌在代谢过程中,生物分泌物还会直接对金属构成腐蚀。所有这些问题导致循环水系统不能长期安全运转,影响生产,造成严重的经济损失,因此,微生物的危害与水垢、腐蚀对冷却水系统的危害是一样的严重,甚至可以说,三者比较起来控制微生物的危害是首要的。
循环水中微生物的动向可以通过以下化学分析项目进行测量:
(1)余氯(游离氯) 加氯杀菌时要注意余氯出现的时间和余氯量,因为微生物繁殖严重时就会使循环水中耗氯量大大地增加。
(2)氨循环水中一般不含氨,但由于工艺介质泄漏或吸入空气中的氨时也会使水中出现含氨,这时不能掉以轻心,除积极寻找氨的泄漏点外,还要注意水中是否含有亚硝酸根,水中的氨含量最好是控制在10mg/l以下。
(3)NO2-当水中出现含氨和亚硝酸根时,说是水中已有亚硝酸菌将氨转化为亚硝酸根,这时循环水系统加氯将变为十分困难,耗氯量增加,余氯难以达到指标,水中NO2-含量最好是控制在小于1mg/l。
(4)化学需氧量水中微生物繁殖严重时会使COD增加,因为细菌分泌的黏液增加了水中有机物含量,故通过化学需氧量的分析,可以观察到水中微生物变化的动向,正常情况下水中COD最好小于5mg/l(KMnO4法)。
循环水中微生物所造成的危害是十分严重的,如果要在微生物造成危害之后采取措施往往是事倍功半还要耗费大量的杀生剂和金钱。因此,事先全面监测循环冷却水的微生物情况是十分必要的,
浓水倍数
循环水浓缩倍数是指循环水系统在运行过程中,由于水分蒸发、风吹损失等情况使循环水不断浓缩的倍率(以补充水作基准进行比较),它是衡量水质控制好坏的一个重要综合指标。浓缩倍数低,耗水量、排污量均大且水处理药剂的效能得不到充分发挥;浓缩倍数高可以减少水量,节约水处理费用;可是浓缩倍数过高,水的结垢倾向会增大,结垢控制及腐蚀控制的难度会增加,水处理药剂会失效,不利于微生物的控制,故循环水的浓缩倍数要有一个合理的控制指标。
❷ 循环水微生物的危害如何消除
紫外线消毒
❸ 循环水氯离子含量高的危害是什么
氯离子有很高的极性,能促进腐蚀反应,又有很强的穿透性,容易穿透金属表面的保护膜,造成缝隙和空蚀等局部腐蚀。
氯离子起着各种生理学作用。许多细胞中都有氯离子通道,它主要负责控制静止期细胞的膜电位以及细胞体积。
在膜系统中,特殊神经元里的氯离子可以调控甘氨酸和伽马氨基丁酸的作用。氯离子还与维持血液中的酸碱平衡有关。
氯离子的生理功能
(1)在膜系统中,特殊神经元里的氯离子可以调控甘氨酸和伽马氨基丁酸的作用。
(2)氯离子还与维持血液中的酸碱平衡有关。
物理性质:颜色为无色
化学性质:氯因得一个电子而形成带一个负电荷的氯离子Cl-。
❹ 工业循环水系统的主要危害是什么,会造成什么影响
工业循环冷却水系统的连续运行,水的浓缩而导致水中各种离子浓度增大,相应的腐蚀、结垢等问题亦随之发生。当补充水为工业新水时,由于钙、镁离子较多,如不进行水质稳定处理,会造成设备内部的结垢,降低换热效率,严重时还会堵塞管路,带来安全隐患;循环水系统为开路循环,水中溶解氧充分,溶氧腐蚀很容易进行,氯离子、硫酸根离子等也会对设备、管路等造成腐蚀;同时由于水中含有足够的有机物和无机物,水温达到25~35℃时,这些因素给微生物的生长繁殖提供了适宜的条件,微生物既能造成污垢沉积,又能造成腐蚀,在
