导航:首页 > 生物信息 > 生物化学是从什么学科发展

生物化学是从什么学科发展

发布时间:2022-07-05 01:28:32

‘壹’ 生物学及其发展历程

生物学
即生命科学(life science/biology),概括地说,生物是研究生命现象和生命活动规律的科学。作为继物理、化学之后又一高速发展的学科,正朝着宏观和微观两个方向发展。宏观观方面已经发展到全球生态系统的研究;微观方面则向着分子方向发展。生物学与众多科学结合形成了种类繁多的边缘科学,呈辐射状发展。

生物学从最开始就有2个学派,一个叫博物学派,一个是实验学派。博物学派以生态学为代表,实验学派以遗传学和分子生物学为代表。

目前国内外尚无明确一致的生命科学的定义。特别是对生命科学的范畴,即生命科学包括哪些学科没有明确一致的说法。但一般认为,生命科学是将生命世界(living world)作为一个整体来研究的一个科学分支,研究活着的生物(living organisms)和生命过程(life processes),包括生物科学(biological science)--即生物学(biology)及其分支即医药学、农林牧渔业、人类学、社会学等。生物学的分支有动物学、植物学、微生物学、解剖学、生理学、生物物理学、生物化学、细胞生物学、分子生物学、神经生物学、发育生物学、社会生物学等。生命科学中生物学及其分支是生物科学的基础科学(basic science)或纯科学(pure science),医药学和农林牧渔业等是生物科学的应用科学(applied science);很显然,生物科学属于自然科学,而人类学和社会学则属于人文社会科学。所以生命科学的范畴是比较大的,包括了自然科学和社会科学两大科学领域。但是,我国教育部1998年颁布的新的高等学校本科专业目录的理工科部分中与上述生命科学自然科学部分有关的专业有生物学、生物学技术、医学、药学、农学等等,分别属于基础生物科学或应用生物科学范畴。

生物学是研究生物各个层次的种类、结构、功能、行为、发育和起源进化以及生物与周围环境的关系的科学。人也是生物的一种,也是生物学的研究对象。

20世纪40年代以来,生物学吸收了数学、物理学和化学的成就,逐渐发展成一门精确的、定量的、深入到分子层次的科学。

人们已经认识的生命是物质的一种运动状态。生命的基本单位是细胞,它是由蛋白质、核酸、脂类等生物大分子组成的物质系统。生命现象就是这一复杂系统中物质、能和信息三个量综合运动与传递的表现。

生命有许多无生命物质所不具备的特性。比如:生命能够在常温常压下合成多种有机化合物;能够以远远超出机器的效率来利用环境中的物质和制造体内的各种物质;能以极高的效率储存信息和传递信息;具有自我调节功能和自我复制能力;以不可逆的方式进行着个体发育和物种的演化等等。揭示生命过程中的机制具有巨大的理论和实践意义。

生物学的研究对象

地球上现存的生物估计有200万~450万种;已经灭绝的种类更多,估计至少也有1500万种。从北极到南极,从高山到深海,从冰雪覆盖的冻原到高温的矿泉,都有生物的存在。它们具有多种多样的形态结构,它们的生活方式也变化多端。

从生物的基本结构单位——细胞的水平来考察,有的生物还不具备细胞形态;在已经具有细胞形态的生物中,有原核细胞构成的、有由真核细胞构成的;从组织结构看,有单细胞生物、多细胞生物。而多细胞生物又根据组织器官的分化和发展而分为多种类型;从营养方式来看,有光和自养、吸收异养、腐蚀性异养、吞食异养;从生物在生态系统的作用看,有生产者、消费者、分解者等等。

生物学家根据生物的发展历史、形态结构特征、营养方式以及它们在生态系统中的作用等,将生物分成若干界。现在比较通行的认识是将地球上的生物界划分为五界:细菌、蓝菌等原核生物是原核生物界;单细胞的真核生物是原生生物界;光和自养的植物界;吸收异养的真菌界;吞食异养的动物界。

病毒是一种非细胞生命形态,它由一个核酸长链和蛋白质外壳构成,病毒没有自己的代谢机构,没有酶系统。因此病毒离开了宿主细胞,就成了没有任何生命活动、也不能独立自我繁殖的化学物质。一旦进入宿主细胞后,它就可以利用细胞中的物质和能量以及复制、转录和转译的能力,按照它自己的核酸所包含的遗传信息产生和它一样的新一代病毒。

病毒基因同其他生物的基因一样,也可以发生突变和重组,因此也是可以演化的。因为病毒没有独立的代谢机构,不能独立的繁殖,因此被认为是一种不完整的生命形态。近年来发现了比病毒还要简单的类病毒,它是小的RNA分子,没有蛋白质外壳,但它可以在动物身上造成疾病。这些不完整的生命形态的存在说明无生命与有生命之间没有不可逾越的鸿沟。

原核细胞和真核细胞是细胞的两大基本形态,它们反映了细胞进化的两个阶段。把具有细胞形态的生物划分原核生物和真核生物,是现代生物学的一大进展。原核细胞的主要特征是没有线粒体、质体等模细胞器,染色体只是一个环状的DNA分子,不含组蛋白及其它蛋白质,没有核膜。原和生物主要是细菌。

