‘壹’ 生活中哪些微生物与食品有关以及在食品中的用途
1.1 食醋
食醋是我国劳动人民在长期的生产实践中制造出来的一种酸性调味品。它能增进食欲,帮助消化,在人们饮食生活中不可缺少。在我国的中医药学中醋也有一定的用途。全国各地生产的食醋品种较多。着名的山西陈醋、镇江香醋、四川麸醋、东北白醋、江浙玫瑰米醋、福建红曲醋等是食醋的代表品种。食醋按加工方法可分为合成醋、酿造醋、再制醋三大类。其中产量最大且与我们关系最为密切的是酿造醋,它是用粮食等淀粉质为原料,经微生物制曲、糖化、酒精发酵、醋酸发酵等阶段酿制而成。其主要成分除醋酸(3%~5%)外,还含有各种氨基酸、有机酸、糖类、维生素、醇和酯等营养成分及风味成分,具有独特的色、香、味。它不仅是调味佳品,长期食用对身体健康也十分有益。
1.1.1 生产原料
目前酿醋生产用的主要原料有:薯类 如甘薯、马铃薯等;粮谷类 如玉米、大米等;粮食加工下脚料 如碎米、麸皮、谷糠等;果蔬类 如黑醋栗、葡萄、胡萝卜等;野生植物 如橡子、菊芋等;其他 如酸果酒、酸啤酒、糖蜜等。
生产食醋除了上述主要原料外,还需要疏松材料如谷壳、玉米芯等,使发酵料通透性好,好氧微生物能良好生长。
1.2 发酵乳制品
发酵乳制品是指良好的原料乳经过杀菌作用接种特定的微生物进行发酵作用,产生具有特殊风味的食品,称为发酵乳制品。它们通常具有良好的风味、较高的营养价值、还具有一定的保健作用。并深受消费者的普遍欢迎。常用发酵乳制品有酸奶、奶酪、酸奶油、马奶酒等。
发酵乳制品主要包括酸奶和奶酪两大类,生产菌种主要是乳酸菌。乳酸菌的种类较多,常用的有干酪乳杆菌(Lactobacillus casei)、保加利亚乳杆菌(L. bulgaricus)、嗜酸乳杆菌(L. acidophilus)、植物乳杆菌(L. plantarum)、乳酸乳杆菌(L. Lactis)、乳酸乳球菌(Lactococcus lactis)、嗜热链球菌(Streptococcus thermophilus)等。
近年来,随着对双歧乳酸杆菌在营养保健方面作用的认识,人们便将其引入酸奶制造,使传统的单株发酵,变为双株或三株共生发酵。由于双歧杆菌的引入,使酸奶在原有的助消化、促进肠胃功能作用基础上,又具备了防癌、抗癌的保健作用。双歧杆菌因其菌体尖端呈分枝状(如Y型或V型)而得名。双歧杆菌是无芽孢革兰氏阳性细菌,专性厌氧、不抗酸、不运动、过氧化氢酶反应为阴性,最适生长温度为37~41℃。初始生长最适pH6.5~7.0,能分解糖。双歧杆菌能利用葡萄糖发酵产生醋酸和乳酸(2:3),不产生CO2。目前已知的双歧杆菌共有24种,其中9种存在于人体肠道内,它们是两歧双歧杆菌(B. bifim)、长双歧杆菌(B. longum)、短双歧杆菌(B. brevvis)、婴儿双歧杆菌(B. angulatum)、链状双歧杆菌(B. adolescentis)、假链状双歧杆菌(B. pseudocatenulatum)和牙双歧杆菌(B. dentmum)等。应用于发酵乳制品生产的仅为前面5种。
双歧杆菌与人体,除了如在酸奶中起到和其它乳酸菌一样的对乳营养成分的“预消化”作用,使鲜乳中的乳糖、蛋白质水解成为更易为人体吸收利用的小分子以外,主要产生双歧杆菌素。其对肠道中的致病菌如沙门氏菌、金黄色葡萄球菌、志贺氏菌等具有明显的杀灭效果。乳中的双歧杆菌还能分解积存于肠胃中的致癌物N-亚硝基胺,防止肠道癌变,并能通过诱导作用产生细胞干扰素和促细胞分裂剂,活化NK细胞,促进免疫球蛋白的产生、活化巨嗜细胞的功能,提高人体的免疫力,增强人体对癌症的抵抗和免疫能力。
目前,发酵乳制品的品种很多,如酸奶、饮料、干酪、奶酪等。现仅简要介绍一下双歧杆菌酸奶的生产工艺。
双歧杆菌酸奶的生产有两种不同的工艺。一种是两歧双歧杆菌与嗜热链球菌、保加利亚乳杆菌等共同发酵的生产工艺,称共同发酵法。另一种是将两歧双歧杆菌与兼性厌氧的酵母菌同时在脱脂牛乳中混合培养,利用酵母在生长过程中的呼吸作用,以生物法耗氧,创造一个适合于双歧杆菌生长繁殖、产酸代谢的厌氧环境,称为共生发酵法。
1.3 氨基酸发酵
1.3.1 概述
氨基酸是组成蛋白质的基本成分,其中有8种氨基酸是人体不能合成但又必需的氨基酸,称为必需氨基酸,人体只有通过食物来获得。另外在食品工业中,氨基酸可作为调味料,如谷氨酸钠、肌苷酸钠、鸟苷酸钠可作为鲜味剂,色氨酸和甘氨酸可作为甜味剂,在食品中添加某些氨基酸可提高其营养价值等等。因此氨基酸的生产具有重要的意义。表7~1列出部分氨基酸生产所用的菌株。
自从60年代以来,微生物直接用糖类发酵生产谷氨酸获得成功并投入工业化生产。我国成为世界上最大的味精生产大国。味精以成为调味品的重要成员之一,氨基酸的研究和生产得到了迅速发展。随着科学技术的进步,对传统的工艺不断地进行改革,但如何保持传统工艺生产的特有风味,从而使新工艺生产出的产品更具魅力,是今后研究的课题。
1.5 黄原胶
1.5.1 概况
黄原胶(Xamthan Gum)别名汉生胶,又称黄单胞多糖,是国际上70年代发展起来的新型发酵产品。它是由甘兰黑腐病黄单胞细菌(Xanthomonas campestris)以碳水化合物为主要原料,经通风发酵、分离提纯后得到的一种微生物高分子酸性胞外杂多糖。其作为新型优良的天然食品添加剂用途越来越广泛。
