导航:首页 > 生物信息 > 微生物的信息有哪些

微生物的信息有哪些

发布时间:2022-07-23 08:55:52

微生物具有哪些重要特征

微生物的培养特征是指微生物培养在培养基上所表现出的群体形态和生长情况。一般可用斜面、液体和半固体培养基来检验不同微生物的培养特征。它们培养在斜面培养基上,可以呈丝线状、刺毛状、串珠状、疏展状、树枝状或假根状(图Ⅶ-6)。生长在液体培养基内,可以呈混浊、絮状、粘液状、形成菌膜、上层清晰而底部显沉淀状。穿刺培养在半固体培养基中,可以沿接种线向四周蔓延;或仅沿线生长;也可上层生长得好,甚至连成一片,底部很少生长;或底部长得好,上层甚至不生长。利用微生物的培养特征,可以作为它们的种类鉴定和识别纯培养是否污染的参考。

Ⅱ 微生物有哪些生命现象的特性和共性

微生物有哪些生命现象的特性和共性
生物具有一下特征:1、生物的生活需要营养.2、生物能够进行呼吸.3、生物能排出体内产生的废物.4、生物能够对外界刺激作出反应.5、生物能够生长和繁殖.6、生物能遗传变异.7、除病毒外,生物都是由细胞构成的.
微生物五大共性分别是:1:体积小,面积大;2:吸收多,转化快;3:生长旺,繁殖快;4:适应强,易变异;5:分布广,种类多。其中最基本的特性是体积小,面积大。微生物是一个突出的小体积大面积系统,从而赋予它们具有不同于一切大生物的五大共性,因为一个小体积大面积系统,必然有一个巨大的营养物质吸收面、代谢废物的排泄面和环境信息的交换面,故而产生了其余四个共性。巨大的营养物质吸收面和代谢废物的排泄面使微生物具有了吸收多,转化快,生长旺,繁殖快的特点。环境信息的交换面使微生物具有适应强,易变异的特点。而正是因为微生物具有适应强,易变异的特点,才能使其分布广,种类多。

Ⅲ 微生物系统排查所需收集的信息有哪些

微生物系统排查所需收集的信息有哪些?简述致病菌引起全身感染后,常见的几种类型?

答:①毒血症②菌血症③败血症④内毒素血症⑤脓毒血症

试述构成细菌侵袭力的物质基础。

答:①荚膜②黏附素③侵袭性物质

简述病原菌感染机体后,机体如何发挥抗菌免疫功能?

答:首先遇到机体的非特异性免疫包括皮肤与粘膜构成的屏障结构,血脑屏障,胎盘屏障及吞噬细胞对细菌的非特异性的吞噬和体液中杀菌抑菌物质对细菌的攻击。7-10天后,机体产生特异的细胞免疫和体液免疫与非特异性免疫一起杀灭病原菌

简述细菌耐药性产生的主要机制。

答:①钝化酶的产生②药物作用靶位发生改变③胞壁通透性的改变和主动外排机制④抗菌药物的不合理使用形成了抗菌药物的选择压力,在这种压力的作用下,原来只占很少比例的耐药菌株被保留下来,并不断扩大。

举例说明细菌命名的原则。

答:细菌的命名一般采用国际上通用的拉丁文双命名法。一个细菌种的学名由两个拉丁字组成,属名在前,用名词,首字母大写;种名在后,用形容词,首字母小写;两者均用斜体字。中文译名种名在前,属名在后。如Mycobaterium tuberculosis (结核分枝杆菌)。属名亦可不将全文写出,只用第一个大写字母代表,如M. tuberculosis

如何确定从标本中分离的细菌为葡萄球菌?并确定其有无致病性。

答:①直接镜检,经革兰染色后镜检发现革兰染色阳性呈葡萄状排列的球菌,可初步报告疑为葡萄球菌,需进一步分离培养鉴定。②分离培养:血培养需经增菌后转种血平板进一步鉴定,若无细菌生长,需连续观察7天,并以血平板确定有无细菌的生长。脓液、尿道分泌物、脑脊液沉淀物可直接接种血平板,37℃过夜,可形成直径约2-3mm、产生不同色素的菌落。金葡菌菌落周围有透明溶血环。③试验鉴定:血浆凝固酶试验,甘露醇发酵试验,耐热核酸酶试验,肠毒素测定,SPA检测。致病性葡萄球菌菌落周围有透明溶血环,血浆凝固酶试验阳性,甘露醇发酵试验阳性,耐热核酸酶试验阳性,SPA检测有A蛋白的存在。