真核细胞是结构更为复杂的细胞。它有线粒体等膜细胞器,有包以双层膜的细胞核把核内的遗传物质与细胞质分开。DNA是长链分子,狱卒蛋白以及其他蛋白合成染色体。这核细胞可以进行有丝分裂和减数分裂,分裂的结果是复制的染色体均等地分配到子细胞中。原生生物是最原始的真核生物。

植物是以光和自养为主要营养方式的真核生物。典型植物细胞都含有液泡核以纤维素为主要成分的细胞壁。细胞质中由进行光合作用的细胞器—叶绿体。植物的光合作用都是以水为电子供体的,光合自养是植物的主要营养方式,少数的高等植物是寄生的,还有更少数的植物能够捕捉小昆虫,进行异养吸收。

植物从单细胞绿藻到被子植物是沿着适应光合作用的的方向发展的。高等植物中发生了植物的根(固定和吸收器官)、茎(支持器官)、叶(光和器官)的分化。叶柄和众多分支的茎支持片状的叶向四面展开,以获得最大的光照和吸收面积,细胞也逐渐分化成专门用于光合作用、输导和覆盖等各种组织。大多数植物的通过有性生殖,形成配子体和孢子体世代交替的生活史。植物是生态系统中最主要的生产者,也是地球上氧气的主要来源。

真菌是以吸收为主要营养方式的真核生物。真菌有细胞壁,细胞壁含有几丁质,也含有纤维素。几丁质是一种含氨基葡萄糖的多糖,是昆虫等动物骨骼的主要成分,植物细胞不含几丁质。真菌没有质体和光合色素。真菌的繁殖能力很强,繁殖方式多样,主要是以无性或有性生殖产生的各种孢子作为繁殖单位。真菌分布非常广泛,在生态系统中,真菌是重要的分解者。

动物是以吞食为营养方式的真核生物。吞食异养包括捕获、吞食、消化和吸收等一些列复杂的过程。动物体的结构是沿着适应吞食异养的方向发展的。单细胞动物吞入食物后形成食物泡。食物在食物泡中被消化,然后透过膜而进入细胞质中,细胞质中溶酶体与之融合,就是细胞内消化。

多细胞动物在进化过程中,细胞内消化逐渐为细胞外消化所取代,食物被捕获后在消化道内由消化腺分泌酶而被消化,消化后的小分子营养物经过消化道吸收,并通过环系循统输送到身体的各种细胞中。

与此相适应,多细胞动物逐步形成了复杂的排泄系统、外呼吸系统以及复杂的感觉系统、神经系统、内分泌系统和运动系统等。在全部生物中,只有动物的身体构造发展到如此复杂的高级水平。在生态系统中,动物是有机食物的消费者。

在生命发展的早期,生态系统是由生产者和分解者组成的两环系统。随着真核生物特别是动物的产生和发展,两环生态系统发展成有生产者、分解者和消费者所组成的三环系统。出现了今日丰富多彩的生物世界。

从类病毒、病毒到植物、动物,生物拥有众多特征鲜明的类型。各种类型之间又有一系列的中间环节,形成连续的谱系。同时由营养方式决定的三大进化方向,在生态系统中呈现出相互作用的空间关系。因而,进化既是时间过程,又是空间发展过程。生物从时间的历史渊源和空间的生活关系上都是一个整体。

生物的特征

生物不仅具有多样性,而且具有一些共同的特征和属性。

组成生物体的生物大分子的结构和功能,在原则上是相同的。比如各种生物的蛋白质的单体都是氨基酸,种类不过20种左右,它们的功能对所有的生物都是相同的;在不同生物体内基本代谢途径也是相同的等等。这就是生物化学的同一性。同一性深刻的揭示了生物的统一性。

生物具有多层次的结构模式。对于病毒以外的一切生物都是由细胞组成的,细胞是由大量原子和分子所组成的非均质的系统。

从结构上看,细胞是由蛋白质、核酸、脂类、多糖等组成的多分子动态体系;从信息论观点看,细胞是遗传信息和代谢信息的传递系统;从化学观点看,细胞是由小分子合成的复杂大分子;从热力学上看,细胞是远离平衡的开放系统……

除细胞外,生物还有其他结构单位。细胞之下有细胞器、分子、原子,细胞之上有组织、器官、器官系统、个体、生态系统、生物圈等等。生物的各种结构单位,按照复杂程度和逐级结合的关系而排列成一系列的等级,这就是结构层次。较高层次上会出现许多较低层次所没有的性质和规律。

其他的还有很多,比如生物的有序性和耗散结构、生物的稳定性,生命的连续性,个体发育,生物的进化,生态系统中的相互关系等等。

这些都说明,尽管生物世界存在惊人的多样性,但所有的生物都有共同的物质基础,遵循共同的规律。生物就是这样一个统一而有多样的物质世界。

和其他学科一样,生物学依据自己所研究的对象,也有一些基本的研究方法——观察描述的方法、比较的方法、实验的方法等等,也都具有自己的特点。对于生物学来说,既需要有精确的实验分析,又需要从整体和系统的角度来观察生命,生物学积累了大量关于各种层次生命系统及其组成部分的资料。今天对于生命系统的规律作出定量的理论研究已经提到日程上来,系统论方法将作为新的研究方法而受到人们的重视。

生物学的分支

早期的生物学主要是对自然的观察和描述,是关于博物学和形态分类的研究。所以生物学最早是按类群划分学科的,如植物学、动物学、为生物学等。由于生物种类的多样性,也由于人们对生物学的了解越来越多,学科的划分也就越来越细,一门学科往往在划分为若干学科。