国际上,黄原胶开发及应用最早的是美国。美国农业部北方地区Peoria实验室于60年代初首先用微生物发酵法获得黄原胶。1964年,美国Merck公司Keco分部在世界上首先实现了黄原胶的工业化生产。1979年世界黄原胶总产量为2000t,1990年达4000t以上。在美国,黄原胶年产值约为5亿美元,仅次于抗生素和溶剂的年产值,在发酵产品中居第3位。
我国对黄原胶的研究起步较晚,进行开发研究的单位,如南开大学、中科院微生物研究所、山东食品发酵研究所等,均已通过中试鉴定。目前全国有烟台、金湖、五连等数家黄原胶生产厂,年产在200t左右,主要用作食品添加剂。我国生产黄原胶的淀粉用量一般在5%左右,发酵周期为72~96h,产胶能力30~40g/L,与国外比较,生产水平较低。随着黄原胶生产和应用范围的进一步发展,目前北京、四川、郑州、苏州、山东等地都有黄原胶生产新厂建成,预示着我国的黄原胶生产将呈现一个新的局面。
2 食品制造中的酵母及其应用
酵母菌与人们的生活有着十分密切的关系,几千年来劳动人民利用酵母菌制作出许多营养丰富、味美的食品和饮料。目前,酵母菌在食品工业中占有极其重要的地位。利用酵母菌生产的食品种类很多,下面仅介绍几种主要产品。
2.1 面包
面包是产小麦国家的主食,几乎世界各国都有生产。它是以面粉为主要原料,以酵母菌、糖、油脂和鸡蛋为辅料生产的发酵食品,其营养丰富,组织蓬松,易于消化吸收,食用方便,深受消费者喜爱。
酵母是生产面包必不可少的生物松软剂。面包酵母是一种单细胞生物,属真菌类,学名为啤酒酵母。面包酵母有圆形、椭圆形等多种形态。以椭圆形的用于生产较好。酵母为兼性厌氧性微生物,在有氧及无氧条件下都可以进行发酵。
2.2 酿酒
我国是一个酒类生产大国,也是一个酒文化文明古国,在应用酵母菌酿酒的领域里,有着举足轻重的地位。许多独特的酿酒工艺在世界上独领风骚,深受世界各国赞誉,同时也为我国经济繁荣作出了重要贡献。
酿酒具有悠久的历史,产品种类繁多如:黄酒、白酒、啤酒、果酒等品种。而且形成了各种类型的名酒,如绍兴黄酒、贵州茅台酒、青岛啤酒等。酒的品种不同,酿酒所用的酵母以及酿造工艺也不同,而且同一类型的酒各地也有自己独特的工艺。
2.2.1 啤酒
啤酒是以优质大麦芽为主要原料,大米、酒花等为辅料,经过制麦、糖化、啤酒酵母发酵等工序酿制而成的一种含有C02、低酒精浓度和多种营养成分的饮料酒。它是世界上产量最大的酒种之一。
3.1 生产用霉菌菌种
淀粉的糖化、蛋白质的水解均是通过霉菌产生的淀粉酶和蛋白质水解酶进行的。通常情况是先进行霉菌培养制曲。淀粉、蛋白质原料经过蒸煮糊化加入种曲,在一定温度下培养,曲中由霉菌产生的各种酶起作用,将淀粉、蛋白质分解成糖、氨基酸等水解产物。
在生产中利用霉菌作为糖化菌种很多。根霉属中常用的有日本根霉(Rhizopus japonicus AS3. 849)、米根霉(Rhizopus oryzae)、华根霉(Rhizopus chinensis〉等;曲霉属中常用的有黑曲霉(Aspergillus niger)、宇佐美曲霉(Asp. usamii)、米曲霉(Asp. oryzae)和泡盛曲霉(Asp. awamori)等;毛霉属中常用的有鲁氏毛霉(Mucor rouxii),还有红曲属(Monascus)中的一些种也是较好的糖化剂,如紫红曲霉(Monascus. Purpurens)、安氏红曲霉(Monascus. anka)、锈色红曲霉(Monascus. rubiginosusr)、变红曲霉(Monascus. serorubescons AS3.976)等。
3.2 酱类
酱类包括大豆酱、蚕豆酱、面酱、豆瓣酱、豆豉及其加工制品,都是由一些粮食和油料作物为主要原料,利用以米曲霉为主的微生物经发酵酿制的。酱类发酵制品营养丰富,易于消化吸收,即可作小菜,又是调味品,具有特有的色、香、味,价格便宜,是一种受欢迎的大众化调味品。
用于酱类生产的霉菌主要是米曲霉(Asp.oryzae),生产上常用的有沪酿3.042,黄曲霉Cr-1菌株(不产生毒素),黑曲霉(Asp. Nigerf-27)等。所用的曲霉具有较强的蛋白酶、淀粉酶及纤维素酶的活力,它们把原料中的蛋白质分解为氨基酸,淀粉变为糖类,在其他微生物的共同作用下生成醇、酸、酯等,形成酱类特有的风味。
3.3 酱油
酱油是人们常用的一种食品调味料,营养丰富,味道鲜美,在我国已有两千多年的历史。它是用蛋白质原料(如豆饼、豆柏等)和淀粉质原料(如麸皮、面粉、小麦等),利用曲霉及其他微生物的共同发酵作用酿制而成的。
酱油生产中常用的霉菌有米曲霉、黄曲霉和黑曲霉等,应用于酱油生产的曲霉菌株应符合如下条件:不产黄曲霉毒素;蛋白酶、淀粉酶活力高,有谷氨酰胺酶活力;生长快速、培养条件粗放、抗杂菌能力强;不产生异味,制曲酿造的酱制品风味好。
1923年美国科学家研究成功了以废糖蜜为原料的浅盘法柠檬酸发酵,并设厂生产。1951年美国Miles公司首先采用深层发酵大规模生产柠檬酸。我国1968年用薯干为原料采用深层发酵法生产柠檬酸成功,许多微生物都能产生苹果酸,
食品制造中的主要微生物酶制剂及其应用
酶是一种生物催化剂,催化效率高、反应条件温和和专一性强等特点,已经日益受到人们的重视,应用也越来越广泛。生物界中已发现有多种生物酶,在生产中广泛应用的仅有淀粉酶、蛋白酶、果胶酶、脂肪酶、纤维素酶、葡萄糖异构酶、葡萄糖氧化酶等十几种。利用微生物生产生物酶制剂要比从植物瓜果、种子、动物组织中获得更容易。因为动、植物来源有限,且受季节、气候和地域的限制,而微生物不仅不受这些因素的影响,而且种类繁多、生长速度快、加工提纯容易、加工成本相对比较低,充分显示了微生物生产酶制剂的优越性。现在除少数几种酶仍从动、植物中提取外,绝大部分是用微生物来生产的。