什么是不耐热肠毒素(LT)?它的物理性质、基本结构、致病机理及与霍乱毒素(CT)的关系如何。

答:LT是肠产毒型大肠杆菌产生的致病物质,因对热不稳定,故称为不耐热肠毒素。其65℃30min可被破坏。LT分为LT-Ⅰ和LT-Ⅱ,LT-Ⅱ与人类疾病无关,LT-Ⅰ是引起人来胃肠炎的致病物质。其结构包括1个A亚单位和5个B亚单位,其中A亚单位是毒素的活性部分。B亚单位与肠粘膜上皮细胞表面的GM1神经节苷脂结合后,使A亚单位穿越细胞膜与腺苷环化酶作用,令胞内ATP转变为cAMP。胞质内cAMP水平增高后,导致肠粘膜细胞内的水、氯和碳酸氢钾等过度分泌到肠腔,同时钠的吸收减少,导致可持续几天的腹泻。LT-Ⅰ与霍乱肠毒素两者间的氨基酸的同源性达75%,他们的抗原高度交叉。

什么是O157:H7大肠杆菌?其致病物质和所致疾病是什么?

答:O157:H7为肠出血性大肠杆菌的一个血清型,为出血性结肠炎和溶血性尿毒综合征的病原体。其致病物质是其表达的志贺毒素。

如何根据O抗体和H抗体的变化特点判断肥达试验的结果?

答:若O、H凝集效价均超过正常值,则肠热症的可能性大,若两者均低,肠热症的可能性小,若O不高H高,可能预防接种或非特异性回忆反应,若O高H不高,则可能感染早期或与伤寒沙门菌O抗原有交叉反应的其他沙门菌感染。

对肠热症患者进行微生物学检查时标本采集应注意什么?

答:根据不同的疾病、不同的病程取不同的标本。肠热症第1、2周取外周血,第2、3周取粪便、尿液,全程可取骨髓分离培养细菌。

简述对疑似痢疾患者进行病原学诊断的常规及快速方法。

答:常规鉴定:①初步鉴定②最后鉴别③鉴别试验④血清学鉴定⑤非典型菌株可用传代法及毒力试验进行鉴定。

快速诊断:①直接凝集②免疫荧光菌球法③协同凝集试验④乳胶凝集试验⑤分子生物学方法

Ⅳ 十种常见的微生物有哪些

在我国教科书中,将微生物划分为以下8大类:细菌、病毒、真菌、放线菌、立克次氏体、支原体、衣原体、螺旋体。

1、细菌是指生物的主要类群之一,属于细菌域。也是所有生物中数量最多的一类,据估计,其总数约有5×10^30个。细菌的形状相当多样,主要有球状、杆状,以及螺旋状。

细菌也对人类活动有很大的影响。一方面,细菌是许多疾病的病原体,可以通过各种方式,如接触、消化道、呼吸道、昆虫叮咬等在正常人体间传播疾病,具有较强的传染性,对社会危害极大。

另一方面,人类也时常利用细菌,例如奶酪及酸奶和酒酿的制作、部分抗生素的制造、废水的处理等,都与细菌有关。在生物科技领域中,细菌也有着广泛的运用。

螺旋体在自然界中分布广泛,常见于水、土壤及腐败的有机物上,亦有的存在人体口腔或动物体内。

对人致病的主要有3个属:

1、钩端螺旋体属:对人致病的主要是钩端螺旋体;

2、密螺旋体属:对人致病的主要有梅毒螺旋体等;

3、疏螺旋体属:对人致病的主要有回归热螺旋体等。其中钩端螺旋体和梅毒螺旋体在临床上的影响较大。

Ⅳ 微生物的遗传基因是什么微生物的遗传信息是如何传递的

微生物是一类肉眼看不到的生物,如细菌、真菌、病毒、单细胞的原生动物、单细胞的藻类等,绝大多数的生物的遗传物质是DNA,它们的遗传基因就是DNA上有遗传效应的片段,而有些病毒的遗传物质是RNA,那基因就是RNA中有遗传效应的片段。从“中心法则”的内容就可以知道遗传信息的传递了。