按生物类群划分学科,有利于从各个侧面认识某一个自然类群的生物特点和规律性。但无论研究对象是什么,都不外乎分类、形态、生理、生化、生态、遗传、进化等等。

生物在地球历史中有着很长的发展历史,大约有1500万种生物已经灭绝,它们的遗骸保存在地层中形成化石。古生物学专门通过化石研究历史上的生物;

生物的类群是如此的繁多,需要一个专门的学科来研究类群的划分,就产生了分类学;

形态学是生物学中研究动植物的形态结构的学科;随着显微镜的使用,形态学又深入到超微结构的领域,组织学和细胞学也就相应的建立起来了;

生理学是研究生物机能的学科,生理学的研究方法是以实验为主;

遗传学是研究生物性状的遗传和变异,阐明其规律的学科;

胚胎学是研究生物个体发育的学科;

生态学是研究生物与生物之间以及生物与环境之间的关系的学科。研究范围包括个体、种群、群落、生态系统以及生物圈等层次。揭示生态系统中食物链、生产力、能量流动和物质循环的有关规律;

生物化学是研究生命物质的化学组成和生物体各种化学过程的学科,是进入20世纪以后迅速发展起来的一门学科。生物化学的成就提高了人们对生命本质的认识。生物化学侧重于生命的化学过程、参与这一过程的物质、产品以及酶的作用机制的研究。分子生物学是从研究生物大分子的结构发展起来的,现在更多的仍是研究生物大分子的结构与功能的关系、以及基因的表达、调控等方面的机制;

生物物理学是用物理薛的概念和方法研究生物的结构、生命活动的物理和物理化学过程的学科。早期生物物理学的研究是从生物发光、生物电等问题开始的。随着生物学、物理学的发展,新概念的产生和介入,生物物理的研究范围和水平不断加深加宽。产生了量子生物学、生物大分子晶体结构以及生物控制论等小分支;

生物数学是数学和生物学结合的产物,它的任务是研究生命过程中的数学规律。

生物界是一个多层次的复杂系统,为了揭示某一层次的规律以及和其他层次的关系,出现了按层次划分的学科并且越来越受人们的重视。比如:分子生物学、细胞生物学、个体生物学、种群生物学等等。

总之,生物学中一些新的学科在不断的分化出来,另一些学科又在走向融合。生物学分可的这种局面,反映了生物学极其丰富的内容,也反映了生物学蓬勃发展的景象。

研究生物学的意义

生物与人类生活的许多方面都有着非常密切的关系。生物学作为一门基础科学,传统上一直是农业和医学的基础,涉及种植业、畜牧业、养殖业、医疗、制药、卫生等等。随着生物学理论与方法的不断进步,它的应用领域也在不断扩大。现在,生物学的影响已经扩展到食品、化工、环境保护、能源、冶金等方面。如果考虑仿生学的因素,它还影响到了机械、电子技术、信息技术等等诸多领域的发展。

生物学分支学科

植物学、孢粉学、动物学、微生物学、细胞生物学、分子生物学、生物分类学、习性学、生理学、细菌学、微生物生理学、微生物遗传学、土壤微生物学、细胞学、细胞化学、细胞遗传学、免疫学、胚胎学、优生学、悉生生物学、遗传学、分子遗传学、生态学、仿生学、生物物理学、生物力学、生物力能学、生物声学、生物化学、生物数学

与生物学相关的基础学科:化学,自然地理学,物理学,数学

‘贰’ 生物化学是怎么样的一个学科

生物化学是生物学的一门基础学科,研究尺度在生物大分子这一层面。

‘叁’ 生物化学是从什么和什么发展而来的

生物化学(Biochemistry)这一名词的出现大约在19世纪末、20世纪初,但它的起源可追溯得更远,其早期的历史是生理学和化学的早期历史的一部分。例如18世纪80年代,A.-L.拉瓦锡证明呼吸与燃烧一样是氧化作用,几乎同时科学家又发现光合作用本质上是植物呼吸的逆过程。又如1828年F.沃勒首次在实验室中合成了一种有机物──尿素,打破了有机物只能靠生物产生的观点,给“生机论”以重大打击。1860年L.巴斯德证明发酵是由微生物引起的,但他认为必需有活的酵母才能引起发酵。1897年毕希纳兄弟发现酵母的无细胞抽提液可进行发酵,证明没有活细胞也可进发这样复杂的生命活动,终于推翻了“生机论”。

‘肆’ 什么是生物化学生物化学的主要研究内容是什么

生物化学是研究生物体中的化学进程的一门学科,常常被简称为生化。主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核酸等生物大分子的结构和功能。而对于化学生物学来说,则着重于利用化学合成中的方法来解答生物化学所发现的相关问题。
生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。研究各种天然物质的化学称为生物有机化学。研究各种无机物的生物功能的学科则称为生物无机化学或无机生物化学。60年代以来,生物化学与其他学科融合产生了一些边缘学科如生化药理学、古生物化学、化学生态学等;或按应用领域不同,分为医学生化、农业生化、工业生化、营养生化等。

‘伍’ 生物化学专业是学什么的有什么职业

生物化学,顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化;主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核酸等生物大分子的结构和功能,而对于化学生物学来说,则着重于利用化学合成中的方法来解答生物化学所发现的相关问题。