4.1 主要酶制剂、用途及产酶微生物
酶制剂可以由细菌、酵母菌、霉菌、放线菌等微生物生产。
.3.1 酶制剂在食品保鲜方面的应用
随着人们对食品的要求不断提高和科学技术的不断进步,一种崭新的食品保鲜技术—酶法保鲜技术正在崛起。酶法保鲜技术是利用生物酶的高效的催化作用,防止或消除外界因素对食品的不良影响,从而保持食品原有的优良品质和特性的技术。由于酶具有专一性强、催化效率高、作用条件温和等特点,可广泛地应用于各种食品的保鲜,有效地防止外界因素,特别是氧化和微生物对食品所造成的不良影响。
葡萄糖氧化酶(Glucose oxidase)是一种氧化还原酶,它可催化葡萄糖和氧反应,生成葡萄糖酸和双氧水。将葡萄糖氧化酶与食品一起置于密封容器中,在有葡萄糖存在的条件下,该酶可有效地降低或消除密封容器中的氧气,从而有效地防止食品成分的氧化作用,起到食品保鲜作用。
酶制剂在淀粉类食品生产中的应用
淀粉类食品是指含大量淀粉或以淀粉为主要原料加工而成的食品,是世界上产量最大的一类食品。淀粉可以通过水解作用生成糊精、低聚糖、麦芽糊精和葡萄糖等产物。这些产物又可进一步转化为其他产物。在这些产物的生产中,已广泛应用各种酶。
在淀粉类食品的加工中,多种酶被广泛地应用,其中主要的有a-淀粉酶、β-淀粉酶、糖化酶、支链淀粉酶、葡萄糖异构酶等。现在国内外葡萄糖的生产绝大多数是采用淀粉酶水解的方法。酶法生产葡萄糖是以淀粉为原料,先经a-淀粉酶液化成糊精,再利用糖化酶生成葡萄糖。果葡糖浆是有葡萄糖异构酶催化葡萄糖异构化生成果糖,而得到含有葡萄糖和果糖的混合糖浆。
‘贰’ 微生物在食品中的作用 5000/字 谢谢
微生物的作用
微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。
微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物非常小,必须通过显微镜放大约1000 倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。想象一下一滴牛奶,每毫升腐败的牛奶中约有5千万个细菌,或者讲每夸脱牛奶中细菌总数约为50亿。也就是一滴牛奶中可有含有50 亿个细菌。
微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。
微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。
随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。
以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大!
从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。
工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。
据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。
经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及中国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。
在全面推进经济发展的同时,滥用资源、破坏环境的现象也日益严重。面对全球环境的一再恶化,提倡环保成为全世界人民的共同呼声。而生物除污在环境污染治理中潜力巨大,微生物参与治理则是生物除污的主流。微生物可降解塑料、甲苯等有机物;还能处理工业废水中的磷酸盐、含硫废气以及土壤的改良等。微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。
在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。
有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。
食品因富含有微生物可依赖生长的营养成分,因此会不同程度的受微生物污染。如何控制好微生物对食品的污染,已成为人们关注的话题。下面就食品加工中如何控制好微生物污染提出几种方法:
对食品加工来讲,通过控制病原体所需的营养成分来控制病原体难以达到目的,因为除特别情形之外,大多数食品为病原体生长提供了充足的营养。食品加工可以通过分别控制食品中水分活度和pH值,或通过特定的包装技术调节气体来控制病原体的生长。
1 控制pH
每种微生物生长都有最低、最佳、最高pH值,酵母菌和霉菌可在低pH下生长,当pH值为 4.6或以下时可抑制致病菌生长和产生毒素。但有些病原体,特别是艾希氏大肠杆菌0157:H7,虽然在酸性条件下生长被抑制,仍可存活较长时间。pH 是一种抑制病菌生长的方法,而不能破坏现存的致病菌。但是,在低pH值保持时间较长时,很多微生物将被破坏。
pH 4.6 是酸性食品和低酸食品的分界限。有些食品开始是低酸食品,加工后成为酸性食品。天然酸性食品是那些自然含酸的食品,大部分水果属天然酸性的食品。但有些热带水果如菠萝,根据生长条件pH可能大于4.6。低酸食品包括含蛋白质食品、各种蔬菜、淀粉质食品及其它多种食品。