Ⅵ 微生物有哪些特征是属于植物还是动物啊

微生物的5大共性:
1体积小,面积大
2吸收多,转化快
3生长旺,繁殖快
4适应强,易变异
5分布广,种类多 微生物没有植物/动物之分。微生物是指那些个体体积直径一般小于1mm的生物群体,它们结构简单,大多是单细胞,还有些甚至连细胞结构也没有。人们通常会借助显微镜或者电子显微镜才能看清它们的形态和结构。需要说明的是微生物是一个比较笼统的概念,界线有时会非常模糊。如单细胞藻类和一些原生动物也应算是微生物,但通常它们并不放在微生物中进行研究。
按我国学者提出的分类法将生物分成六界:病毒界、原核生物界、原生生物界、真菌界、植物界和动物界。不难看出微生物在六界中占了四界,因此微生物在自然界中的重要地位是显而易见的,其研究的对象也是十分广泛而丰富的。 它的生命形式详细分为以下内容:微生物是一切肉眼看不见或看不清楚其个体的所有生物的总体,是形体微小,结
构简单,分类地位低等的所有生物的总称。
微生物具有以下五个共性:体积小,表面积大;吸收多,转化快;生长旺,繁殖
快;适应性强,易变异;分布广,种类多——这五大共性决定了微生物生命形式
的多样性,主要表现在以下几方面:
一、 微生物生活环境和种类的多样性
地球上,除了火山中心区域外,从土壤圈、水圈、大气圈直至岩石圈,到处都有
微生物的踪迹。在动植物体内、土壤、河流、空气、平原、高山、深海、冰川、
海底淤泥、盐湖、沙漠、油井、地层下以及酸性矿水中,都有微生物生活着。甚
至在极其恶劣的环境中也可找到微生物,如万米高空中,万米海底,数百米岩石
中均有微生物生存。
微生物能如此强的适应环境,原因主要有如下几点:首先是微生物个体小,比面
积大,与外界环境接触面积大,因而有利于微生物个体吸收营养、排泄废物,导
致代谢作用迅速,活动力强。微生物细胞与环境直接接触,所以易受环境影响,
同时通过他们的活动又能改变他们所处的环境。其次,微生物因生殖率大和世代
时间短,必然能在较短时间内建成大的群体,而群体大和世代短,在一定时间内
将产生较多的突变体,有利于适应变化剧烈的新环境,抵抗不适合的以及极端的
条件,并能在不同环境中生长繁殖。
目前发现的微生物物种共有10万种,随着分离、培养方法的改进和研究工作的深
入,微生物的新物种、新属、新科甚至新目、新纲屡见不鲜。这不但在生理类型
独特、进化地位较低的种类中常见,就是最早发现的较大的微生物——真菌,至
今还以每年约1500个新种不断地递增着。可以相信,随着人类的认识和研究工作
的深入,总有一天微生物的总数会超过动植物的总和。
二、 微生物形态、结构的多样性
微生物的形态、结构多种多样。从有无细胞及细胞组成可将微生物分为三大类:
原核生物、真核生物和病毒。
(一)、原核生物
原核生物包括细菌、防线菌、衣原体、支原体、立克次氏体和蓝细菌。这里以细
菌为代表说明说明原核生物形态结构的多样性:
1、细胞壁
原核生物经过革兰氏染色,可分为革兰氏阳性菌和革兰氏阴性菌。放线菌属于革
兰氏阳性菌,衣原体、支原体、立克次氏体属于革兰氏阴性菌,细菌一部分属于
革兰氏阳性菌,一部分属于革兰氏阴性菌。革兰氏染色反映的是细胞壁结构的差
异。
革兰氏阳性菌(以金黄色葡萄球菌为例)细胞壁主要由肽聚糖和磷壁酸组成,其
中肽聚糖是细菌特有的成分,而磷壁酸则是革兰氏阳性菌所特有。
革兰氏阳性菌的细胞壁中的肽聚糖分子是由小分子单体聚合而成,小分子单体有
三个组成部分:a、双糖单位:N—乙酰葡萄糖胺与N—乙酰胞壁酸通过β—1,4糖