敞开式循环冷却水系统中,水垢、腐蚀和微生物危害习惯称为三大危害。
1、沉积物的形成
水系统的传热面与管壁上形成的水垢和污垢,称为沉积物,其形成通常有以下三种来源:水生沉积物,即悬浮固体物(如泥沙、尘土、细菌尸体、有机物等)因水流速度过低(小于1m/s)而沉积于系统中;外界的污染,如树叶、羽毛、包装袋等异物飘入系统中而沉积;水形成沉积物,即溶存固体物因温度变化等因素,在系统中沉淀或结晶形成,通常将此类沉积物称之为水垢。水形成沉积物的种类与成因如下。
1)碳酸钙(CaCO3)
Ca2++2HCO3-→CaCO3↓+H2O+CO2↑
在大部分的冷却水中都含有高浓度的重碳酸钙,其溶解度相当低,很容易在热交换器表面上形成碳酸钙沉淀。碳酸钙、碳酸氢钙、氯化钙、镁化合物及硫酸钙的溶解度如下表所示。
常见难溶物质溶度表
名称 分子式 溶解度(以CaCO3计)/mg·L-1
在0℃ 在100℃
重碳酸钙 Ca(HCO3)2 1620 分解
碳酸钙 CaCO3 15 13
氯化钙 CaCl2 336 000 554 000
硫酸钙 CaSO4 1 290 1 250
重碳酸镁 Ca(HCO3)2 37 100 分解
碳酸镁 MgCO3 101 75
氯化镁 MgCl2 362 000 443 000
硫酸镁 MgSO4 170 000 356.000
碳酸盐溶解在水中达到饱和状态时,存在下列动态平衡:
Ca(HCO3)2=Ca2++2HCO3-
HCO3-=H++CO32-
CaCO3=Ca2++ CO32-
朗格利尔(Langlier)根据上述平衡关系,提出了饱和pH和饱和指数的概念,用以判断碳酸钙垢在水中是否会析出。
朗格利尔指出:
当L.S.I.>0时,碳酸钙会析出,这种水属于结垢型水;
当L.S.I.=0时,碳酸钙不会析出,原有的碳酸钙也不会被溶解,这种水属于稳定型水;
当L.S.I.<0时,原来附着在换热面上的碳酸钙会被溶解,使碳钢金属表裸露在水中而腐蚀,这种水属于腐蚀型水。
雷兹纳(Ryznar)提出了稳定指数(R.S.I.)来进行碳酸钙析出的判断法,雷兹纳通过实验指出:
当(R.S.I.)=[2pHs-pH]<6 结垢
当(R.S.I.)=[2pHs-pH]=6 既不腐蚀也不结垢
当(R.S.I.)=[2pHs-pH]>6 腐蚀
帕科拉兹(Puckorius)认为水的总碱度比水的实际测定pH能更正确地反映出冷却水的腐蚀和结垢倾向,他认为将稳定指数中水的实际pH改为平衡pH(pHeq)将更切合实际生产。pHeq按下式计算:
pHeq=1.465lgM+4.54
式中:M—循环冷却水的总碱度
2)硫酸钙(CaSO4)
硫酸钙的溶解度比碳酸钙约高出100倍,故硫酸钙垢的形成机会较碳酸钙垢少,但是一旦硫酸钙垢沉积物形成,不容易将其清除。
通常情况是控制钙离子浓度与硫酸钙离子浓度(mg/L)的乘积不超过500000,即[Ca2+]×[SO42-]小于500000,则硫酸钙的沉积物形成的机会很少。
3)氧化铁
腐蚀的产物或水中含有的溶铁在系统中氧化而形成氢氧化铁或氧化铁絮体,进而形成各种铁的难溶氧化物或者其他难溶化合物。
Fe2++2OH-→Fe(OH)2