酸化是直接向低酸食品加酸的过程。目标通常为 pH 4.6或更低。这些食品称为酸化食品,要符合相应的法规如FDA 21CFR PART 114。 有些情况食品虽然经过加酸,但最终pH仍高于4.6,这就需要其他方法来加以控制,如冷藏。
发酵是使用某些无害微生物来促进食品化学变化的过程。这些微生物作用的结果是产生酸或乙醇。细菌一般产生醋酸或乳酸,酵母菌一般产生乙醇。
通过发酵产生酸或乙醇有两个目的。一是赋予食品特定的品质以产生预期的味道或均匀结构。酸奶就是通过发酵加工具有独特的香味和结构。另一个目的是食品防腐,如腌渍产品,但这类发酵食品的pH一般达不到4.6或以下,所以在冷藏温度下贮存才是安全的。
1.1 酸化
酸化是直接向低酸食品加酸的过程。向产品中加酸有几种不同方法:一种方法称为直接酸化,即在生产低酸食品过程中,在单个制成品容器中加入预先确定数量的酸。用此方法,重要的是加工者控制酸与食品比例,酸化蔬菜最常用的方法。另一种方法是批酸化,顾名思义,酸和食品大批混合后让其平衡,然后包装酸化食品。添加的酸有很多种,主要有醋酸、乳酸和柠檬酸,根据预期成品的特性而选用。
除用酸酸化食品外,可用天然酸性食品如蕃茄作为添加配料,来酸化低酸食品。使用蕃茄的产品包括装有整形芹菜、洋葱或辣椒意大利面条酱。罐装蕃茄通常pH为约4.2,而其它蔬菜为低酸性。
如制成食品的pH不同于酸性原料的pH,则认为该食品是酸化的,并适用于法规。例如,蕃茄原料pH是4.2,如制成品pH是4.5则食品已经酸化了,因为蕃茄中的部分酸被用来酸化蔬菜。或者,如制成品pH仍为4.2,则用来酸化蔬菜的蕃茄中的酸量没有明显变化,在这种情况下该产品不适用于酸化食品法规,并且认为不是配制成的酸性食物。这样的食品包括有芥木、蕃茄酱、沙拉调料和其它调味品,都是货架稳定的食品。
酸化食品加工者需科学地设定加工过程以保证最终pH肯定低于4.6。加工者需对每批制成品测试平衡后的pH ,因为所有配料达到自然pH平衡,这对较大颗粒食品可能需长达10天长的时间。需经几天达到平衡pH的产品在这段时间里可能需要冷藏,以防止肉毒梭菌或其它病原体的生长。为加速测试过程,可将产品混成均匀糊状。均质含油的食品时,均质前应将油除去。另一种方法是在产品加油前测试pH,因为油不影响最终pH。
按配方配制的酸化食品和酸性食品的,必须进行充分地热处理以灭活腐败微生物和病原体的繁殖体。其原因有两个,一是防止腐败导致经济损失,另外是腐败生物的繁殖可使pH升高,危及产品的安全。
1.2 测量pH值
如加工者要进行酸化处理,必须有某种测量pH的方法。加工者多数选用pH计,但也可使用指示溶液、试纸或进行滴定,确保最终pH低于4.0。
1.3 发酵
葡萄酒和啤酒,是用酵母菌使产品发酵产生乙醇,乙醇使产品防腐。在酸泡菜、发酵香肠、奶酪、甜酸泡菜、橄榄和酪乳的生产中,发酵时细菌产生了乳酸。霉菌也用于某些食品的发酵,主要是为了味道和其它特性,如酱油。
发酵一方面需要促进好的微生物生长,同时一方面阻止会引起腐败的不良微生物生长。通常的作法是向食品中加盐或发酵剂,或在某些情形中将其轻微地酸化。发酵剂可以是酵母菌或细菌。
在很多发酵产品中,一个普遍现象就是没有消除产酸细菌的加工过程。所以大部分发酵产品必须保持冷藏,以保证发酵细菌不会使产品腐败。
2 控制水分活度
2.1 常见食品的水分活度
如同pH,每种微生物体有其生长的最低、最佳、最高水分活度。酵母菌和霉菌可在低水分下生长,但是0.85是病原体生长的安全界限。0.85是根据金黄色葡萄球菌产生毒素的最低水分活度得来的。
常见食品的水分活度。水分活度分类控制要求:0.85以上水份较大的食品要求冷藏或其他措施控制病原体生长;0.6—0.85中等水份食品不需要冷藏控制病原体,由于因酵母和霉菌引起的腐败而限制货架期;0.6以下低水份食品有较长货架期,也不需要冷藏,这些食品称为低水分食品。
大部分生肉、水果和蔬菜属于水份较高的食品(水分活度高于0.85 )。值得注意的是面包,多数人认为它是干燥,货架稳定的产品。实际上,它有相当高的水分活度,它只是因pH、水分活度的多重屏障,而使之安全,并且霉菌比病原体更容易生长,换言之,它变危险之前就长霉变绿了。
有些独特风味的产品如酱油外表像是高水分产品,但因盐、糖或其它成分结合了水分,它们的水分活度很低,其水分活度在0.80左右。因果酱和果冻的水分活度可满足酵母菌和霉菌生长,它们需在将包装前轻微加热将酵母菌霉菌杀灭以防止腐败。
2.2 控制水分活度
降低食品中水分有两种传统方法,即干燥和加盐或糖结合水分子。
干燥是食品防腐最古老的方法之一。除防腐之外,干燥产生了食品的自身特性,如同发酵。世界上很多地方还在用开放式空气干燥,一般而言有四种基本干燥方法:热空气干燥,用于固体食品如蔬菜、水果和鱼;喷雾干燥,用于流体和半流体如牛奶;真空干燥,用于流体如果汁;冷冻干燥,用于多种产品。
另一种降低食品水分活度的方法是加盐或糖。这种类型食品的例子有酱油、果酱和腌鱼,这不需要非常特殊的设备。对流体或半流体产品,如酱油或果酱,用配方加工控制。对固体食品如鱼或熏火腿,可用盐干燥,即放入盐溶液或浸入盐水中。
控制水分活度分两步。第一,科学地设定可保证水分活度为0.85或更低的干燥、盐渍或加工配方,然后严格地执行。第二,可取制成品样品测试其水分活度。
3 控制包装
包装不同于其它控制方法,虽然包装有时用于控制微生物生长,但对腐败生物体的控制是有限的,不能作为可控制致病菌生长的单一方法,但通过改变包装有助于产品安全性。