苷键相连而成。b、N—乙酰胞壁酸在乳酸位置上连接的四个氨基酸(L—丙氨酸→
D—谷氨酸→L—赖氨酸→D—丙氨酸)形成的短肽尾。 c、肽链间经甘氨酸五肽作
“肽桥”交联,形成网格状结构。(甘氨酸五肽一端的—NH2与一肽聚糖分子肽尾
的D—丙氨酸上的—COOH形成肽键,另一端的—COOH与下一肽聚糖分子肽尾的L—
赖氨酸上的—NH2形成肽键,从而形成交联)
革兰氏阳性菌的细胞壁中,有40个肽聚糖分子,细胞壁可厚达80mm。
革兰氏阳性菌细胞壁中的磷壁酸主要是作为基质填充于肽聚糖网格内。主要包括
两类:壁磷壁酸(与肽聚糖分子共价结合)、膜磷壁酸(与细胞膜上的磷脂共价
结合)。
革兰氏阴性菌(以大肠杆菌为例)的细胞壁主要是由肽聚糖和脂多糖(LPS)组成
。其中脂多糖为革兰氏阴性菌特有。
革兰氏阴性菌细胞壁中的肽聚糖含量仅占10%左右,由1—2层网状分子组成,厚度
仅为2—3nm。它的结构与革兰氏阳性菌中的肽聚糖基本一致,差别仅是:肽尾的
第三个氨基酸为内消二氨基酸庚二酸(m—DAP);没有特殊肽桥,而是由一肽聚
糖分子肽尾的D—丙氨酸直接与另一肽聚糖分子的m—DAP直接相连。
革兰氏阴性菌细胞壁中的脂多糖主要集中于细胞壁外层,较厚。LPS主要由“O”
特异侧链(“O”抗原侧链),核心多糖及类脂A组成。“O”特异侧链中4个单糖
构成了抗原决定簇,决定菌体细胞抗原性。类脂A是决定LPS内毒素分子的毒性部
分,决定致病菌的致病性。
革兰氏阴性菌细胞壁外层中还有许多蛋白质,主要有:基质蛋白、外壁蛋白、脂
蛋白等。
2、细胞膜
细胞壁的内侧是细胞膜,它是磷脂外侧紧贴细菌细胞壁,而内侧包围细胞质的一
层柔软而富有弹性的半透性薄膜。它是划分细胞内外环境的界限膜,使细菌细胞
有个稳定的内环境。在细菌细胞与环境进行物质交换、能量交换、信息传递过程
中起决定性作用。
细菌细胞膜的结构有如下几个特点:磷脂双分子层构成膜的基本骨架;磷脂分子
多种运动方式使膜呈现流动性;膜蛋白无规则的以不同深度镶嵌在膜磷脂分子中
;膜蛋白,磷脂的种类和数量随细菌生理状态而变化。细菌细胞膜有如下功能:
抑制细胞内外物质交换和运输;壁多糖和荚膜等大分子物质合成场所;氧化磷酸
化或光合磷酸化产能基地;鞭毛着生点并提供运动所需能量。
有些细菌细胞膜内褶特异形成一种管状、层状或囊状的结构,一般位于细胞分裂
部位,取名中体。中体可促进细胞间隔形成,有利于细胞分裂。它是细菌DNA复制
的部位。
3、核质体和质粒
核质体是细菌等原核生物特有的无核膜、核仁,无固定形态的原始核,是原核生
物与真核生物的主要区别。核质体是DNA性质的,是细菌所有遗传信息的载体。细
菌DNA带很多负电荷,被镁离子、有机碱中和,而真核生物染色体DNA可备组蛋白
、鱼精蛋白等碱性蛋白中和,这是原核生物与真核生物DNA的又一区别。
细菌还具有核外遗传物质——质粒。质粒具有如下生物学特性:它是小的环状DN
A,碱基对约是核质体的2-3%;可独立复制而不受DNA复制的影响,一个细菌细胞
内可有几种不同质粒,每种质粒可有一个或多个拷贝,稳定遗传;质粒可独立存
在,也可附加在细菌染色体上,不同种质粒,可实现基因重组;有些质粒可在细
胞间转移;质粒往往携带某些特殊遗传信息表现出特殊形状;失去质粒不影响细
菌细胞的生命活动。
4、细胞质及其内含物
细胞质是指有膜包围着的除核质体以外的透明,胶状,颗粒状物质,总称细胞质
。其内含物主要包括:
核糖体,是蛋白质合成的场所,沉降系数为80s。
载色体,质膜内线形成囊状载色体,属内膜系统。是光合细菌光合作用的场所。

