❶ 生物是如何适应环境并不断进化的
进化的进步性 地球上的生命,从最原始的无细胞结构生物进化为有细胞结构的原核生物,从原核生物进化为真核单细胞生物,然后按照不同方向发展,出现了真菌界、植物界和动物界。植物界从藻类到裸蕨植物再到蕨类植物、裸子植物,最后出现了被子植物。动物界从原始鞭毛虫到多细胞动物,从原始多细胞动物到出现脊索动物,进而演化出高等脊索动物——脊椎动物。脊椎动物中的鱼类又演化到两栖类再到爬行类,从中分化出哺乳类和鸟类,哺乳类中的一支进一步发展为高等智慧生物,这就是人。
生物进化的道路是曲折的,表现出种种特殊的复杂情况。除进步性发展外,生物界中还存在特化和退化生物进化的一般序列现象。特化不同于全面的生物学的完善化,它是生物对某种环境条件的特异适应。这种进化方向有利于一个方面的发展却减少了其他方面的适应性,如马由多趾演变为适于奔跑的单蹄。当环境条件变化时,高度特化的生物类型往往由于不能适应而灭绝,如爱尔兰鹿,由于过分发达的角对生存弊多利少,以至终于灭绝。对寄生或固着生活方式的适应,也可使机体某些器官和生理功能趋向退化。如有一种深海寄生鱼,雄体寄生在雌体上,雄体消化器官退化,唯有精巢特别膨大,以保证种族繁衍。
❷ 简述极端温度对生物的影响
温度变化的影响对动物来说主要是影响酶的活性,继而影响细胞代谢和功能,引起一系列的连锁反应,体现到个体上会有一定差异;高寒或高热甚至会引起蛋白质变性,比如烫伤和冻伤;植物的影响主要是水分和蛋白质,过热过寒都会影响植物对水的吸收和蒸腾。其他生物以此类推,病毒有休眠机制因此受到的影响较小
❸ 植物如何适应极端温度
如果是一时间的适应的话,.一般来说是不可以的`就比如你把一棵耐高温的植物搬到北极一样``不可能瞬间的适应的
需要经过很长的时间`植物不断渐进式的去适应,而这个过程可以称为进化,比如仙人掌在适应炎热,缺少水分的环境`进化到叶子变成针`减少蒸腾`而茎可以储存水分`
❹ 生物适应环境的过程是怎么样的
生物对环境的适应具有许多不同的含义,但主要是指生物对其环境压力的调整过程。首先,应当了解基因型适应和表现型适应的区别。基因型适应的调整是可遗传的,因此是发生在进化过程中;表现型适应则发生在生物个体身上,具备非遗传的基础。
表现型适应包括可逆的和不可逆的表现型适应。许多动物能够通过学习以适应环境的改变。它们不但能够通过学习什么食物最有营养、什么场所是最佳隐蔽地等,来调整对环境改变的反应,而且能够学习如何根据环境的改变来调整自己的行为。例如,动物能够通过对一些环境刺激反复出现的“习惯化”学习,逐渐放弃那些对生活没有意义的反应,由此适应环境的多变性。学习基本上是属于不可逆的表现型适应。尽管动物会忘记或抑制已经学到的行为,但是,学习所产生的内在改变是永久的,这种内在改变只能被随后的学习所修改。
可逆的表现型为适应涉及一些有助于生物适应当地环境的生理过程。这些生理过程既有气候驯化的缓慢过程,也有维持稳态的快速生理调节。所谓气候驯化是指在自然条件下,生物对多个生态因子长期适应以后,其耐受范围发生可逆的改变。大多数动物都能够通过快速的生理应答,如哺乳类的流汗,或通过行为应答,又如寻找合适的阴凉处来适应环境温度的改变。如果环境改变的持续时间拉长,就会发生缓慢的驯化适应。例如,一个人从寒冷的地方进入到炎热的地方,刚开始时会流汗降低体温,以后逐渐地就会被新环境所驯化,不再觉得炎热,产生了适应。
适应也可以是指感觉器官对它们所感觉到的环境刺激改变的调整,这种适应称为感觉适应。例如,当我们进入灯光非常明亮的房间时,开始会觉得很明亮,但几分钟后似乎就不明亮了,因为这时候我们的眼睛已经适应了亮度的改变。感觉适应可以发生在各种不同类型的感官当中。就亮光而言,适应是通过瞳孔收缩减少进入眼睛的光量,另一方面,眼睛内部也会发生光化学改变。
总之,适应包括:(1)进化适应,物种通过漫长的过程,调整遗传成分以适合于改变的环境条件。(2)生理适应,生物个体通过生理过程的调整以适合于气候条件、食物质量等环境条件的改变。(3)感觉适应。(4)通过学习的适应,动物通过学习以适合于多种多样的环境改变。
适应可以使生物对生态因子的耐受范围发生改变。自然环境的多种生态因子是相互联系、相互影响的。因此,对一组特定环境条件的适应也必定会表现出彼此之间的相互关联性,这一整套协同的适应特性就称为适应组合。
应当强调的是,无论生物通过哪一种适应方式来调整、扩大它们对生态因子的耐受范围,或生存在更多的复杂环境当中,都不能逃脱生态因子的限制。耐受极限只能改变而不能去除,因此,生物的生理状态和分布会由于它们对特定生态因子耐受范围的有限性而受到限制。生物对特定生态因子的耐受范围由该生物的遗传结构所决定,因此是生物的物种特性。例如,厩蝇对温度的耐受范围是14℃~32℃,家蝇对温度的耐受范围则是20℃~40℃。
