A. 可降解材料有哪些
环境降解塑料大体分为两类:光降解、生物降解(还有一种是光-生物双降解)。其中,光降解塑料是塑料分子中引入光增感基团或在材料中添加光增感助剂等;生物降解材料主要为天然高分子如纤维素等改性物;在塑料中添加淀粉等天然生物降解物质或化工合成聚己内酯、聚己二醇等降解物质等。
pet/pe/bopp是三种塑料组合而成复合阻隔气体材料,与此不沾边。
PET 聚对苯二甲酸二乙酯;矿泉水瓶
PE 聚乙烯; 大棚塑料膜
BOPP 双向拉伸聚丙烯膜;
厦门盘今工程塑料有限公司 2010年新推出环保可降解材料:广泛运用于注塑,吸塑,挤出,吹塑等范围,如有需求本公司可以提供报告
B. 除了PLA,生物可降解塑料还有哪些
生物降解塑料又可分为完全生物降解塑料和破坏性生物降解塑料两种。
1.破坏性生物降解塑料当前主要包括淀粉改性(或填充)聚乙烯PE、聚丙烯PP、聚氯乙烯PVC、聚苯乙烯PS等。
2.完全生物降解塑料主要是由天然高分子(如淀粉、纤维素、甲壳质)或农副产品经微生物发酵或合成具有生物降解性的高分子制得,如热塑性淀粉塑料、脂肪族聚酯、聚乳酸、淀粉/聚乙烯醇等均属这类塑料。
以淀粉等天然物质为基础的生物降解塑料目前主要包括以下几种产品:聚乳酸(PLA)、聚羟基烷酸酯(PHA)、淀粉塑料、生物工程塑料、生物通用塑料(聚烯烃和聚氯乙烯)。
C. 生物高分子材料有哪些
生物高分子材料也称为生物医学材料,是指以医疗为目的,用于与生物组织接触以形成功能的无生命的材料。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、病理学、血液学等多种边缘学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗等)。
由于医用高分子材料可以通过组成和结构的控制而使材料具有不同的物理和化学性质,以满足不同的需求,耐生物老化,作为长期植入材料具有良好的生物稳定性和物理、机械性能,易加工成型,原料易得,便于消毒灭菌,因此受到人们普遍关注,已成为生物材料中用途最广、用量最大的品种,近年来发展需求量增长十分迅速。医用高分子材料的研究目前仍然处于经验和半经验阶段,还没有能够建立在分子设计的基础上,以材料的结构与性能关系,材料的化学组成、表面性质和生命体组织的相容性之间的关系为依据来研究开发新材料。目前全世界应用的有90多个品种,西方国家消耗的医用高分子材料每年以10%~20%的速度增长。随着人民生活水平的提高和对生命质量的追求,我国对医用高分子材料的需求也会不断增加。
合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能,因而可以植入人体,部分或全部取代有关器官。因此,在现代医学领域得到了最为广泛的应用,成为现代医学的重要支柱材料。当前研究主要集中在外科置入件用高分子材料和生物降解及药物控制释放材料。
外科置入件用高分子材料耐生物老化,作为长期置入材料具有良好的生物稳定性和物理、机械性能,易于加工成型,原料易得,便于消毒,受到人们普遍的关注,这类材料主要用于生物体软、硬组织修复体、人工器官、人工血管、接触镜、膜材、粘结剂和空腔制品诸方面。其特点是大多数不具有生物活性,与组织不易牢固结合,易导致毒性、过敏性等反应。不过作为承重的植入件用高分子材料还有许多方面的问题,目前研究主要集中在提高材料的对生物体的安全性;提高组织相容性和血液相容性;改善生物学性能,改善提高力学、机械、物理性能。在生物膜材料方面,属于线性高分子多糖结构的壳聚糖是甲壳质脱乙酰基的衍生物,无毒、无抗原性,可在生物体内自行降解.壳聚糖膜有促进创面愈合的作用,具有良好通透性,且含有游离氨基,能结合酸分子,是天然多糖中唯一的碱性多糖。因而具有许多特殊的物理化学性质和生理功能,在医学生物材料上可作为人工肾膜和人造皮肤。
生物降解型医用高分子材料的主要成分是聚乳酸、聚乙烯醇及改性的天然多糖和蛋白质等,在临床上主要用于暂时执行替换组织和器官的功能,或作药物缓释系统和送达载体、可吸收性外科缝线、创伤敷料等。其特点是易降解,降解产物经代谢排出体外,对组织生长无影响,目前已成为医用高分子材料发展的方向。
