1. 真核生物与原核生物基因组的区别
原核生物的基因编码区是连续的,没有内含子,只有外显子
真核生物的基因编码区是间隔的,有内含子和外显子
2. 真核生物和原核生物的基因结构分别是怎样的
原核与真核生物基因结构都包括编码区和非编码区。但是原核生物的编码区是连续的,全部都可以转录出mRNA,编码出蛋白质。而真核基因的编码区是不连续的,又分为外显子和内含子,外显子能够转录出mRNA,编码出蛋白质,而内含子则不可以。因此真核基因的非编码序列包括非编码区的所有序列以及编码区里面的内含子。
另外它们的非编码区虽然不能转录出mRNA,但是对基因的转录有调控作用,最重要的一个就是位于基因首端非编码区的启动子和尾端非编码区的终止子,分别起到驱动和终止转录的作用。
3. 原核生物和真核生物的结构基因有何不同
原核生物和真核生物的结构基因不同:基因不同,构成不同。
一、基因不同:真核生物的染色体有组蛋白和非组蛋白结合,真核生物有断裂基因,即有内含子,转录产物是单顺反子,非编码区域多于编码区域。原核生物基因组很小,有重叠基因,转录产物是多顺反子,结构简练,大部分都是编码区域,dna一般不与蛋白质结合。
二、构成不同:原核生物的DNA的编码区是连续的,真核生物DNA的编码区是间断的,即真核生物的DNA的编码区有内含子和外显子,复制时同时复制内含子和外显子。原核生物的DNA的编码区没有内含子和外显子一说,全部是有遗传意义的片断,是完全翻译。
原核生物的多样性
虽然它不完全、虽然它简单,但是能在这个竞争激烈的环境中长久地活下去都会拥有自己的专属技能——原核生物的多样性。
比如细胞形态的多样性、运动的多样性、生长发育多样性、细胞结构多样性、细胞化学多样性、代谢功能多样性、遗传变异多样性等。所以它是有着极高利用价值的生物资源。这一资源不仅表现为与人类生存着动息息相关的几乎所有生物无穷的代谢功能性状,也同样表现为一个五彩缤纷的微生物世界。
4. 基因间区就是非编码区吗
一群扯淡的
基因由编码区和非编码区组成。
基因和基因之间的“没有遗传效应”的片段称为基因间区
5. 基因中是否有非编码区 真核生物和原核生物基因组成的区别 什么是基因间区
基因中有编码区与非编码区.
真核生物基因编码区有外显子与内含子,而原核生物没有.(但真核生物的基因中也有无内含子的例外,如组蛋白基因和干扰素基因)
基因和基因之间的“没有遗传效应”的片段称为基因间区,一般认为它控制基因的表达与抑制,以及帮助RNA识别基因.
6. 什么叫做基因间区域
染色体上面的基因不是连续排列的,而是基因-基因间-基因的排列模式,基因与基因之间不控制性状的染色体区域称为基因间区域,一般认为它控制基因的表达与抑制,以及帮助RNA识别基因的作用
7. 什么是基因间区
一段基因有编码区和非编码区,编码区可以编码蛋白质,非编码区不能编码蛋白质
8. 原核生物基因组的特点是什么
原核生物基因组的特点如下:
1、基因组较小,通常只有一个环形或线形的DNA分子;
2、通常只有一个DNA复制起点;
3、非编码区主要是调控序列;
4、存在可移动的DNA序列;
5、基因密度非常高,基因组中编码区大于非编码区;
6、结构基因没有内含子,多为单拷贝,结构基因无重叠现象;
7、重复序列很少,重复片段为转座子;
8、有编码同工酶的等基因;
9、基因组的大部分序列是用来编码蛋白质的,基因之间的间隔序列很短;10、功能相关的序列常串连在一起,由共同的调控元件调控,并转录成同一mRNA分子,可指导多种蛋白质的合成,这种结构称操纵子
9. 什么是原核生物!