羧化体,在化能自养细菌中常发现由膜内陷包裹形成的羧化体。是将CO2还原成糖
的场所。
气泡,水生,无鞭毛的光合细菌细胞内所含众多充满气体的小泡囊,由蛋白质膜
包围而成。
5、 菌细胞的特殊结构
荚膜,某些细菌细胞壁外包裹的一层胶状结构,统称荚膜。荚膜的化学组成多是
胞外多糖类,少量蛋白质,常呈粘稠状。
鞭毛,某些细菌在体表长出的波曲的长丝状物,一般球菌无鞭毛,杆菌多有一至
数十根鞭毛,孤菌,螺旋菌一般皆有鞭毛,鞭毛长度为菌细胞数倍。
菌毛,革兰氏阴性菌体表的一种纤细、中空、外直、数量多的蛋白质附属物,功
能是使菌体细胞粘连在宿主各器官表面。
性菌毛,F因子编码性菌毛,比菌毛稍长,细菌结合时靠性菌毛形成中空管或接合
桥而传递DNA片段。多见于革兰氏阴性菌。
芽孢,某些细菌在生长发育后期,在营养体细胞内形成一个圆形或椭圆型抗逆休
眠体,叫芽孢或内生孢子。
6、 形态
细菌形态基本上分为球状、杆状、和螺旋状三大类。球菌按其相互连接方式又可
分为单球菌、双球菌、四联球菌、八叠球菌、链球菌和葡萄球菌等。杆菌形态较
复杂,常有短杆菌、棒杆菌、梭状杆菌、分枝菌等。按其排列方式则有链状、栅
状、“八”字状以及有鞘衣的丝状等。螺旋菌一般可分为弧菌(螺旋不满一环)
和螺菌(满2-6环的小型、坚硬的螺旋状细菌)。
(二)真核生物
凡是细胞核具有核膜、能进行有丝分裂、细胞质中存在线粒体或同时存在叶绿体
等细胞器的微小生物,就称真核微生物。这里以真菌中的酵母菌和霉菌为例说明
真核生物形态结构的多样性:
1、酵母菌
酵母菌在自然界分布很广,主要生长在偏酸性的含糖环境中,例如,在水果、蔬
菜、蜜饯的表面和在果园土壤中最为常见。
酵母菌的形态通常有球状、卵圆状、柱状或香肠状等多种,当他们进行一系列的
芽殖后,如果长大的子细胞与母细胞并不立即分离,其间仅以极小的面积相连,
这种节状的细胞串就称假菌丝;反之称真菌丝。
酵母菌细胞结构如下:
细胞壁,主要分三层:外层为甘露聚糖,内层为葡聚糖,中间夹有一层蛋白质分
子。
细胞膜,也是一种三层结构,主要成分为:蛋白质、类脂、和少量糖类。细胞膜
是由上下两层磷脂分子以及镶嵌在其间的缁醇和蛋白质分子所组成的。其功能主
要有:调节细胞外溶质运送到细胞内的渗透屏障;细胞壁等大分子成分的生物合
成和装配基地;部分酶的合成和作用场所。
细胞核,酵母菌具有用多孔核膜包裹起来的定型细胞核——真核。核膜是一种双
层单位膜,其上存在着大量直径为40—70nm的核孔,用以增大核内外的物质交换