生物学专业毕业生(Biochemiker)大多数是在高校和研究机构中工作,此外还可以在制造业,特别是在食品工业、饮料生产、药品制造、洗涤清洁剂制造和肥料、植物保护材料制造业工作。

(5)生物化学是从什么学科发展扩展阅读:

研究内容:生物化学主要研究生物体分子结构与功能、物质代谢与调节以及遗传信息传递的分子基础与调控规律。

生物化学组成:除了水和无机盐之外,活细胞的有机物主要由碳原子与氢、氧、氮、磷、硫等结合组成,分为大分子和小分子两大类。

前者包括蛋白质、核酸、多糖和以结合状态存在的脂质;后者有维生素、激素、各种代谢中间物以及合成生物大分子所需的氨基酸、核苷酸、糖、脂肪酸和甘油等,在不同的生物中,还有各种次生代谢物,如萜类、生物碱、毒素、抗生素等。

代谢调节控制:新陈代谢由合成代谢和分解代谢组成,前者是生物体从环境中取得物质,转化为体内新的物质的过程,也叫同化作用;后者是生物体内的原有物质转化为环境中的物质,也叫异化作用。

同化和异化的过程都由一系列中间步骤组成,中间代谢就是研究其中的化学途径的,如糖元、脂肪和蛋白质的异化是各自通过不同的途径分解成葡萄糖、脂肪酸和氨基酸,然后再氧化生成乙酰辅酶A,进入三羧酸循环,最后生成二氧化碳。