原核生物(Prokaryotes)是由原核细胞组成的生物,包括蓝细菌、细菌、古细菌、放线菌、立克次氏体、螺旋体、支原体和衣原体等。原核生物具有以下的特点:①核质与细胞质之间无核膜因而无成形的细胞核;②遗传物质是一条不与组蛋白结合的环状双螺旋脱氧核糖核酸(DNA)丝,不构成染色体(有的原核生物在其主基因组外还有更小的能进出细胞的质粒DNA);③以简单二分裂方式繁殖,无有丝分裂或减数分裂;④没有性行为,有的种类有时有通过接合、转化或转导,将部分基因组从一个细胞传递到另一个细胞的准性行为(见细菌接合);⑤没有由肌球、肌动蛋白构成的微纤维系统,故细胞质不能流动,也没有形成伪足、吞噬作用等现象;⑥鞭毛并非由微管构成,更无“9+2”的结构,仅由几条螺旋或平行的蛋白质丝构成;⑦细胞质内仅有核糖体而没有线粒体、高尔基器、内质网、溶酶体、液泡和质体(植物)、中心粒(低等植物和动物)等细胞器;⑧细胞内的单位膜系统除蓝细菌另有类囊体外一般都由细胞膜内褶而成,其中有氧化磷酸化的电子传递链(蓝细菌在类囊体内进行光合作用,其他光合细菌在细胞膜内褶的膜系统上进行光合作用;化能营养细菌则在细胞膜系统上进行能量代谢);⑨在蛋白质合成过程中起重要作用的核糖体散在于细胞质内,核糖体的沉降系数为70S;⑩大部分原核生物有成分和结构独特的细胞壁等等。总之原核生物的细胞结构要比真核生物的细胞结构简单得多。
70年代分子生物学的资料表明:产甲烷细菌、极端嗜盐细菌、极端耐酸耐热的硫化叶菌和嗜热菌质体等的16S rRNA核苷酸序列,既不同于一般细菌,也不同于真核生物。此外,这些生物的细胞膜结构、细胞壁结构、辅酶、代谢途径、tRNA和rRNA的翻译机制均与一般细菌不同。因而有人主张将上述的生物划归原核生物和真核生物之外的“第三生物界”或古细菌界。
与真核生物的种类相比,已发现的原核生物种类虽不甚多,但其生态分布却极其广泛,生理性能也极其庞杂。有的种类能在饱和的盐溶液中生活;有的却能在蒸馏水中生存;有的能在0℃下繁殖;有的却以70℃为最适温度;有的是完全的无机化能营养菌,以二氧化碳为唯一碳源;有的却只能在活细胞内生存。在行光合作用的原核生物中,有的放氧,有的不放氧;有的能在pH为10以上的环境中生存,有的只能在pH为1左右的环境中生活;有的只能在充足供应氧气的环境中生存,而另外一些细菌却对氧的毒害作用极其敏感。有的可利用无机态氮,有的却需要有机氮才能生长;还有的能利用分子态氮作为唯一的氮源等。
原核生物乃拥有细菌的基本构造并含有细胞质、细胞壁、细胞膜、以及鞭毛的细胞。
原核生物的基因组成:
原核生物基因分为编码区与非编码区。
编码区与非编码区的定义及位置:
所谓的编码区就是能转录为相应的信使RNA,进而指导蛋白质的合成,也就是说能够编码蛋白质。非编码区则相反,但是非编码区对遗传信息的表达是必不可少的,因为在非编码区上有调控遗传信息表达的核苷酸序列。
非编码区位于编码区的上游及下游。在调控遗传信息表达的核苷酸序列中最重要的是位于编码区上游的RNA聚合酶结合位点。RNA聚合酶是催化DNA转录为RNA。,能识别调控序列中的结合位点,并与其结合。
10. 原核生物的基因结构
原核生物基因分为编码区与非编码区。
所谓的编码区就是能转录为相应的信使RNA,进而指导蛋白质的合成,也就是说能够编码蛋白质。非编码区则相反,但是非编码区对遗传信息的表达是必不可少的,因为在非编码区上有调控遗传信息表达的核苷酸序列。
非编码区位于编码区的上游及下游。在调控遗传信息表达的核苷酸序列中最重要的是位于编码区上游的RNA聚合酶结合位点。RNA聚合酶是催化DNA转录为RNA,能识别调控序列中的结合位点,并与其结合。