从食品安全角度看,包装有两个功能:可防止食品污染,也可增加食品控制的有效性。
3.1 包装类型
很多产品是真空包装。真空包装是在将封口前用机械抽出包装中空气。产品放在低透氧性袋中,再放在真空机内用机械抽出袋中空气然后进行热封口。薄膜紧贴在产品上。袋中不残留空气或气体。
充气包装产品可包装于充气包装中。充气包装包括一次充气和封口处理。所充的气体有三种,可单独或混合使用,包括氮气、二氧化碳和氧气。这些气体都有各自不同功能:氮气取代氧气,因而减弱了需氧腐败生物的生长;二氧化碳能使很多微生物致死,破坏腐败生物以延长货架期;氧气是需氧腐败生物体生命线。但含有一定氧气可增加抑制肉毒梭菌的安全性,通常为浓度约2%至4%的氧。然而,包装中存在的氧可使腐败微生物生长,并消耗氧气以至降低至2 %安全浓度之下,这样产品的保质期受到限制。
3.2 控制气体包装
控制气体包装是一个动态过程,包装中使用氧清除剂,在整个货架期内保持包装中的气体。吸收氧气有利于较长货架期产品,因为大部分包装对氧气都有某种程度的通透性。
不同的包装膜具有不同的透氧性。这些包装用于货架期较长产品的贮存。这类包装用于蔬菜如生菜。当植物体呼吸时,它们吸入氧气排出二氧化碳。如果薄膜限制了现有氧气的含量,则可降低呼吸的速度并延长货架期。
减氧包装——所有这些不同包装形式归为一类称为减氧包装。使用减氧包装可防止腐败生物的生长,因而延长产品的货架期。同时还对产品品质有其它益处,如减轻酸败和褪色。使用这种包装应注意,货架期较长的产品为病原体生长和产生毒素提供了更多的时间。氧浓度低时,比需氧腐败生物而言,更有利于有利于厌氧和兼性厌氧病原体的生长。因此,有可能在腐败前就已产生毒素。
3.3 肉毒梭菌的控制
重点要关注的是肉毒梭菌,除非有其它对肉毒梭菌的控制措施,否则不能使用这些包装技术。这些控制措施包括:水分活度低于0.93并且充分冷藏以控制其它病原体;pH低于4.6;盐分高于10%,数量较多的竞争微生物;在最终容器中热处理;在冷冻条件下贮存和销售。每种控制措施自身都能有效地控制肉毒梭菌生长。
真空包装生肉和禽肉,如同发酵奶酪,是利用竞争微生物抑制肉毒梭菌产生毒素的例子。像发酵产品如奶酪,发酵剂增殖产酸可防止肉毒梭菌生长。
零售和家庭冰箱的温度常常不能控制在能充分阻止肉毒梭菌生长的温度。单独通过真空包装、部分蒸煮、冷藏保存不能作为唯一的屏障。因此为了产品的安全,在加工、贮存和销售过程中必须严格控制冷藏。
‘叁’ 为什么说微生物污染是食品安全的最大问题
近期,国家市场监管总局公布了【2018年 第20号】关于8批次食品不合格情况的通告,被抽查的有薯类和膨化食品、水产制品、茶叶及相关制品、蛋制品、罐头、乳制品和食用农产品等7类食品722批次样品,抽样检验项目合格样品714批次,不合格样品8批次。其中微生物污染是问题食品主因。
食品安全不管到什么时间一直是一个重大的公共安全卫生问题,它不仅仅直接关系到人们的身体健康,更是一个食品生产企业的命脉,食品企业为保护消费者顾客的身体健康,有效控制食品在加工中出现的二次污染,防止食品安全事故的发生,应采取必要措施,控制食品污染,这才是重中之重。
食品杀菌就是以食品原料、加工品为对象,通过对引起食品变质的主要因素---微生物的杀菌及除菌,达到食品品质的稳定化,有效延长食品的保质期,并因此降低食品中有害细菌在存活数量。
微生物超标是作为判定食品被污染程度的标志,也是判断其保存能力的指标。食品中细菌菌落总数越多,则食品含有致病菌的可能性越大,食品质量就越差;菌落总数越小,则食品含有致病菌的可能性越小。统计发现,导致这些食品不合格的原因包括很多,微生物污染是问题食品主因,一般微生物超标原因是个别企业可能未按要求严格控制生产加工过程的卫生条件如:
1、生产设备消毒不到位
2、生产环境消毒不到位
3、包装材料清洗消毒不到位
4、产品包装密封不严、
5、人员消毒不到位(更衣室,工作服等)
6、储运条件控制不当、
7、工器具等生产设备消毒不到位、
8、有灭菌工艺的产品灭菌不彻底。
在消毒剂领域,传统的方式包括紫外线灯照射杀菌、药物喷洒灭菌、臭氧、采用初中高效三级过滤方式滤尘等。不可否认在过去的很多年中,他们在之前的食品安全上有着突出的贡献,但随着现在国家监管及食品质量的不断提升,缺点也慢慢体现出来。
紫外线灯照射杀菌:紫外线灯对人体有害,所以只能在静态(无人)的情况下使用,实际生产时为细菌二次污染食品的提供机会。紫外线灯还有一个弊端,有效辐照距离为1.5米,开启时空气中大部分细菌、病毒只是暂时击晕(隐藏在0.6M以下或辐照距离外),并未完全杀死;关闭时,待人、物流动后被击晕的细菌、病毒会反弹,使空气浮游菌数量更高。
药物喷洒灭菌:如过氧乙酸、次氯酸钠等,因强烈的气化作用,刺激性很强,只能在静态(无人)的情况下使用。多数出口食品企业也不在用喷洒方法灭菌,主要原因是极易造成二次污染。化学试剂易在食品中残留,对作业人员的皮肤、神经系统、肠胃及呼吸道也有影响,长期容易患毒害性职业病。
臭氧:使用面比较广,其杀菌效果取决于车间湿度及臭氧浓度大小。在静态(无人)的状态下使用,对器具、设备有氧化、腐蚀作用。由于臭氧会造成人的神经中毒、引发支气管炎和肺气肿等危害。
初中高效三级过滤方式滤尘:目前,洁净室无法在食品行业普及(保健食品除外),原因如下:1、洁净室造价高、耗电大、易损耗品更换频繁,运行成本大;2、现有食品企业多为老式厂房,改造成本大,搬迁或重建时则报废。因此,无尘洁净室对诸多企业而言成了一种摆设,一种形象工程,只有上级检查时才开启。