❺ 生物是如何适应环境的胁迫并不断进化的
整个生物物种生命进程中,都不断发生着基因变异。
无论环境如何改变,恶化。总会有适合这些变化的变异出现,令他们能继续生
存繁衍下去。
这就是 自然选择
❻ 生物是如何适应极端温度条件的
(一)生物对低温环境的适应 长期生活在低温环境中的生物通过自然选择,在形态、生理和行为方面表现出很多明显的适应。在形态方面,北极和高山植物的芽和叶片常受到油脂类物质的保护,芽具鳞片,植物体表面生有蜡粉和密毛,植物矮小并常成匍匐状、垫状或莲座状等,这种形态有利于保持较高的温度,减轻严寒的影响。生活在高纬度地区的恒温动物,其身体往往比生活在低纬地区的同类个体大,因为个体大的动物,其单位体重散热量相对较少,这就是Bergman规律。另外,恒温动物身体的突出部分如四肢、尾巴和外耳等在低温环境中有变小变短的趋势,这也是减少散热的一种形态适应,这一适应常被称为Allen规律。例如北极狐的外耳明显短于温带的赤狐,赤狐的外耳又明显短于热带的大耳狐。恒温动物的另一形态适应是在寒冷地区和寒冷季节增加毛和羽毛的数量和质量或增加皮下脂肪的厚度,从而提高身体的隔热性能。
在生理方面,生活在低温环境中的植物常通过减少细胞中的水分和增加细胞中的糖类、脂肪和色素等物质来降低植物的冰点,增加抗寒能力。例如鹿蹄草(Pirola)就是通过在叶细胞中大量贮存五碳糖、粘液等物质来降低冰点的,这可使其结冰温度下降到-31℃。此外,极地和高山植物在可见光谱中的吸收带较宽,并能吸收更多的红外线,虎耳草(saxi fraga)和十大功劳(Mohonia)等植物的叶片在冬季时由于叶绿素破坏和其他色素增加而变为红色,有利于吸收更多的热量。动物则靠增加体内产热量来增强御寒能力和保持恒定的体温,但寒带动物由于有隔热性能良好的毛皮,往往能使其在少增加(图2-20中的红狐和雷鸟)甚至不增加(北极狐)代谢产热的情况下就能保持恒定的体温。从图2-20中可以看出,动物对低温环境的适应主要表现在热中性区宽、下临界点温度低和在下临界点温度以下的曲线斜率小。例如北极狐和生活在阿拉斯加的红狐,其热中性区都很宽,下临界点温度可低到-10℃ 以下,即使在下临界点温度以下代谢率的增加也很缓慢(红狐)甚至不增加(北极狐)。在低温环境中减少身体散热的另一种适应是大大降低身体终端部位的温度,而身体中央的温暖血液则很少流到这些部位。例如生活在冰天雪地的北极灰狼,其脚爪可保持在接近冰点的温度。一只站立在冰面上的鸥,其脚掌部的温度为0~5℃,温度自下而上逐渐升高,到达生有羽毛的胫部为32℃,而鸥的体温为38~41℃。
行为上的适应主要表现在休眠和迁移两个方面,前者有利于增加抗寒能力,后者可躲过低温环境,这在前一节中已举过许多实例。
(二)生物对高温环境的适应 生物对高温环境的适应也表现在形态、生理和行为三个方面。就植物来说,有些植物生有密绒毛和鳞片,能过滤一部分阳光;有些植物体呈白色、银白色,叶片革质发亮,能反射一大部分阳光,使植物体免受热伤害;有些植物叶片垂直排列使叶缘向光或在高温条件下叶片折叠,减少光的吸收面积;还有些植物的树干和根茎生有很厚的木栓层,具有绝热和保护作用。植物对高温的生理适应主要是降低细胞含水量,增加糖或盐的浓度,这有利于减缓代谢速率和增加原生质的抗凝结力。其次是靠旺盛的蒸腾作用避免使植物体因过热受害。还有一些植物具有反射红外线的能力,夏季反射的红外线比冬季多,这也是避免使植物体受到高温伤害的一种适应。
动物对高温环境的一个重要适应就是适当放松恒温性,使体温有较大的变幅,这样在高温炎热的时刻身体就能暂时吸收和贮存大量的热并使体温升高,尔后在环境条件改善时或躲到阴凉处时再把体内的热量释放出去,体温也会随之下降。沙漠中的啮齿动物对高温环境常常采取行为上的适应对策,即夏眠、穴居和白天躲入洞内夜晚出来活动。有些黄鼠(Citellus)不仅在冬季进行冬眠,还要在炎热干旱的夏季进行夏眠。昼伏夜出是躲避高温的有效行为适应,因为夜晚湿度大温度低,可大大减少蒸发散热失水,特别是在地下巢穴中。这就是所谓夜出加穴居的适应对策。在前一节介绍内稳态行为机制时,已举过很多实例,在此不再重复。
❼ 以一个植物或动物为例分析极端温度对微生物的影响,生物对极端温度是怎么适应的急!!
适应是生物界普遍存在的现象。
以旱生植物为例,干旱环境的主要矛盾是缺水和光线强。旱生植物根系发达,叶表面积小,叶表面增生了许多表皮毛或白色蜡质,以减少水分的蒸发和加强对阳关的反射。
旱生植物的新陈代谢及为缓慢,这是它们在长期的生存斗争中获得的适应性。
旱生植物的结构、功能、环境相适应。