4Fe(OH)2+O2+2H2O→4Fe(OH)3
2Fe(OH)3→Fe2O3+3H2O
4)氧化硅
水中硅能与镁、钙形成不溶性的硅酸盐沉积物。
Mg2++SiO2+H2O→MgSiO3↓+2H+
Ca2++SiO2+H2O→CaSiO3↓+2H+
在冷却水系统中,硅含量通常控制在200 mg·L-1以下。
2、腐蚀的形成
由于和周围介质相作用,使材料(通常是金属)遭受破坏或使材料性能恶化的过程称为腐蚀。
腐蚀是一种化学或电化学过程,水中金属腐蚀类型有均匀腐蚀、点蚀、电偶腐蚀、缝隙腐蚀、应力腐蚀、微生物腐蚀及泡蚀、磨蚀等。最常见的包括均匀腐蚀、电偶腐蚀和微生物腐蚀、垢下腐蚀等。
1)均匀腐蚀
均匀腐蚀的特征是化学反应发生在整个暴露表面或相当大的面积上,腐蚀以均匀速度进行,金属越来越薄。循环水在中性或碱性条件下运行,引起均匀腐蚀的主要原因是溶解氧的阴极去极化作用。钢铁中的铁元素和碳元素构成简单的原电池反应。
在阳极,铁失去电子成为铁离子进入溶液:
Fe→Fe2++2e-(阳极反应)
电子从阳极的铁流向阴极碳,在阴极,溶解氧在碳上得到电子生成氢氧根离子:
O2+2H2O+4e-→4OH-(阴极反应)
在水中,阴极、阳极的产物结合生成氢氧化亚铁沉淀:
Fe2++2OH-→Fe(OH)2
溶解氧向金属表面输送使得腐蚀过程得以持续,这是决定腐蚀速度的一步,溶解氧还使得氢氧化亚铁进一步氧化为二次产物氢氧化铁:
4 Fe(OH)2+O2+2H2O→4Fe(OH)3
由于腐蚀产物的阻挡,水中溶解氧达到这个腐蚀点的速度减慢,形成腐蚀点四周的氧浓度大于腐蚀点的氧浓度,使得腐蚀点四周成为阴极,腐蚀点本身成为阳极,腐蚀继续以氧浓差梯度腐蚀的方式进行。此时,腐蚀产生的亚铁离子通过疏松的二次产物层向外扩散,当它遇到水中的OH-或者O2时,又产生新的二次产物,积累在原有的二次产物层中,因此二次产物层越积越厚,形成鼓包,鼓包下面越腐蚀越深,形成陷坑。
2)电偶腐蚀
电偶腐蚀又称双金属腐蚀,当两种不同的金属浸在导电性水溶液中,两种金属之间通常存在电位差。如果这两种金属互相接触或用导线连接,则电位差会驱使电子在他们之间流动,形成原电池。以铜材质和碳钢材质接触为例,电极反应如下:
阳极(Fe):Fe→Fe2++2e-
阴极(Cu):Cu2++2e-→Cu
与不接触(导电)时相比,电位较低的金属在接触(导电)后腐蚀速度通常会显着增加,而电位较高的金属在接触后腐蚀速度将下降。
3)其他因素
由于各种原因在金属表面形成的粘泥的沉积,会产生垢下腐蚀,某些微生物的新陈代谢作用(如硫酸盐细菌等)也会影响电化学腐蚀过程,促进腐蚀加速。
3、微生物危害的产生
循环冷却水系统中微生物的种类和数量相当多,危害很大。主要类型包括好氧异养菌、硫酸盐还原菌、铁细菌、藻类、真菌、原生动物等。其造成的危害在循环冷却水系统中是很严重的,与水垢、非微生物的电化学腐蚀比起来,其危害更胜一筹。微生物带给系统的危害不外乎黏附和腐蚀,表现出来时往往和水垢、其他腐蚀的危害混和在一起,对于腐蚀和黏泥附着也不能严格分开。
1)微生物的腐蚀
微生物对金属的腐蚀途径大致包括以下几种:1、产生腐蚀性物质,如好氧菌产生的有机或无机酸;2、造成氧浓差电池,如铁细菌附着在金属表面,氧化亚铁离子生成高价的铁化合物沉积在金属表面形成结瘤,造成局部氧浓度下降;3、阴极或阳极的去极化作用加速腐蚀过程。