通过以上常用方法比较,得出如下结论:很多企业无法稳定,有效,长期的控制微生物,究其原因就是消毒产品和消毒方案不正确的缘故。因此解决食品微生物超标的的一个重要前提是:了解客户生产工艺,制定专门的消毒方案和选择一款优质的消毒剂。
奥克泰士作为进入中国5年的品牌,深耕于食品行业,对众多产品的生产流程了如指掌,配合我们独有的消毒方案和专业的技术人员,奥克泰士己经为超过1000多家食品生产企业解决了食品微生物超标问题。
奥克泰士—德国原装进口,专为食品厂设计,奥克泰士配合空间、环境、物表等可达到食品企业消毒灭菌的要求,近来深受食品企业的青睐。其主要成分是由食品级过氧化氢和银离子组成的复合型溶剂,食品级无色无味无毒无残留型。
产品经过IFS国际食品标准认证,欧盟EMAS检测认证、ISO9001/ISO14001管道体系认证、德国莱茵TUV认证等。由于产品其独特的作用原理,能够快速杀灭包括芽孢、细菌孢子、真菌孢子、放射菌、分支杆菌、酵母菌、霉菌、病毒、大肠菌群、金黄色葡萄球菌、沙门氏菌、志贺氏菌、溶血性链球菌、李斯特菌、大肠埃希菌、副溶血性弧菌、肉毒杆菌、霍乱弧菌、变形杆菌、空肠弯曲菌、蜡样芽孢杆菌、平酸菌、耶尔森氏菌、阪崎肠杆菌、蛔虫卵等在内的所有类型的微生物。
奥克泰士食品厂专用消毒灭菌剂,是利用消毒剂的质量特性在碱性条件下稳定,在酸性条件下杀菌效果良好的特点,利用德国技术工艺将消毒剂和酸性活化剂分别加工,经总混压片制备的同体速溶性消毒剂.是集消毒、清洗、灭菌三者合一的产品,稳定性好、无刺激性气味,对人体健康安全无副作用,使用非常方便,样品在54℃上储存14天,有效成分降解率达到3.83%,通过测试,奥克泰士的稳定性良好,杀菌效果符合同家卫生部《消毒技术规范》规定要求。
奥克泰士为食品企业微生物控制展现了崭新的前景:
奥克泰士作为德国原装进口食品级高效无残留的清洗消毒剂,能够高效杀灭各种微生物,且残留只有水和氧气,真正无害,无毒性,无腐蚀性,无味,且作为消毒剂使用时,无刺激性,甚至可以直接饮用。
它可以作为熏蒸使用代替甲醛,在达到杀灭微生物的同时,无任何刺激性,无需静置,熏蒸完毕后,即刻可以生产。
它可以作为纯化水的抑菌剂,通过微量的添加,达到抑制循环水微生物,藻类控制的目的。更重要的是,奥克泰士是全球为数不多的一款能够有效去除生物膜的杀菌消毒剂,它作为C/D 区的物体表面消毒,人员手部消毒用时,使用后,无需冲洗,且具有保护皮肤的作用,没有任何腐蚀性。不会产生耐药性,不受温度、PH 值、光照的影响,可以长期储存。
‘肆’ 微生物与食品之间的关系
利用有益微生物制造食品、保藏食品,控制腐败微生物生长繁殖代谢,防止食品变质。
微生物与食品的关系主要有有益、有害、有益和有害相互转化几种情况。有益分为直接有益和间接有益,又可进一步分为有益于人体健康和有益于生产;对于食品有害的微生物,有些是微生物自身是病原菌、致病菌,可以引起食品污染,有些是因为这些微生物并无危害,但是其代谢产物有毒性,危害人体健康;还有一些微生物自身不会致病也不会产生有害代谢物。但是其生长繁殖会给生产带来一些影响。一些微生物对生产和健康的影响较小,而另一些微生物在一些情况下有利于生产和健康,但在另一些情况下则不利于生产,有害于健康。
例如:酵母菌与人们的生活有着十分密切的关系,几千年来劳动人民利用酵母菌制作出许多营养丰富、味美的食品和饮料。目前,酵母菌在食品工业中占有极其重要的地位。利用酵母菌生产的食品种类很多,有面包、蛋糕等。
(4)微生物对食品及其消费者的影响有哪些扩展阅读:
微生物指标还应包括病毒,如肝炎病毒、猪瘟病毒、鸡新城疫病毒、马芷克氏病毒、口蹄疫病毒、狂犬病病毒,猪水泡病毒等;另外,从食品检验的角度考虑,寄生虫也被很多学者列为微生物检验的指标,如旋毛虫、囊尾蚴、猪肉孢子虫、蛔虫、肺吸虫、弓形体、螨、姜片吸虫、中华分枝睾吸虫等。
美国开展的食品微生物检验项目主要包括:需氧菌平板计数、粪大肠菌群、大肠埃希氏菌、凝固酶阳性葡萄球菌、沙门氏菌、霍乱弧菌、副溶血性弧菌、单核细胞增生李斯特氏菌、创伤弧菌、肉毒梭菌、麻痹性贝类毒素、神经性贝类毒素、遗忘性贝类毒素以及组胺等。
参考资料:网络-生物分类学
‘伍’ 什么是微生物对人类的影响
微生物是指肉眼难以看清,需要借助光学显微镜或电子显微镜才能观察到的一切微小生物的总称(但有些微生物是肉眼可以看见的,像属于真菌的蘑菇、灵芝等)。微生物包括:细菌、病毒、真菌以及一些小型的原生生物、显微藻类等在内的一大类生物群体,它个体微小,与人类关系密切。
微生物根据存在的不同环境分为空间微生物、海洋微生物等,按照细胞结构分类分为原核微生物和真核微生物。
微生物涵盖了有益跟有害的众多种类,广泛涉及食品、医药、工农业、环保、体育等诸多领域。在我国教科书中,将微生物划分为以下8大类:细菌、病毒、真菌、放线菌、立克次氏体、支原体、衣原体、螺旋体。
微生物对人类影响十分广泛,主要表现:
1、微生物最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。
2、微生物有些是腐败性的,会引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物非常小,必须通过显微镜放大约1000 倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。
