A. 计算微生物的繁殖数时有哪些常用方法
测定微生物繁殖,一定要计算各个体的数目。
单细胞状态的细菌和酵母菌--计算各个体的数目
放线菌和霉菌等丝状生长的微生物--计算其孢子数
1.繁殖数直接计数法
(1)
计数板直接计数法
指采用计数板(细菌计数板或血球计数板),在光学显微镜下直接观察微生
物细胞并进行计数的方法。(计算一定容积里样品中微生物的数量)
缺点:
不能区分死菌与活菌;
不适于对运动细菌的计数;
需要相对高的细菌浓度;
个体小的细菌在显微镜下难以观察;
(2)染色后活菌计数法
采用特定的染色技术进行活菌染色,然后用光学显微镜计数的方法。可分别对活菌和死菌进行计数。
例:美蓝染色酵母
活细胞→无色
死细胞→蓝色
Eg.
细菌经丫啶橙染色后,在紫外光显微镜下可观察
活细胞→橙色荧光
死细胞→绿色荧光
(3)比例计数法死细胞→蓝
将已知颗粒浓度的样品(例如血液)与待测细胞细胞浓度的样品混匀后在显微镜下根据二者之间的比例直接推算待测微生物细胞浓度。
(4)过滤计数法
当样品中菌数很低时,可以将一定体积的样品通过膜过滤器。然后将滤膜干燥、染色,并经处理使膜透明,再在显微镜下计算膜上(或一定面积中)的细菌数。
(5)Coulter
电子计数器
菌体与液体导电性不同,
一个细胞通过小孔,电阻增加,形成一个脉冲。
(6)菌丝长度
平板
U行管
2.繁殖数间接计数法
是一种活菌计数法,这是一种依据活菌在液体培养基中会使其变混或在固体培养基上(内)形成菌落的原理而设计。
最常用的是菌落计数法(colony-counting
methods)。
(1)平板菌落计数法
可用浇注平板(pour
plate)或涂布平板(spread
plate)等方法进行。此法适用于各种好氧菌或厌氧菌。
采用培养平板计数法要求操作熟练、准确,否则难以得到正确的结果。
样品充分混匀;每支移液管及涂布棒只能接触一个稀释度的菌液;
同一稀
释度三个以上重复,取平均值;
每个平板上的菌落数目合适(30-300),便于准确计
数;
一个菌落可能是多个细胞一起形成,所以在科研中一般用菌落形成单位
(colony
forming
units,
CFU)来表示,而不是直接表示为细胞数。
根据每皿上形成的CFU数乘上稀释度可推算出菌样的含菌数。此方法最为常用,
但操作较繁琐且要求操作者技术熟练--缺点。
国外出现了微型、快速、商品化的用于菌落计数的小型纸片或密封琼脂板。原
理是利用加在培养基中的活菌指示剂TTC(2,3,5-氯化三苯基四氮唑),它可使
菌落在很微小时就染成易于辨认的玫瑰色。
(2)膜过滤培养菌落计数法
当样品中菌数很低时,可以将一定体积的湖水、海水或饮用水等样品通过膜过滤器,然后将将膜转到相应的培养基上进行培养,对形成的菌落进行统计。
(3)厌氧菌的菌落计数法
一般可用亨盖特滚管培养法进行。此法设备较复杂,技术难度很高。
简便快速的半固体深层琼脂法,可测定双歧杆菌(bifidobacteria)和乳酸菌
(lactic
acid
bacteria)等厌氧菌活菌数。
原理:
试管中的深层半固体琼脂有良好的厌氧性能,并利用其凝固前
可作稀释用,凝固后又可代替琼脂平板作菌落计数用的良好性能。
兼有省工、省料、省设备和菌落易辩认等优点!