2)微生物黏泥与污垢沉积
微生物群体及其分泌物会形成胶黏状物,这些黏泥很容易附着在设备上,造成沉积物的危害。实际上,系统中的沉积物很少是单一的微生物黏泥,而是以微生物黏泥为主,也含有一部分淤泥、水垢和腐蚀产物。
这些黏泥污垢的危害很大。由于其黏附特性,在水中起到架桥、絮凝的作用,使难溶性盐类的悬浮晶粒长大,进而沉降在设备上;黏泥附着造成垢下腐蚀;黏泥使水冷器的污垢热阻值增加,换热器效率大大降低;黏泥附着部位的金属无法接触缓蚀阻垢剂等等。
❺ 循环水系统为什么适宜微生物的生长
1、循环冷却水是一个特殊的生态环境。水的温度5--40℃和PH值6.5--8.5,恰好是在多种微生物最宜生长的范围内。
2、冷却塔、凉水池露置室外,日照充足,水在喷淋过程中使水的含氧达到饱和。
3、微生物生长所需的营养源如有机物、碳酸盐、硫酸盐等均因循环浓缩而增加,尤其是磷酸盐更生微生物很好的营养盐,这些都给微生物生长提供了良好的条件。
因此,由补充水和空气带进的各种微生物在循环冷却水中能很快地繁殖起来。
❻ 微生物有哪些危害
微生物给人们带来益处,也造成危害。人们利用微生物酿酒,生产柠檬酸,制造抗菌素和酶制剂等。然而微生物也有有害的一面,人、动物和植物的大部分疾病,以及工业、商业、外贸等部门的许多材料和制品的霉变、腐蚀、受损,都是微生物造成的。
这里,我们先来谈谈微生物的破坏作用。
在银行,计算机电子回路的增强塑料表面繁殖了霉菌,会导致计算机发生故障,业务出现差错。
不论哪里的银行,尽管它建筑豪华、设施齐全,但由于每天有许多人进出,室内的微生物污染都十分严重。如果对室内空气中浮游的微生物进行一次测量,就会发现微生物的数量会出乎意料的多。其中还能分离出致癌性菌株黄曲霉和变色曲霉。
引起室内空气中微生物增加的原因很多,但值得注意的是进出银行的各个方面的人,他们将从毛发、衣着、手、物品中散布出微生物来。同时,粘附在纸币上的霉菌和细菌也会引起第二次污染。试验已经证明,在用纤维材料制作的纸张、地毯和木材上,有许多致病菌存在着。
这种令人忧虑的微生物污染状况除了银行之外,医院、饭店、写字楼、百货大楼、街道、新干线和地下铁路的电车、公共汽车等的内部也存在着严重的问题。特别是在医院中,每天病人云集,交叉感染时常发生。进入医院是为了治疗疾病,但医院又是可怕的微生物感染地,这对于一般人是想象不到的。
❼ 循环冷却水系统中的微生物都有哪些如何控制
工业循环冷却水系统给大量微生物的生长提供了良好的栖息地,微生物生长所必需的营养物和离子,可以通过补充水和周围空气带入的有机物或无机物供给,生产过程中物料的泄漏也为循环水系统微生物种群提供了养料。通过管道、热交换器、冷却塔填料及配水管道系统所提供的大量表面积,有效地促进了微生物种群的生长,微生物孳长给循环水系统带来极大危害。目前微生物控制普遍采用的方法是投加杀生剂直接杀灭微生物体,并将循环水中的各类细菌数降到国家标准规定的指标以下,如异养菌总数应不超过5×105个/ 毫升,以此作为循环水系统微生物成功控制的评判依据。在杀生剂的研发中,亦将杀生剂对水中活菌杀灭能力的大小,作为评判其性能好坏的标准。然而,人们长久以来依赖的这一依据或标准的合理性是值得质疑的。因为,循环水中悬浮异养菌的总数不超过5×105个/ 毫升,并不等同于循环水系统中异养菌的总数不超过5×105个/ 毫升。