3、微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。
4、微生物间的相互作用机制也相当奥妙。例如健康人肠道中即有大量细菌存在,称为正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。
5、随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。
6、工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。
7、植物微生物或叫农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及中国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。
8、在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。
‘陆’ 粮食,油料及食品上的微生物对人体有何危害
微生物作为自然界存在的一种生物与我们赖以生存的食品有着密切的关系。微生物在许多食品的生产中起着至关重要的作用,但同时也是导致食品腐败变质的元兇,因此要正确处理微生物与食品间的关系。
微生物在食品生产中的作用
我们日常食用的很多食品都是通过微生物的作用生产的。如食醋是用粮食等淀粉质为原料,经微生物制曲、糖化、酒精发酵、醋酸发酵等阶段酿制而成;发酵乳制品是用良好的原料乳经过杀菌作用接种特定的微生物进行发酵作用,产生具有特殊风味的食品;啤酒是以优质大麦芽为主要原料,大米、酒花等为辅料,经过制麦、糖化、啤酒酵母发酵等工序酿制而成的一种含有二氧化碳、低酒精度和多种营养成分的饮料酒。
像这类食品还有很多中,可见微生物在食品生产中发挥了非常大的作用。与此同时引起食品腐败变质的重要原因之一就是受微生物的污染。
微生物与食品的腐败变质
食品在加工前、加工过程中以及加工后,都可以受到外源性和内源性微生物的污染。污染食品的微生物有细菌、酵母菌和霉菌以及由它们产生的毒素。污染途径也比较多,可以通过原料生长地土壤、加工用水、环境空气、工作人员、加工用具、杂物、包装、运输设备、贮藏环境,以及昆虫、动物等,直接或间接地污染食品加工的原料、半成品或成品。因此很可能许多食品的腐败变质在加工过程中或在刚包装完毕就已发生,已经成为不符合食品卫生质量标准的食品。食品加工过程中的清洗、消毒和灭菌以及烘烤、油炸等过程都可以使食品中的微生物种类和数量明显下降,甚至完全杀灭。但由于食品原料的理化状态、食品加工的工艺方式、原料受微生物污染的程度等的差异,都会影响加工后食品中的微生物残存率。
微生物引起食品腐败变质的条件:1.食品本身具有丰富的营养成分,各种蛋白质、、碳水化合物、维生素和无机盐等都有存在只是比例上的不同。如有一定的水分和温度,就十分适意微生物的生长繁殖。2.食品所处环境的温度。当环境为低温时,会明显抑制微生物的生长和代谢速率,因而会减缓由微生物引起的腐败变质。食品处于高温环境时,如果温度超出微生物可忍耐的高限,则微生物很快死亡。如果温度在适宜生长温度以下时,则微生物的生长会随着温度的提高而加快,食品的腐败变质随之会加快。3.食品所处环境的湿度。高湿度,一方面有利于微生物的生长与繁殖;另一方面有利于微生物的生命活动,不会因湿度太小而使细胞体失水干缩。
减少食品微生物污染的措施
根据上述食品腐败变质的条件我们可以采取以下措施减少微生物的污染。对某些食品原料所带有的泥土和污物进行清洗,以减少或去除大部分所带的微生物。干燥、降温,使环境不适于微生物的生长繁殖,也是一项有效的措施。在加工、运输、贮藏过程中的环境、设备、辅料和工作人员,都应注意防止微生物对食品的污染。无菌密封包装是食品加工后防止微生物再次污染的有效方法。
采取防止和减少食品微生物污染腐败的保藏方法。冷藏、加热加工后保藏、干燥贮藏、辐射后贮藏、加入化学防腐剂保藏、利用发酵或腌渍贮藏食品等都是有效的保藏方法。
食品微生物检验的意义
食品因微生物腐败变质不仅对食品造成损失浪费,同时也严重影响人们的身体健康。根据世界卫生组织的估计,全球每年发生食源性疾病数十亿人。发达国家(包括美国)发生食源性疾病的概率也相当高,平均每年有1/3的人群感染食源性疾病。因此我们不仅要预防和控制微生物的污染,更要求质检部门对食品中的微生物进行严格检验,让消费者吃上放心的食品。食品微生物检验具有重大意义。
食品微生物检验是衡量食品卫生质量的重要指标之一,也是判定被检食品能否食用的科学依据之一。通过食品微生物检验,可以判断食品加工环境及食品卫生环境,能够对食品被细菌污染的程度做出正确的评价,为各项卫生管理工作提供科学依据,提供传染病和人类、动物和食物中毒的防治措施。食品微生物检验是以贯彻“预防为主”的卫生方针,可以有效地防止或者减少食物中毒人畜共患病的发生,保障人民的身体健康;同时,它对提高产品质量,避免经济损失,保证出口等方面具有政治上和经济上的重要意义。食品的微生物安全性要控制在原料、、加工等环节,而不仅仅是终产品的检验;在生产、加工、贮存、销售、制备时运用科学管理体系。更重要的是要控制微生物的污染,因为微生物的污染可能发生在食品加工的任何一个环节,甚至加热灭菌后的包装、运输和销售,都有可能出现问题。因此我们要根据微生物与食品的关系来更好的预防、控制微生物对食品的污染,让消费者真正吃到放心的食品。
‘柒’ 饮品微生物超标,可能有哪些危害
饮品微生物超标,可能有哪些危害?