酵母菌其他细胞结构包括液泡、质粒(“2μm”质粒)、核糖体(沉降系数为80
s)、线粒体(双层膜构成的产能细胞器,能量代谢的场所)……
2、霉菌
霉菌菌体由分枝或不分枝的菌丝构成,许多菌丝交织在一起,称为菌丝体。菌丝
体白色,无隔膜,单细胞,多核,气生性强,交织成疏松的雾状菌落。
霉菌菌丝的细胞结构和化学组成如下:
细胞壁,少数低等霉菌细胞壁由纤维素组成,大部分高等霉菌细胞壁由几丁质组
成。
内质网,由膜形成的内膜系统,存在于原生质内,是细胞中各物质运送的一种循
环系统。
膜边体,某些真菌菌丝细胞中的一种特殊的微网结构,形状和位置类似细菌中体
,内含水解酶或与细胞壁合成有关。
菌丝隔膜与隔膜孔,有隔膜菌丝虽是多细胞,但隔膜孔使临近细胞物质相通,使
细胞功能基本一致。
菌丝体,可分为营养菌丝体(分布于营养基质内,吸取营养的菌丝体)和气生菌
丝体。营养菌丝体可特化为假根、吸器、附着胞、菌核、菌环和菌网;气生菌丝
体可特化为各种孢子的子实体。
(三)、非细胞生物
非细胞生物是指一类无细胞结构,无酶体系,无代谢机制的生物,它包括病毒(
即“真病毒”)和亚病毒两大类。亚病毒又分为类病毒、拟病毒和月元 病毒。
下面详细介绍它们的形态、结构及化学组成。
1、 病毒
病毒有杆状、球状、蝌蚪状、少数线状。由蛋白质构成衣壳(蛋白质亚基构成衣
壳粒),由一种核酸(DNA或RNA)、病毒基因组构成核心。包括螺旋病毒、腺病
毒、复合对成病毒、有包膜(囊膜)病毒。在某些感染病毒的宿主细胞内,大量
的病毒粒子聚在一起并使宿主细胞发生病变,出现光学显微镜下可见的大小,形
态和数量不同的小体称包涵体。
2、 噬菌体
噬菌体是细菌的病毒,它的繁殖可分为五个阶段:吸附(噬菌体特异性吸附在细
菌表面受体)、侵入(噬菌体遗传物质进入细菌细胞)、增殖(核酸复制与蛋白
质合成)、成熟(核酸与蛋白质衣壳组装成完整的噬菌体)、释放。噬菌体可分
为烈性噬菌体(侵入宿主细胞后,立即进入复制裂解期,导致宿主细胞裂解释放
子代噬菌体)和温和噬菌体(侵染宿主细胞后,不立即进入裂解循环,其遗传 物
质DNA整合进细胞染色体基因组,并稳定遗传;但在诱导条件下,其遗传物质DNA
离开宿主基因组,立即进入裂解周期,宿主细胞裂解)。
3、类病毒
类病毒是当今所知道的最小的,只含RNA一种成分,专性细胞内寄生的分子生物。
类似DNA双股螺旋的Viroid RNA二级结构进入核内,以此为模板复制,利用宿主
细胞的RNA聚合酶。类病毒只有亲染性RNA,无衣壳蛋白质,为单链共价闭环形的
核酸分子。
4、拟病毒
拟病毒侵染的是植物病毒,拟病毒在植物病毒体内,可影响其复制数量,在宿主
上的症状和反应程度。拟病毒是依赖于病毒基因组才能复制的包于病毒衣壳内的
小分子RNA。
5、 月元 病毒
它是一类侵染动物并在宿主细胞体内复制的无免疫性的小分子疏水蛋白质,简称
蛋白质侵染因子。
三、 微生物生殖方式的多样性
细菌、立克次氏体、支原体、衣原体一般以二分裂法繁殖; 放线菌以横割分裂形
成的无性孢子进行繁殖,横割分裂可通过两种途径实现:1、细胞膜内陷,并由外
向内逐渐收缩,最后形成一个完整的横膈膜。通过这种方式可把孢子丝分割成许
多分生孢子。2、细胞壁和细胞膜同时内陷,并逐步向内缢缩,最终将孢子缢裂成
一串分生孢子。
酵母菌的无性繁殖方式有芽殖、裂殖、掷孢子、后垣孢子,其有性繁殖则形成子
囊,内形成四个子囊孢子(单倍体);霉菌以孢子进行繁殖,其无性孢子有游动
孢子(单倍体、内生、有鞭毛、如水生真菌)、孢囊孢子(单倍体、内生、水生
型有鞭毛、如根霉)、分生孢子(单倍体、外生、如青曲霉)节孢子(单倍体,
外生、菌丝体断裂而成、如白地霉),有性孢子有卵孢子(双倍体、内生、一到
几个、厚壁、休眠)、接合孢子(双倍体、内生、一个、厚壁休眠如根霉、毛霉
)、子囊孢子(单倍体、内生、一般八个、如子囊菌)、 担孢子(单倍体、外生
、四个、长在担子上、如担子菌)。