高分子药物控制释放体系不仅能提高药效,简化给药方式,大大降低了药物的毒副作用,而且纳米靶向控制释放体系使药物在预定的部位,按设计的剂量,在需要的时间范围内以一定的速度在体内缓慢释放,而达到治疗某种疾病或调节生育的目的,比如高分子多肽或蛋白药物控制释放体系新的研究进展,为那些口服无效的多肽或蛋白药物的临床应用,展示了令人鼓舞的前景。
D. 天然生物降解高分子和人工合成的生物降解高分子分别有哪些
天然生物降解高分子和人工合成的生物降解高分子分别有哪些
1 、可生物降解高分子材料的定义
可生物降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。
2 、生物降解高分子材料降解机理
生物降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物(有机酸、酯等);然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。降解除有以上生物化学作用外,还有生物物理作用,即微生物侵蚀聚合物后,由于细胞的增大,致使高分子材料发生机械性破坏。因此,生物降解并非单一机理,而是一个复杂的生物物理、生物化学协同同作用,相互促进的物理化学过程。到目前为止,有关生物降解的机理尚未完全阐述清楚:除了生物降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。
人们深入研究了不同的生物可降解高分子材料的生物降解性,发现与其结构有很大关系,包括化学结构、物理结构、表面结构等。高分子材料的化学结构直接影响着生物可降解能力的强弱,一般情况下:脂肪族酯键、肽键>氨基甲酸酯>脂肪族醚键> 亚甲基。当同种材料固态结构不同时,不同聚集态的降解速度有如下顺序:橡胶态>玻璃态>结晶态。一般极性大的高分子材料才能与酶相粘附并很好地亲和,微生物粘附表面的方式受塑料表面张力、表面结构、多孑L性、环境的搅动程度以及可侵占表面的影响。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、pH值、微生物等外部环境有关。
3 、可生物降解高分子材料的种类
按照原料组成和制造工艺不同可分为以下三种:天然高分子及其改性产物、微生物合成高分子和化学合成高分子。
E. 全生物降解是由哪些主要原料构成的
全生物降解是由哪些主要原料构成的?完全生物降解材料
生物降解材料是指在适当和可表明期限的自然环境条件下,能够被微生物(如细菌、真菌和藻类等)完全分解变成低分子化合物的材料。
中文名
完全生物降解材料
本质
转化低分子化合物
特点
环保,降解
应用范围
降解细菌、真菌和藻类
快速
导航
1.1、生物降解材料的分类1.2、完全生物降解材料的品种和性能生物降解材料的降解性能及其评价2.1、土埋法2.2、陪替氏培养器定量法2.3、酶分析法2.4、放射性C14示踪法生物降解材料的应用3.1、农业用途3.1.1、农用地膜3.1.2、农作物生长容器3.2、包装用途3.3、医用生物降解材料
完全生物降解材料的应用及发展趋势
摘要:完全生物降解材料能被微生物完全分解,对环境有积极的作用。本文介绍了完全生物降解材料的定义、分类、降解性能的评价及其发展趋势。
关键词:生物降解,测试,应用
人类在创造现代文明的同时,也带来负面影响——白色污染。一次性餐具、一次性塑料制品以及农用地膜等均难以再回收利用,其处理方法以焚烧和掩埋为主。焚烧会产生大量的有害气体,污染环境;掩埋则其中的聚合物短时间内不能被微生物分解,也污染环境。残弃的塑料膜存在于土壤中,阻碍农作物根系的发育和对水分、养分的吸收,使土壤透气性降低,导致农作物减产;食用残弃的塑料膜后,会造成肠梗阻而死亡;流失到海洋中或废弃在海洋中的合成纤维渔网和钓线已对海洋生物造成了相当的危害,因此提倡绿色消费与加强环境保护势在必行。面对日益枯竭的石油资源,符合潮流的生物降解材料作为高科技产品和环保产品正成为一个研发热点。
1.1、生物降解材料的分类