结构与功能;酶学研究;酶学研究;激素与维生素;生命起源与进化;方法学。

参考资料来源:网络-生物化学

‘陆’ 生物化学是从哪两门学科发展起来的

生物学和化学

‘柒’ 生物化学发展历史

生物化学发展史
化学在生命科学中的地位:
二十世纪的头二十年是微生物称雄的时代。他们的显赫地位其后又被维生素取代了二十年之久。四十年代和五十年代,是酶的兴旺时期。八十年代以前的二十年中,基因热。 上世纪的后二十年神经和人类基因组计划发展很快。在这一段历史时期内,一个又一个医学学科走马灯似地变换着主导地位,而研究和教学则是在不断增多的相互独立的学科里进行着。
六十年前,医学院还只有解剖学系、细菌学系、生理学系、生物化学系和药学系。而且系与系之间比较疏远,没有联系。那个时候,遗传学系和神经生物学系在医学院里尚未问世。 路易.巴斯德,这个上世纪医学科学的巨匠和微生物学家是化学出身的。今日的基因工程把生物化学、遗传学、微生物学和生理学集为一体。这一新兴的基因化学的价值是如此巨大,实在无愧为人们赋于它的“革命性进步”的称号。
现代基础医学各学科的汇集与联系之所以紧密,最主要是因为它们具有共同的语言,即化学语言。这些学科中最具有描述性的解剖学和最抽象的遗传学,现在都渗透了许许多多的化学理论和技术。现在的解剖学是一幅包括了中等大小的分子、大分子的聚集体直至细胞器和组织的渐进图。正是这些大大小小的分子组成了有功能的生物体。遗传学的变化甚至更大。当遗传现象是否由已知的物理学原理操纵的这一命题作为正经的问题提出来时,也只不过是六十年前的事情。而今天我们则以一目了然的化学表达法来了解和研究基因、遗传现象和进化问题。染色体和基因可被分析了、合成了、重新安排了。新的物种也可随心所欲地创造出来了。一旦对染色体的结构与功能有了更深刻的认识,由此产生的对医学和工业的影响将会远远超过我们从现在用的基因方法大量生产稀有的激素、疫苗、干扰素和酶的成功所能得到的经济和社会效益。生物学家固然知道是酶决定了细胞的形状、功能和命运,但他们对酶的重要性和化学复杂性望而却步,因而对生物化学也尽量绕道而行。这是指六十年前。
“最好通过化学来生活”,这是杜邦(Du Pont)公司在持续数年的广告战中一直沿用口号。这一口号的寓义无非是告诉公众:塑料、除草剂和其它工业化学品对于我们个人与社会的美满幸福所能起到的作用。医学科学的汇集最早是由于路易.巴斯德的天才而崭露头角的。 巴斯德是一个化学家,他年青时阐明了具有相同化学结构的酒石酸由于其物理结构上的不同而分为两种分子,即镜象对映异构体。巴斯德创立的“疾病的菌源说”带有他化学基础和思想方法的烙印。他力图把疾病问题简化为基本的成分。他的实验途径是先将致病因子纯化为单一的形式,然后用纯化的因子再生疾病。因而可以说,由巴斯德创立的微生物学和免疫学是由化学中脱胎而来的。实际上,在1911版的大英网络全书上刊载的有关巴斯德生平的权威传记将他称为法国化学家,并誉为是公认的当时化学运动的最伟大的领导者。
在巴斯德的科学生涯中有一个严重的瑕疵:他阐明了是酵母细胞导致了酒精发酵,即蔗糖在厌氧条件下转变为乙醇和二氧化碳。之后,他又试图用酵母的抽提液来完成同样的功能,但他未能如愿。因此他下了这样的一个结论:除活细胞之外,其它一切东西都不可能进行这一极为复杂的化学反应。正是由于巴斯德的自信心、说服力和影响力,使进一步研究无细胞系统的乙醇发酵的努力被大大地泼了冷水。从此生机论变得根深蒂固,使现代生物化学的出现被延迟了三十年之久。
直至本世纪初,慕尼黑的爱德华.布什纳(Eavd Buchner)才于无意之间发现了破碎的酵母细胞的发酵现象。本来他是用糖来保护酵母抽提液不至发生重复免疫反应,不料却发现了令人讨厌的发泡现象。进一步的研究使他阐明了糖被酵母液裂解所分解的产物---乙醇和二氧化碳。 巴斯德的运气不佳,他所用的巴黎酵母是蔗糖酶缺陷型,这是一个催化蔗糖糖代谢的起始反应的酶。布什纳则吉星高照,他的慕尼黑酵母抽提液中尚有相当量的这种酶保存着活力。生物化学并不是象有人想象的那样由有机化学衍生而来。尽管糖和氨基酸等底物与酶反应的产物都是通过有机化学的方法制备和鉴定的。确切地说,生物化学是从农学院和医学院的生理系和营养系脱胎而出的。借助于生物化学,人们可以如愿明白许多细胞功能的化学基因,例如发酵、光合作用、肌肉收缩、消化和视觉等。
基因工程的起源
基因化学也就是大家常说的基因工程的起源是什么呢?DNA、基因和染色体的分离、分析、合成和重排通常被认为是分子生物学的成就和领地。就算如此,那么什么是分子生物学?它的起源又是什么呢?如果把讨论的焦点集中在DNA的分子生物学,这里我可以列举几个不同的来源:第一个起源来自医学。艾夫里(Oswald Avery)以自己毕生的精力探索肺炎球菌肺炎的控制问题,有史以来第一次证明了DNA是储存遗传信息的分子。 第二个起源来自生物遗传学。微生物学家,其中有些是叛逃的物理学家,选择噬菌体(细菌病毒)作为研究对象,阐明了主要生物大分子DAN、RNA和蛋白质的功能。第三个起源来自生物分子的细微结构化学。蛋白质的X光衍射图谱提示了其三维空间结构。DNA的衍射图谱使我们了解了它的螺旋结构和它的复制与功能。第四个起源来自生物化学,即核酸的酶学、分析和合成。核酸酶将DNA拦腰斩为基因并分解成组成构件。聚合酶则把它们组合在一起,连接酶把DNA链连成基因,又将基因连成染色体。正是由于这些酶的存在才使得基因工程切实可行。这些酶在细胞内是用来催化基因和染色体的复制、修复和重排反应。 因而归根到底,现代分子生物学的成就仍属化学。大多数的分子生物学家操作着这种特殊形式的化学而没有认识到它就是化学。
但是,尽管已有了非同小可的业绩,分子生物学在回答一些细胞功能和发育等深刻的问题时仍然是张口结舌的。比如是什么控制了基因的重排以产生抗体?是什么决定了一个原始细胞发育成脑或骨?是什么构成了细胞生长和衰老的基础?一旦忽略了DNA蓝图的产物的化学,即忽略了代表细胞的机关和构架的酶与蛋白质的化学时,当今的分子生物学研究就开始蹒跚(pan shan)不前了。对脑的化学元素,无论是动物的还是人的,正常的还是有病的脑的化学元素的研究应给予足够的重视。
总之,化学语言是连接物理学与生物学、天文学与地学、医学与农学的纽带。化学语言极为丰富多彩,它能产生出最美的图画。我们应该传授和运用化学评议。这就是我们眼前的、未来的基因,也是本世纪生物、医学繁荣昌盛的基石。
生命的化学观
吴宪教授(1893-1959)是我国杰出的生物化学家和营养学家,在国际上负有盛名。他在临床生物化学,特别是血液分析、气体与电解质的平衡、蛋白质的生物化学,特别是蛋白质的变性理论、免疫化学、氨基酸的代谢和营养学诸领域的研究工作,都是当时的先驱。
物质结构繁简的等级
物质的繁杂程度略分为五级。(1)原子的繁杂程度称为第一级。(2)原子相结合而成为分子,最小的是氢,最大的是生物大分子。分子的繁杂程度称为第二级。(3)相同分子或不同分子相结合而成为分子聚集体,其种类无限,其状态不似分子。分子聚集体的繁杂程度称为第三级。(4)不同分子聚集体相结合而成为有形态的物质单位,其形态常可用显微镜观察。这就是生物学家所说的细胞。细胞种类之多,不可以数计。细胞的繁杂程度称为第四级。(5)细胞联合而成为多细胞物体,或为植物或为动物。其最繁杂者莫过于人体。多细胞物体的繁杂程度称为第五级。