Ⅶ 微生物常识

微生物的定义
形体微小,结构简单,通常要用光学显微镜和电子显微镜才能看清楚的生物,统称为微生物。 (但有些微生物是可以看见的,像属于真菌的蘑菇、灵芝等。)
1 特点: 个体微小,一般<0.1mm。
构造简单,有单细胞的,简单多细胞的,非细胞的。进化地位低。
2 分类:
原核类: 三菌,三体。
真核类: 真菌,原生动物,显微藻类。
非细胞类: 病毒,亚病毒 ( 类病毒,拟病毒,朊病毒)。
3 五大共性:
体积小,面积大;
吸收多,转化快微生物;
生长旺,繁殖快;
适应强,易变异;
分布广,种类多。
[编辑本段]微生物的类群
种类
原核:细菌、放线菌、螺旋体、支原体、立克次氏体、衣原体。
真核:真菌、藻类、原生动物。
非细胞类:病毒和亚病毒。
一般地,在中国大陆地区的教科书中,均将微生物划分为以下8大类:
细菌、病毒、真菌、放线菌、立克次体、支原体、衣原体、螺旋体。
1 细菌:
(1)定义:一类细胞细短,结构简单,胞壁坚韧,多以二分裂方式繁殖和水生性强的原核生物
(2)分布:温暖,潮湿和富含有机质的地方
(3)结构:主要是单细胞的原核生物,有球形,杆形,螺旋形
基本结构:细胞膜 细胞壁 细胞质 核质
特殊结构:荚膜、鞭毛、菌毛、芽胞
(4)繁殖: 主要以二分裂方式进行繁殖的
(5)菌落: 单个细菌用肉眼是看不见的,当单个或少数细菌在固体培养基啊行大量繁殖时,便会形成一个肉眼可见的,具有一定形态结构的子细胞群落.
菌落是菌种鉴定的重要依据.不同种类的细菌菌落的大小,形状光泽度颜色硬度透明度都不同.
2 放线菌
(1)定义:一类主要成菌丝状生长和以孢子繁殖的陆生性较强的原核生物
(2)分布:含水量较低,有机物较丰富的,呈微碱性的土壤中
(3)形态构造:主要由菌丝组成,包括基内菌丝和气生菌丝(部分气生菌丝可以成熟分化为孢子丝,产生孢子)
(4)繁殖:通过形成无性孢子的形式进行无性繁殖
无性繁殖 有性繁殖
(5)菌落:在固体培养基上:干燥,不透明,表面呈致密的丝绒状,彩色干粉
3 病毒
(1) 定义:一类由核酸和蛋白质等少数几种成分组成的“非细胞生物”,但是它的生存必须依赖于活细胞.
(2)结构:蛋白质衣壳以及核酸(核酸为DNA或RNA)
(3)大小:一般直径在100nm左右,最大的病毒直径为200nm的牛痘病毒,最小的病毒直径为28nm的脊髓灰质炎病毒
(4)增殖:病毒的生命活动中一个显着的特点为寄生性。病毒只能寄生在某种特定的活细胞内才能生活。并利用会宿主细胞内的环境及原料快速复制增值。在非寄生状态时呈结晶状,不能进行独立的代谢活动。以 噬菌体为例: 吸附→DNA注入→复制、合成→组装→释放
[编辑本段]微生物的特点
一、微生物的化学组成
C,H,O,N,P,S以及其他元素
二、微生物的营养物质
1 水和无机盐
2 碳源:凡能为微生物提供生长繁殖所需碳元素的营养物质
来源
作用
3氮源:凡能为微生物提供所必需氮元素的营养物质
来源
作用:主要用于合成蛋白质,核酸以及含氮的代谢产物
4 能源:能为微生物生命活动提供最初能源来源的营养物质或辐射能
根据碳源和能源分类:
5生长因子:微生物生长不可缺少的微量有机物
能引起人和动物致病的微生物叫病源微生物,有八大类:
1.真菌:引起皮肤病。深部组织上感染。
2放线菌:皮肤,伤口感染。
3螺旋体:皮肤病,血液感染 如梅毒,钩端螺旋体病。
4细菌:皮肤病化脓,上呼吸道感染 ,泌尿道感染,食物中毒,败血压症,急性传染病等。
5立克次氏体:斑疹伤寒等。
6衣原体:沙眼,泌尿生殖道感染。
7病毒:肝炎,乙型脑炎,麻疹,艾滋病等。
8支原体:肺炎,尿路感染。
生物界的微生物达几万种,大多数对人类有益,只有一少部份能致病。有些微生物通常不致病,在特定环境下能引起感染称条件致病菌。 能引起食品变质,腐败,正因为它们分解自然界的物体,才能完成大自然的物质循环。

微生物的作用

微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。
微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物非常小,必须通过显微镜放大约1000 倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。想象一下一滴牛奶,每毫升腐败的牛奶中约有5千万个细菌,或者讲每夸脱牛奶中细菌总数约为50亿。也就是一滴牛奶中可有含有50 亿个细菌。
微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。
微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。
随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。
以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大!
从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。
工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。
据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。
经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及中国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。
在全面推进经济发展的同时,滥用资源、破坏环境的现象也日益严重。面对全球环境的一再恶化,提倡环保成为全世界人民的共同呼声。而生物除污在环境污染治理中潜力巨大,微生物参与治理则是生物除污的主流。微生物可降解塑料、甲苯等有机物;还能处理工业废水中的磷酸盐、含硫废气以及土壤的改良等。微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。
在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。
有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。
[编辑本段]微生物在整个生命世界中的地位
当人类在发现和研究微生物之前,把一切生物分成截然不同的两大界-动物界和植物界。随着人们对微生物认识的逐步深化,从两界系统经历过三界系统、四界系统、五界系统甚至六界系统,直到20世纪70年代后期,美国人Woese等发现了地球上的第三生命形式-古菌,才导致了生命三域学说的诞生。该学说认为生命是由古菌域(Archaea)、细菌域(Bacteria)和真核生物域(Eucarya)所构成。在图示“生物的系统进化树”中,左侧的黄色分枝是细菌域;中间的褐色和紫色分枝是古菌域;右侧的绿色分枝是真核生物域。
古菌域包括嗜泉古菌界(Crenarchaeota)、广域古菌界(Euryarchaeota)和初生古菌界(Korarchaeota);细菌域包括细菌、放线菌、蓝细菌和各种除古菌以外的其它原核生物;真核生物域包括真菌、原生生物、动物和植物。除动物和植物以外,其它绝大多数生物都属微生物范畴。由此可见,微生物在生物界级分类中占有特殊重要的地位。
生命进化一直是人们关注的热点。Brown等依据平行同源基因构建的“Cenancestor”生命进化树,认为生命的共同祖先Cenancestor是一个原生物。原生物在进化过程中产生两个分支,一个是原核生物(细菌和古菌),一个是原真核生物,在之后的进化过程中细菌和古菌首先向不同的方向进化,然后原真核生物经吞食一个古菌,并由古菌的DNA取代寄主的RNA基因组而产生真核生物。
从进化的角度,微生物是一切生物的老前辈。如果把地球的年龄比喻为一年的话,则微生物约在3月20日诞生,而人类约在12月31日下午7时许出现在地球上。