生物降解材料按其生物降解过程大致可分为两类。一类为完全生物降解材料,如天然高分子纤维素、人工合成的聚己内酯等,其分解作用主要来自:①由于微生物的迅速增长导致塑料结构的物理性崩溃;②由于微生物的生化作用、酶催化或酸碱催化下的各种水解;③其他各种因素造成的自由基连锁式降解。另一类为生物崩解性材料,如淀粉和聚乙烯的掺混物,其分解作用主要由于添加剂被破坏并削弱了聚合物链,使聚合物分子量降解到微生物能够消化的程度,最后分解为二氧化碳(CO2)和水。
生物崩解性材料大多采用添加淀粉和光敏剂的方法,与聚乙烯和聚苯乙烯共混生产。研究表明[2],淀粉基生物降解塑料袋最终将进入垃圾场,不接触阳光,即使其中有发生物双降解作用,所发生的降解作用也主要以生物降解为主。一定时间的试验表明:垃圾袋无明显的降解现象,垃圾袋没有自然破损,甚至对袋里的垃圾起到一定的“保鲜”作用。
对于解决环境污染,尽管含淀粉基的塑料比一次性塑料制品有效,但由于仍采用不能生物降解的聚乙烯或聚酯材料为原料,故除了添加的淀粉能够降解外,剩余的大量聚乙烯或聚酯仍会残存而不能完全生物降解,只是分解为碎片,无法回收,进入土壤后情况更糟,对废弃物的处理造成混乱,因而完全生物降解材料成为降解材料的研究重点。
1.2、完全生物降解材料的品种和性能
安全生物降解材料包括天然高分子纤维素、人工合成的聚己内酯、聚乙烯醇等。自然界本身有分解吸收和代谢天然高分子纤维素的自净化能力。该材料在用过废弃后能被自然界微生物的酶降解,降解产物能被微生物作为碳源吸收代谢。
聚己内酯是目前价格较低的全微生物分解性合成高分子,所用的聚己内酯是环状单体——己内酯,己内酯是利用有机金属化合物进行开环聚合而制得的脂肪族聚酯。主要性能有:熔点和玻璃化温度较低,分别只有60℃-60℃,结晶温度为22℃;其纤维强度和聚酰胺6纤维几乎相当,拉伸强度可以达到70.56cN/tex以上,结节强度也在44.1cN/tex以上,而且在湿态情况下的强度损失很小;生物降解性和人造纤维相似,其产品大约在一周内即降解成不可能测试的薄片。
聚乙烯醇为可生物降解树脂,故淀粉基聚乙烯醇塑料可完全生物降解。乙烯和变性淀粉基共聚的产品具有良好的成型加工性、二次加工性、力学性能和优良的生物降解性能。日本合成化学工业公司开发出具有热塑性、水溶性、生物降解性的聚乙烯醇树脂,可熔融成型,其熔点为199℃,可在214℃-230℃下采用挤塑、吹塑、注塑等工艺成型。产品的透明性、水溶性、耐药品性均十分优越,可用于涂布复合成型容器和包装材料。
聚乳酸最早由日本岛津公司和钟纺公司联合开发,以乳酸为主要原料聚合所得到的高分子聚合物,而乳酸是一种在动植物和微生物体内常见的天然化合物,极易自然分解,其纤维具有优良的性能,介于合成纤维和天然纤维之间。亲水性优于聚酯纤维,比重低于聚酯纤维,有极好的手感、悬垂性和外观,好的回弹性,优良的卷曲和卷曲保持性,有可控的收缩性,强度达62cN/tex,不受紫外光影响,可用多种染料染色,杰出的可加工性,热粘合温度可控制,晶体熔融温度高达120℃-230℃,低可燃性。
乳酸单体的主要特征是其以两种旋光性形式存在,聚乳酸技术利用该独特的聚合物性能,通过控制D和L异构体在聚合物链上的比例及其分布来控制产品的结晶熔点。
聚L-乳酸(PLLC)是以淀粉、糖蜜等生物资源为原料发酵制得L-乳酸,再用化学方法合成的高分子材料。PLLC是热塑性材料,其可塑性与聚苯乙烯和聚酯相似,其结晶性和刚性都比较高,抗张强度优良。
生物降解材料的降解性能及其评价
对生物降解材料的降解性能的测试目前还没有制订统一的标准,可采用包括被美国材料试验标准(ASTM)采纳或准备采纳的方法作为标准的方法,通过生物化学和微生物的实验手段来评价的主要方法有下列几种。
2.1、土埋法
土埋法有室外土埋法和室内土埋法两种,其微生物源主要是土壤中的微生物群,经一定时间后,取出试样测定其失重、机械性能变化,或用电子显微镜确定其被土壤中微生物侵袭的状况。优点是能反映出自然环境条件下的生物分解性能;缺点是试验周期长,试验结果因土质不同而不同,重复性差。
2.2、陪替氏培养器定量法
在容器中加入试验样品和营养琼脂,接种微生物进行培养,经一定时间后,分析试样的失重情况以及某些物理变化或化学变化。优点是可快速降解,在短时间内获得试验结果,重复性好,定量性好;缺点是不能反映自然界中的实际情况。