上述五级一方面从一级过渡到另一级之间的界限并不同样清楚,另一方面,同属于一级的物质,其结构的繁杂程度可以相差很大,因而其现象(性质)也就相差很多。所以说,物质繁杂程度的级别越高,其结构的稳定性越低,其现象(性质)也就越多、越繁杂。
结构与性质
物质的结构和性质,是一个物质的两个方面,知道它的结构,就可能了解它的性质。诚然,有时了解它的性质,并不一定知道它的结构。但是,在了解它的性质以前,必须先有结构的知识。对于人体的总结构,解剖学家、医学家已知道得很清楚。我们能理解四肢的活动是由于肌肉的伸缩,血液的流动是由于心脏的抽压,以及影像是怎样在视网膜上聚集的等,都是因为知道了这些器官的结构。
物质的结构和性质,是一个物质的两个方面,知道它的结构,就可能了解它的性质。诚然,有时了解它的性质,并不一定知道它的结构。但是,在了解它的性质以前,必须先有结构的知识。对于人体的总结构,解剖学家、医学家已知道得很清楚。我们能理解四肢的活动是由于肌肉的伸缩,血液的流动是由于心脏的抽压,以及影像是怎样在视网膜上聚集的等,都是因为知道了这些器官的结构。我们可以把肾比作滤器,把肺比作气包,因为我们在显微镜下已看到它们的组织结构。但是,神经怎样传导我们还无法理解,因为我们对于细胞的内部结构实际上还一无所知。等到对于活细胞结构的细节完全知道以后,对生命过程的理解就会如同理解钟表指针转动一样容易。
先有核酸,还是先有蛋白质?
在生物界,对于生命的起源曾有三种意见,即:
(1)最初的细胞是在没有核酸和遗传体系的条件下进行活动的,而核酸和遗传体系则是以后获得的;
(2)核酸为最先发生,它为蛋白质的进化提供信息;
(3)核酸和蛋白质两者须结合在一起才能形成一个活细胞的最初真正前体。
目前,大多数学者都倾向于第二种意见,即先有RNA,再有蛋白质。但仍有争议。
生物化学中的物理化学
当今生化已从阐明生物化学的结构性质进入探讨生物分子间的相互作用和功能;生物分子间为何能在温和的条件下以惊人的速度在生物体内进行一系列严格有序和特定方向的化学反应;反应前后能量如何变化;有哪些因素影响着这些生物分子间的反应;酶促反应的机理和生物分子的结构功能关系如何等,这就使得物理化学越来越显示出它在生化中的重要地位。
物理化学主要从理论上探讨物质结构与其性能间的关系,化学反应的可能性、反应速度和反应限度,反应机理以及反应过程中的能量变化关系等,是整个化学学科的理论基础。目前的研究表明,生物分子间的相互作用也是遵循各种物理化学规律的,也即这一套基本化学定律也支配着各种类型的生物分子的性质、机能和相互作用。
(1)生物化学中的化学热力学
(2)生物化学中的化学动力学
(3)生物化学中的电化学
总之,物理化学的各分支的理论可以阐明生化中许多问题,物理化学的研究方法在生化中具有十分重要应用。生物分子的反应服从于非生命界的化学定律,物理化学与生化间联系密切,可以预见,物理化学中的各种理论、研究方法在生化中将日益受到广泛应用,而生化的发展也必将进一步丰富物理化学的内容。
生物化学与司法鉴定
受伤与死亡现象中的生化 :
1.死亡时间的推测:在凶杀的刑事案件中,可根据尸体中一些生化物质的变化来推测尸体经过的死亡时间,如发育7小时内肝中DNA的含量随死时间的延伸而下降;脾中DNA的含量则上升;肾、心肌和骨骼肌在7小时内不变。以肝和脾中DNA含量变化的比值与死亡时间作图,可得一直线,用此直线来推测死亡时间其误差在16分钟之内。如果能在人体上也达到同样的精确度,在当今生活节奏快速的社会里也能相当正确地判断无误了。
2.暴力死亡中的生化:
(1)经过搏斗后机械性死亡的心肌中丁二酸脱氢酶和细胞色素氧化酶的活性有及糖原的含量会明显升高,要经过20小时之后才会明显下降。
(2)机械性窒息(吊死和扼死)会引起死亡者的血液中成纤维蛋白水解酶的含量高于正常死亡的值,因此血液不凝固。急死者的血液也不凝固,所以判断时要结合其它方法。
(3)溺死者的肺中过氧化物酶活性变化明显。由于进入的水深入肺部呼吸系统,器官受水的刺激后分泌出一些物质,使在口鼻之间形成蕈(xun)状泡沫,短时间内并不消失,此为何物尚无报道。
3.性犯罪引起的死亡:鉴定时可在受害者身体及其衣服等犯罪现场中找到精子,或是污渍中有酸性磷酸酯酶活力,即使进行绝育手术的罪犯也能发现这种酶活力。
个人识别和亲子鉴定
1. 免疫法和多态蛋白鉴定法
2. DNA“指纹图谱”用于个人识别和亲子鉴定
3. 从个体的特征上来进行个人识别
刑事侦察中的生化
1. 指纹:由于手指皮肤排泄物中除了含有无机离子外,还含有维生素B2和B6化合物和氨基酸、蛋白质类化合物。利用激光照射在维生素B2和B6上产生荧光的特性,用彩卷拍摄激光照相来摄取指纹。
2. 血迹现场显示:国外用Luminol喷雾于现场,而后在黑暗中去寻找发光的斑点,此斑点常常是血迹,即使将现场进行一般性的打扫,也不能排除用此法可找出血迹。
生物化学与美学
门捷列夫周期律揭示了自然界化学元素之间的本质联系。周期律在形式上和内容上极其对称、协调,纵横联系,精致巧妙,成为一个统一的整体,给人以美的感觉。这种美感实际上就是科学美(主要指理论美,它是自然美在科学理论上的表现)的一种显现。
从分子水平看人体,象蛋白质、核酸等生物大分子的分子结构与其功能相互默契、对立统一,为完成生命活动过程的生理功能和代谢变化提供了物质前提。例如,血红蛋白的四个亚基和四个亚铁血红素分子构成的的四聚体是血红蛋白结合或放出氧分子的精巧结构,反映在理论上便是蛋白质结构与功能统一的学说;酶对底物催化作用的特异性及酶与底物分子之间的诱导契合,反映在理论上便是酶作用的诱导契合学说;DNA分子的两条多核苷酸链相互盘绕而成的结构,反映在理论上便是DNA分子的双螺旋的结构模型。
法国着名分子生物学家莫诺也赞赏这个模型的“雅致”---简单、对称、和谐。这个模型,从美学角度看,也是一个美的模型。在生物化学、分子生物学领域内,这样的例子是很多的。 这些理论(假说、模型)不仅从分子水平反映了生命运动的客观规律,具有重大的科学价值,而且理论本身还给人以动人心魄的美感力量,具有不应忽视的审美价值和美学意义。
当然,应当看到,科学不等于艺术。科学(包括生命科学在内)的任务是求真,也就是忠实地揭示自然界,包括生命世界客观运动规律,客观性、真实性是第一位的。一个违背客观真实性的“理论”,无论其表现形式是多么美,那也是毫无科学价值的。尽管如此,我们也应看到,一个科学工作者,如果能从美学角度提出问题和思考问题将会是有益的,将会有助于我们的科学思想、科学创造。
马克思说过:“人还按照美的规律来创造。”(《1844年经济学哲学手稿》)人们常称赞爱因斯坦的科学方法“在本质上是美学的、直觉的”,“可以说,他是科学家,更是个科学的艺术家”(《纪念爱因斯坦文集》)。在生命科学领域内,譬如说,遗传密码理论的建立,DNA双螺旋模型的诞生等,固然主要依靠充分的实验事实的支持和严密的逻辑论证,但是应当注意,非逻辑的直觉方法和审美的直感对于这些开创性的崭新理论的提出,也并非毫无意义。科学与艺术、生物化学与美学,尽管是两个不同的范畴,然而它们之间并不是隔着一条绝对不可逾越的鸿沟。在创造性思维的过程中,它们常常可能成为携手并进的伴侣。