Ⅷ 微生物有哪些基本特征 为什么

微生物有以下主要特征:

1、体小面大

一个体积恒定的物体,被切割的越小,其相对表面积越大。微生物体积很小,如一个典型的球菌,其体积约1mm³,可是其表面积却很大。这个特征也是赋予微生物其他如代谢快等特性的基础。

2、吸多转快

微生物通常具有极其高效的生物化学转化能力。据研究,乳糖菌在1个小时之内能够分解其自身重量1000-10000倍的乳糖,产朊假丝酵母菌的蛋白合成能力是大豆蛋白合成能力的100倍。

3、生长繁殖快

相比于大型动物,微生物具有极高的生长繁殖速度。大肠杆菌能够在12.5-20分钟内繁殖1次。不妨计算一下,1个大肠杆菌假设20分钟分裂1次,1小时3次,1昼夜24小时分裂24×3=72次,大概可产生4722366500万亿个(2的72次方),这是非常巨大的数字。

但事实上,由于各种条件的限制,如营养缺失、竞争加剧、生存环境恶化等原因,微生物无法完全达到这种指数级增长。 已知大多数微生物生长的最佳pH范围为7.0 (6.6~7.5)附近,部分则低于4.0。

(8)微生物的信息有哪些扩展阅读

微生物群种类

原核;原核生物。

真核:真菌、藻类(部分)、原生动物(部分)。

非细胞类:病毒和亚病毒。

一般地,在中国大陆地区的教科书中,均将微生物划分为以下7大类:

细菌、病毒、真菌、立克次氏体、支原体、衣原体、螺旋体。

细菌

(1)、定义:一类细胞细短,结构简单,胞壁坚韧,多以二分裂方式繁殖和水生性强的原核生物。

(2)、分布:温暖,潮湿和富含有机质的地方。

(3)、结构:主要是单细胞的原核生物,有球形,杆形,螺旋形。

基本结构:细胞膜细胞壁细胞质核质。

特殊结构:荚膜、鞭毛、菌毛、芽胞。

(4)、繁殖: 主要以二分裂方式进行繁殖的。

(5)、菌落: 单个细菌用肉眼是看不见的,当单个或少数细菌在固体培养基上大量繁殖时,便会形成一个肉眼可见的,具有一定形态结构的子细胞群落。

菌落是菌种鉴定重要的依据。不同种类的细菌菌落的大小,形状光泽度颜色硬度透明度都不同。

阅读全文

与微生物的信息有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:745
乙酸乙酯化学式怎么算 浏览:1410
沈阳初中的数学是什么版本的 浏览:1361
华为手机家人共享如何查看地理位置 浏览:1052
一氧化碳还原氧化铝化学方程式怎么配平 浏览:892
数学c什么意思是什么意思是什么 浏览:1419
中考初中地理如何补 浏览:1310
360浏览器历史在哪里下载迅雷下载 浏览:710
数学奥数卡怎么办 浏览:1399
如何回答地理是什么 浏览:1033
win7如何删除电脑文件浏览历史 浏览:1062
大学物理实验干什么用的到 浏览:1492
二年级上册数学框框怎么填 浏览:1711
西安瑞禧生物科技有限公司怎么样 浏览:996
武大的分析化学怎么样 浏览:1254
ige电化学发光偏高怎么办 浏览:1344
学而思初中英语和语文怎么样 浏览:1663
下列哪个水飞蓟素化学结构 浏览:1429
化学理学哪些专业好 浏览:1492
数学中的棱的意思是什么 浏览:1069