B. 什么是微生物的生长速度和增代时间
微生物是同步生长的,既某一群体中所有个体细胞尽可能都处于分裂步调一致的生长状态。它的生长是有特定的生长曲线,在定量描述液体培养基微生物的生长曲线有4个阶段:
1、延滞期:指细胞数目没有增加。影响延滞期的因素:种龄、接种量、培养基成分、培养条件等。
2、对数期:细胞数目以几何级数增长的时期.
3、动态平衡期,即死亡的菌数与增长的菌数保持一致,呈动态平衡.
4、衰亡期:微生物个体死亡速度超过新生速度。
增代时间既菌体分裂的时间,因为微生物的繁殖方式是分裂繁殖,一般增代时间越短,说明菌体活性越好
C. 微生物生长分哪些时期,每个时期有何特点
典型的微生物生长曲线包括四个时期:迟缓期、对数期、稳定期、衰亡期。
1、迟缓期
该期菌体增大,代谢活跃,为细菌的分裂繁殖合成并积累充足的酶、辅酶和中间代谢产物;迟缓期长短不一,按菌种本身的遗传特性、菌龄和菌量,以及营养物等不同而异,一般为1~ 4小时。
2、对数期
生长速率常数R最大,细胞每分裂一次所需要的时间——代时(generation time,G,又称增代时间)最短;细胞进行平衡生长(balanced growth),菌体各部分的成分均匀;酶系活跃,代谢旺盛;细胞群体的形态与生理特性最一致;微生物细胞抗不良环境的能力最强。
3、稳定期
生长速率常数等于0,即新增细胞数和死亡细胞数几乎相等,二者处于动态平衡,活菌数保持相对稳定并达到最高水平,菌体产量也达到最高点;细菌分裂速度降低,代时逐渐延长,细胞代谢活力逐渐减退,开始出现形态和生理特征的改变;
细胞内开始积累贮藏物质,如肝糖粒、异染颗粒、脂肪粒等;多数芽孢细菌在此期形成芽孢;许多重要的发酵产物主要在此期间大量积累并达到最高峰。
4、衰亡期
细胞形态发生变化(表现为多形态,如膨大或不规则的退化形态),甚至畸形;细胞代谢活力明显降低,有的微生物因蛋白水解酶活力的增强导致菌体死亡并伴随着菌体自溶,释放代谢产物;有些革兰氏阳性菌染色反应反应变为阳性;
有的微生物在此期间进一步合成或释放对人体有益的抗生素等次级代谢产物,而芽孢杆菌在此期间释放芽孢。
(3)如何算微生物代时扩展阅读
1、迟缓期
在生产实践中,通常采取的措施有增加接种量、在种子培养中加入某些营养成分、采用最适种龄(即处于对数期的菌种)的健壮菌种接种以及选用繁殖快的菌种等措施,以缩短迟缓期,加速菌种生长周期,提高利用率。
2、对数期
由于对数期的群体细胞具有生理特性比较一致、细胞各成分平衡增长和生长速率恒定等优点,故是代谢、生理研究的良好材料,也是作为菌种的最佳材料。另外,亦可用于微生物培养,发酵工程等生物工程。
3、稳定期
稳定期产生的原因:营养素特别是生长限制因子的耗尽,营养物质的比例失调,例如C/N比值不合适等;酸、醇、毒素或过氧化氢等有害代谢产物的积累;pH、氧化还原势等环境条件越来越不适应等。
4、衰亡期
产生的原因:主要是外界环境对细菌细胞继续生长越来越不利,从而引起细胞内的分解代谢明显超过合成代谢,继而引起大量菌体死亡。
D. 什么叫生长速率常数(R)什么叫代时(G)它们如何计算
你好!