饮品微生物超标将会使微生物大量繁殖,在饮用时如果加热时间较短或未彻底加热, 必然会导致饮品中的微生物出现滋生污染情况, 从而影响饮品的食用安全。我们在食用后可能会出现中毒症状, 像呕吐、腹泻等情况, 对我们的身体健康将会造成很大程度的危害。 特别是对于抵抗力较弱的人群有很高的健康风险。
很多人对微生物超标的后果都不太清楚,比如大肠菌群严重超标的饮品可能会引起肠道传染病或食物中毒 ,对于身体比较弱的人群可能症状更严重,像奶茶之类的饮品,因为本身的含糖量较高,常喝会导致摄入糖分较高,引发身体的疾病,如果加上微生物超标,那么对身体的危害就会加倍了,所以大家要注意。
‘捌’ 食品上的微生物对人体有什么危害如何防止
食品中的微生物会大量繁殖,进入人体后可能有几种情况:1.这种微生物属于致病菌,进入人体后导致疾病
2.这种微生物进入人体后能进一步繁殖,分泌产生一些对人体有害有刺激性的代谢产物
3.这些微生物进入人体的肠道后会抑制肠道内有益菌的生长,从而导致肠道代谢紊乱,异常发等.
防止方法:为了保持食品营养物质的风味,一般采用巴氏灭菌法给食品灭菌,比较简单有效,即在62~65℃加热,保持30分钟
.
‘玖’ 影响食品质量安全的因素有哪些
1、生物危害
生物危害主要指生物(尤其是微生物)本身及其代谢过程、代谢产物(如毒素)、寄生虫及其虫卵和昆虫对食品原料、加工过程和产品的污染。常见的生物性危害包括细菌、病毒、寄生虫以及真菌。
2、化学危害
食品中的化学危害是指有毒的化学物质污染食物而引起的危害。化学性危害能引起急性中毒或慢性积累性伤害,包括天然存在的化学物质、残留的化学物质、加工过程中人为添加的化学物质、偶然污染的化学物质等。
常见的化学性危害有重金属、自然毒素、农用化学药物、洗消剂及其他化学性危害。食品中的化学性危害可能对人体造成急性中毒、慢性中毒、过敏、影响身体发育、影响生育、致癌、致畸、致死等后果。
3、物理危害
指食用后可能导致物理性伤害的异物。物理危害通常被描述为从外部来的物体或异物。物理性危害与化学性危害和生物性危害相比,有其特点,往往消费者看得见。
因而,也是消费者经常表示不满和投诉的事由。物理性危害包括碎骨头、碎石头、铁屑、木屑、头发、蟑螂等昆虫的残体、碎玻璃以及其他可见的异物。物理性危害不仅令食品造成污染,而且时常也损坏消费者的健康。
4、转基因危害
自从1973年,美国斯坦福大学的科恩教授开发成功转基因技术,转基因技术被逐渐应用于农产品的生产,但转基因食品是否安全,却没有一个人能做出肯定的回答。
1999年3月,《自然》杂志发表了康乃尔大学Losey等人认为转基因作物有毒性的论文,引起了世界的震惊,其报道的转基因Bt玉米毒死黑脉金斑蝶的幼虫可谓转基因作物短期不良反应的一个实例。据推测,长期不良效应的发现正如六六六、DDT、PPA等药物的不良效应一样需要一定时间。
欧盟国家在2000年6月决定暂停转基因产品的种植和流通,日本曾对转基因食品的安全性深信不疑,但自Losey等人的论文发表后,也将重新对转基因食品的安全进行进一步研究。
转基因技术的应用一方面给食品行业的发展带来前所未有的机遇,另一方面转基因食品安全的不确定性也给食品安全带来了前所未有的挑战。
食品安全管理必要性
随着社会物质财富的日益丰富,科学技术的不断进步,生活水平的逐步提高,消费者对食品的生产、加工、贮运、销售整个过程表现出了空前的兴趣,不断要求政府和食品制造商在食品质量、食品安全、消费者保护方面承担更多的责任。
在当前全球食品贸易量日益剧增的形势下,无论是进口国还是出口国,都有责任强化本国的食品管理体系,履行基于风险分析的食品管理策略。多数国家的政治家和科学家认为有效的食品管理体系是确保本国消费者健康和安全的基础。
进入新世纪以来,食品安全问题引发的社会、政治和贸易问题时有发生,世界各国的食品安全管理法规、机构、监管、信息、教育正在急剧变化,及时了解和掌握各国在食品安全管理方面的动向及相关研究成果。
选择适合中国国情的食品安全管理体系,体现以人为本,实现经济和社会全面协调发展的科学发展观,是中国食品安全管理面临的主要挑战。
以上内容参考:网络-食品安全危害、网络-食品安全管理体系