在循环冷却水系统中包含着两种不同的微生物种群:存在于循环水整体流动中的浮游微生物和在生物膜或生物粘泥中具有生长优势的附着微生物。监测循环水系统中微生物数量和相应杀生剂性能评价的传统指标,仅着眼于控制水中的浮游微生物群体,表1的数据可以说明,粘泥中各种菌类数量都要比循环水中高得多。尽管水中的悬浮细菌被杀灭,附着在系统壁上的生物粘泥仍然对系统构成危害,并且粘泥中的细菌又为循环水中细菌的再度繁殖提供了基础。这也是投加杀生剂来控制循环水中活菌数量有时并不能有效解决系统微生物孳长问题的原因。
对冷却水系统中微生物控制一般可采用以下几种方法:
1.加强原水处理‚改善补水水质。
对原水进行前处理非常重要‚尤其是使用地表水时‚水中和微生物含量很高‚使用混凝、澄清方法‚不仅可降低浊度‚而且一般可使细菌总数降低到103以下‚如果在澄清中投加氯则杀菌效果更好。
2.投加杀生剂
循环冷却水系统中这种方法是抑制微生物通用法。杀生剂常以各种方式杀伤微生物‚有的可穿透细胞壁进入到细胞质中‚破坏维持生命的蛋白质基团。有些表面活性剂可破坏细胞的作用‚从而杀死微生物。有的药剂则能抑制细菌酶的反应‚使酶的活性丧失‚导致细胞迅速死亡‚最终使微生物被杀死。
我就是专业生产这杀生剂的
❽ 电炉的循环水对人体有害吗
应该无害。
电炉的循环水水温一般不会超过70℃,但由于水的循环运动过程中无水的除菌除杂过程,是否存在细菌和微生物或者他们的程度大小则未知,中频电磁波对细菌和微生物的影响也未见报道。
有人说用这种循环水洗澡后皮肤发痒,但也未见他们皮肤感染,可能因人的体质而异。
❾ 水中的微生物有哪些,有哪些危害
1、在饮用水中存在诸如病毒和病原原生动物(隐孢子虫、贾第虫等)之类微生物,即使含量很少,只要有单个病原体进入人体,就会感染患病,这要比饮用水中存在微量有机污染物对人体的危害更大
2、随着环境和生活方式变化,人与微生物的关系也在变化。结果在通常情况下,因环境条件变化和人的抵抗力下降而使原来无病原性微生物所引起的感染症增加;即无病原性微生物变为病原体
3、来自人类粪便的病原微生物以及人、畜共患的感染症比以前有所增多
4、根据水源和饮用水中存在的病原微生物数量、特性及其危害调查研究,发现贾第虫、隐孢子虫、弯曲杆菌属及各种病毒引起水系传染病的可能性最大
5、世界上因饮用污染水而引起的腹泻病,估计每年使上亿人发病每年约200万儿童死亡
在水中传染病原微生物中,通过饮用水对人类造成重大危害的有隐孢子虫、贾第虫等病原原生动物,甲肝、戊肝、脊髓灰质炎等病毒,病原大肠杆菌0157:H7.这些病原微生物的特性是个体小和抗性大,常规饮用水处理技术难以有效地去除它们,因为它们对氯化消毒都有很大的抗性而难以被去除因此,饮用水净化技术的重点最好是以去除有机污染物和去除病原微生物(尤其是隐孢子虫等)两者并重
❿ 有害微生物有哪些害处是什么
病原体中,以细菌和病毒的危害性最大。如朊毒体、寄生虫(原虫、蠕虫、医学昆虫)、真菌、细菌、螺旋体、支原体、立克次体、衣原体、病毒。
望采纳谢谢