生长速率常数(R):
是指微生物每小时分裂次数,R=n/(t2-t1)
代是(G):
是指细胞每分裂一次所需的时间,又称世代时间或增代时间,
G=1/R
(
n
是繁殖代数,t
是培养时间)
如果对你有帮助,望采纳。
E. 所有微生物的世代时间是多少
不同的微生物是不一样的,大肠杆菌好像是8小时一代。
F. 可用生长曲线中的任何时期计算代时吗
不可以。
细菌倍增时间又称代时。指的是当微生物处于生长曲线的指数期(对数期)时,细胞分裂一次所需平均时间,也等于群体中的个体数或其生物量增加一倍所需的平均时间。包括遗传物质的复制所需时间。
G. 代时的名词解释是什么
又称世代时间。当微生物处于生长曲线的指数期(对数期)时,细胞分裂一次所需平均时间,也等于群体中的个体数或其生物量增加一倍所需的平均时间。
计算公式
G=1/R=(t2-t1)/3.322(lgx2-lgx1)
(7)如何算微生物代时扩展阅读
生理作用
主要是引发细胞分裂,诱导芽的形成和促进芽的生长。对组织培养的烟草髓或茎切段,细胞分裂素可使已不具备分裂能力的髓细胞重新分裂。这种现象曾被用于细胞分裂素的生物测定。茎切段的分化常受细胞分裂素及生长素比例的调节。
当细胞分裂素对生长素的浓度比值高时,可诱导芽的形成;反之则有促进生根的趋势。如对抑制的腋芽局部施用细胞分裂素或在侧芽上涂抹一定浓度的生长素,可以解除顶端对侧芽的抑制(即顶端优势)。天然的簇生植物(莲座状植物)或由于病害发生“丛枝病”的植物里,常含有较多的细胞分裂素。
细胞分裂素还有防止离体叶片衰老、保绿的作用,这主要是由于细胞分裂素能够延缓叶绿素和蛋白质的降解速度,稳定多聚核糖体(蛋白质高速合成的场所),抑制DNA酶、RNA酶及蛋白酶的活性,保持膜的完整性等。在叶片上局部施用细胞分裂素,能吸聚其他部分的物质向施用处运转和积累。
细胞分裂素的作用方式还不完全清楚。已知在tRNA中与反密码子相邻的地方有细胞分裂素,在蛋白质合成过程中,它们参与到tRNA与核糖体mRNA复合体的连接物上。但这可能不是外源细胞分裂素的作用方式。因为在tRNA中,细胞分裂素的合成是由原来在tRNA中的嘌呤的改变产生的。
而外源细胞分裂素并不参入tRNA中,但可促进硝酸还原酶、蛋白质和核酸的合成。除了天然的促进细胞分裂的物质外,还用化学方法人工合成了一些类似激动素的物质。通常也统称细胞分裂素。其中活性较强,也最常用的是6-苄基嘌呤。
参考资料来源:网络-细胞分裂
参考资料来源:网络-代时
H. 常温微生物繁殖的代数时间
A、酶的活性受温度控制,不受时间控制,A错误;
B、在一定温度范围内,随着温度的升高,大肠杆菌繁殖的速率逐渐加快,超过一定温度,繁殖速度又减慢,B错误;
C、由表可知,10℃温度下繁殖一代所用的时间最长,细菌繁殖最慢,C错误;
D、由表可知,低温可抑制细菌繁殖,D正确.
故选:D.
I. 什么是微生物的世代时间
植物中世代交替以蕨类植物比较明显,孢子体和配子体都能独立生活.二倍体的孢子体进行无性生殖时,孢子母细胞经过减数分裂产生单倍体(n)的孢子,孢子萌发长成小型的能独立生活的配子体,叫做原叶体.原叶体在进行有性生殖时,分化出雌雄性器官,即颈卵器与精子器,并分别产生卵和精子.这两种配子配合形成了二倍体(2n)的合子.合子又长成下一代新的孢子体.世代交替在各类植物中,因孢子体与配子体的形态、大小、显着性、生活期限以及能否独立生活等方面的不同,差别很大,但基本过程与蕨类植物是一致的.植物界的世代交替可以分为两大类型(依据生活史中孢子体和配子体的形态、大小、构造的复杂性,显着性和生活的独立性)