‘捌’ 生物化学

楼上的几个兄弟说得都很对啊!数学程度用不着很高滴…………

就说说什么是生物化学吧!!

生物化学是生物学的分支学科。它是研究生命物质的化学组成、结构及生命过程中各种化学变化的基础生命科学。

研究内容:生物体的化学组成 除了水和无机盐之外,活细胞的有机物主要由碳原子与氢、氧、氮、磷、硫等结合组成,分为大分子和小分子两大类。前者包括蛋白质、核酸、多糖和以结合状态存在的脂质;后者有维生素、激素、各种代谢中间物以及合成生物大分子所需的氨基酸、核苷酸、糖、脂肪酸和甘油等。在不同的生物中,还有各种次生代谢物,如萜类、生物碱、毒素、抗生素等。

理论意义和实际应用:生物化学对其他各门生物学科的深刻影响首先反映在与其关系比较密切的细胞学、微生物学、遗传学、生理学等领域。通过对生物高分子结构与功能进行的深入研究,揭示了生物体物质代谢、能量转换、遗传信息传递、光合作用、神经传导、肌肉收缩、激素作用、免疫和细胞间通讯等许多奥秘,使人们对生命本质的认识跃进到一个崭新的阶段。
生物学中一些看来与生物化学关系不大的学科,如分类学和生态学,甚至在探讨人口控制、世界食品供应、环境保护等社会性问题时都需要从生物化学的角度加以考虑和研究。
此外,生物化学作为生物学和物理学之间的桥梁,将生命世界中所提出的重大而复杂的问题展示在物理学面前,产生了生物物理学、量子生物化学等边缘学科,从而丰富了物理学的研究内容,促进了物理学和生物学的发展。
生物化学是在医学、农业、某些工业和国防部门的生产实践的推动下成长起来的,反过来,它又促进了这些部门生产实践的发展。

‘玖’ 临床生物化学的发展史

1.生物化学是一门比较年轻的学科,它是在化学、生物学和生理学中孕育出而成长起来的。 1903年Carl Neuberg方才创用《生物化学》这个词。 2.我国在二十年代尚无生物化学专业教学和科研机构,仅少数医学院设有生物化学系,如原 北京协和医学院(PUMC)生物化学系、原齐鲁大学生物化学系、同济医学院生理化学系、原华西 大学生物化学系、原上海医学院生物化学系。除一些医学院设有生物化学课程外,燕京大学化学 系在美国学者Adolph(窦维廉)博士主持下设有生物化学主修课,当时采用了Bodansky(布坦斯基) 着之生物化学大纲(Introction of Biochemistry),这也是我国采用的第一本外国生物化学教科书。 3.在30年代我国着名生物学家秉志教授主持之中国科学社生物研究所,由张宗汉教授筹备成立 了生理学研究室,由郑集教授筹备生物化学研究室,这个研究室可算是我国第一个生物化学专业机构。 4.1935年前中央大学新成立医学院,即由郑集教授筹备生物化学系,并担任教授兼主任职。 1937年日本军国主义入侵我国时,前中央大学医学院及生物研究室的两个生物化学实验室均由郑集 负责迁入成都原华西大学校园继续工作,由美国归来的任邦哲博士任教授。由于齐鲁大学同时亦 迁入华大校地,于是给他们提供了学术合作的良好机会。这不仅体现在教学科研上,还体现在生物 化学的学术活动上。这些学术活动对发展我国早期生物化学起了一定的良好作用。当时成立的 “成都生物化学会”是我国第一个生物化学专业的学术组织。抗战胜利后,中央大学医学院迁回南京。 5.1946年郑集教授在前中央大学医学院于成都布后街成立生物化学研究所,这是我国生物化学 发展史上第一个生物化学专业研究所。1947年蓝天鹤在前华西大学成立生物化学研究所,这是在 郑集教授影响下,医学院内设立的第二个生物化学研究所。 6.1948年郑集教授约同林国镐、万昕等倡议组织中国生物化学会,并推万昕、林国镐、李缵文、 郑集、林枝模、刘思职、蓝天鹤等七人为筹备委员,但当时正值解放战争频于全国胜利,兵马匆忙, 学会虽未正式成立但已有萌芽。 7.解放前我国没有一本中文的生物化学教科书和实验教程,在20年代齐鲁大学江清、李缵文、 鲁德馨等翻译了良氏(Conant)生物化学教科书,由上海博医会出版,但未被普遍采用。各院校生物 化学系除编写生物化学实验教程外多采用课堂口讲笔记法。北京协和医学院、华西大学均用英文编 写了暂用的生物化学实验教程。1938年郑集编写了《生物化学实验手册》(A Laboratory Manual of Biochemistry)正式在成都华英书局出版。这是我国第一本自编的生物化学原理,也是我国第一本 生物化学参考书。

麻烦采纳,谢谢!

‘拾’ 生物化学作为一门学科是怎样发展起来的

中国有自己的现代生物化学是本世纪20 年代的事。最初是个别医学院(北京协和医学院、济南齐鲁大学医学院)开始讲授生物化学。1924 年吴宪主持协和医学院生物化学系后,才开始有生物化学的研究。随后各医学院(上海医学院、同济大学医学院、中央大学医学院、湘雅医学院、华西医学院)亦先后开设生物化学课程并从事研究,少数农学院亦开始讲授生物化学或营养学。此外,个别研究单位如上海雷斯德研究所、中央研究院化学研究所、南京中国科学社生物研究所等分别设置了生物化学研究室。1945 年内迁成都的中央大学医学院创设了中国教育史上第一个生物化学研究所,正式招收攻读硕士学位的研究生。1949 年后,生物化学教学在国内全面展开。各医学院校都开设生物化学课程,不少综合性大学(如北京大学、南京大学、复旦大学)都相继设立了生物化学专业,中国科学院成立了专门从事科研的生物化学研究所,中国医学科学院也设立了生物化学研究室,还有几个大学设立了生物化学或分子生物化学研究室。在这里,我们要特别指出,王应睐是1949 年后把生物化学作为一门独立的边缘学科建立起来的主要奠基人之一。他在亲自参加实验室工作的同时,以更大的精力从事培养人才、组织队伍、制定规划,以发展我国的生物化学事业。1949 年以前,中国的生物化学研究,主要在血液和营养分析研究上。从国际上看,生物化学在三四十年代发展很快,尤其在酶、中间代谢、蛋白质和核酸的研究方面有很大进展。50 年代,核酸、DNA 双螺旋结构的发现,蛋白质晶体衍射的进展,使生物化学研究处于一个大飞跃的时期。从国内情况来看,各方面的基础十分薄弱,不仅人才少,仪器设备也十分缺乏。王应睐感到,要迅速扭转这种状况,仅仅依靠个人的努力是不行的,必须组织一支有实力的队伍,要有一个坚强的集体。因此,王应睐首先争取一批在国外工作的学者回国,以他们为骨干,逐步组织和培养一支自己的生物化学专业队伍。

王应睐设法与国外的老同学、老朋友取得联系。第一位是邹承鲁,邹承鲁和王应睐是同学,王应睐曾介绍邹承鲁到他的导师凯林教授实验室当研究生。1951 年,邹承鲁回国,立即在王应睐任副所长的上海生理生化研究所开辟了酶化学研究工作。经过邹承鲁的介绍,王应睐又认识了曹天钦。1952 年,曹天钦也从英国回来,在王应睐的所里开展了蛋白质研究工作。王德宝和王应睐在中央大学共事过,王德宝去美国后,两人还经常保持联系。1954 年,王德宝历经曲折回到祖国,王应睐立即让他组织力量,开展了核酸的研究工作。接着钮经义、周光宇等科学家也陆续到上海生理生化研究所工作。这样,在上海生理生化研究所逐渐形成了一个包括酶、蛋白质、核酸、代谢等方面的研究体系,并培养了如彭加木和伍钦荣等一批年轻专家。

1958 年中国科学院上海生物化学研究所成立,王应睐任所长。从此,生物化学获得了长足的发展,中国先后于1965 年和1981 年在世界上首次成功地完成了具有生物活性的人工合成牛胰岛素和酵母丙氨酸转移核糖核酸两项重大的基础理论研究工作(王应睐分别担任这两个协作组的组长),使中国人工合成生物大分子的水平保持着世界领先地位,受到了国际同行的高度评价。这两项研究成果分别获1982 年国家自然科学一等奖和1989 年国家自然科学一等奖。王应睐积极参加并主持制订了全国历次科技规划中生物化学和分子生物学部分的规划,并主动承担任务。他所领导的生物化学学会、学报积极开展学术活动,对组织推动全国的生物化学研究工作起了重要作用。

阅读全文

与生物化学是从什么学科发展相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1421
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1002
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071