2.3、酶分析法
在容器中加入缓冲液和试验样品,让酶作用一定的时间后,分析试样的失重情况,目测霉菌的生长情况,显微镜分析试样物理性能或化学性能的变化。优点是试验周期短,重复性好,定量性好;缺点是不能反映自然界中的实际情况。
2.4、放射性C14示踪法
用C14标记聚合物产品,在微生物的作用下产生CO2,用碱性溶液吸收,用滴定法测出CO2总量,再用放射性衰减率法测定C14的CO2量,用C14的CO2占产生的CO2的百分数表示微生物侵蚀的程度。优点是实验结果可靠、明确。生物降解性能的测试可以检测样品生物降解性能的优劣。
F. 可生物降解的高分子材料都有哪些
目前应用最成熟最广泛的生物降解材料有两种:PLA,PBS
G. 生物降解性高分子材料可以分为
按合成方法可分为如下几种类型。
2.1微生物生产型
许多微生物能合成高分子,这类高分子主要有微生物聚醋和微生物多糖,具有生物降解性。研究表明,若给予合适的有机化合物作食物碳源,许多微生物都具有合成聚醋的能力。此外,许多微生物能合成各种多糖类分子,其中有一些多糖类高分子具 有良好的物理性能和生物降解性,可望用于制造不污染环境的生物降解性塑料。
2.2合成高分子型
将脂肪族聚酷和芳香族聚酷(或聚酞胺)制成一定结构的共聚物,这种共聚物既有良好的性能,又有一定的生物降解性。聚乳酸(PLA)和聚乙醇酸(PGA)作为新型生物降解的医用盼子材料正日益受到广泛重视。
2.3天然高分子型
自然界中存在的纤维素、甲壳素和木质素等均属降解性天然高分子,这些高分子可被微生物完全降解。但因纤维素存在物理性能上的不足,因此,它大多与其它高分子,如由甲壳质制得的脱乙酞基多糖等共混制得。如日本以纤维素和脱乙酞基壳多糖进行复合,制得了生物降解塑料,采用流涎法制得 的薄膜与普通的PE膜的强度相似,并可在2个月后完全分解,盒状制品75天可完全分解,但目前尚未I业化生产。
2.4掺合型
在没有生物降解性的高分子材料中,掺混一定量有生物降解性的高分子物,使所得产品具有相当程度的生物降解性,这就制成了掺合型生物降解高分子材料,但这种材料不能完全生物降解。目前主要开发改性淀粉与可生物降解或可水溶性塑料的降解塑料合金母料,或以淀粉为主要原料的可完全生物降解塑料,可以100%地分解,分解速度可按要求控制在数分钟到一年的时间。
H. 生物可降解塑料大概有多少种具体是什么
生物可降解塑料大致分为七种
一、PLA
环球塑化网认为聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。据了解,PLA用量占生物可降解塑料的45.1%,是当之无愧的主力军!
二、聚3-羟基烷酸酯(PHA)
PHA是由微生物通过各种碳源发酵而合成的不同结构的脂肪族共聚聚酯。其中最常见的有聚3-羟基丁酸酯(PHB)、聚羟基戊酸酯(PHV)及PHB和PHV的共聚物(PHBV)。主要用途为:一次性餐具、无纺布、包装材料、农用覆膜、玩具、包膜、胶、纤维等多种可降解产品。
三、聚ε-己内酯(PCL)
聚ε-己内酯(PCL)是由ε-己内酯经开环聚合得到的低熔点聚合物,其熔点仅62℃。PCL的降解性研究从1976年就已开始,在厌氧和需氧的环境中,PCL都可以被微生物完全分解。
四、聚酯类--PBS/PBSA
PBS以脂肪族丁二酸、丁二醇为主要生产原料的,既可以通过石油化工产品满足需求,也可通过淀粉、纤维素、葡萄糖等自然界可再生农作物产物,经生物发酵途径生产,从而实现来自自然、回归自然的绿色循环生产。而且采用生物发酵工艺生产的原料,还可大幅降低原料成本,从而进一步降低PBS成本。
五、脂肪族芳香族共聚酯
德国BASF公司所制造的脂肪族芳香族无规共聚酯(Ecoflex),其单体为:己二酸、对苯二甲酸、1,4-丁二醇。目前生产能力在14万吨/年。同时开发了以聚酯和淀粉为主的生物降解塑料制品。
六、聚乙烯醇(PVA)
水溶性PVA薄膜是在国际上崭露头角的一种新型塑料产品。它利用了PVA的成膜性、水和生物两种降解特性,可完全降解为CO2和H2O,是名符其实的绿色高新环保包装材料。
七、二氧化碳共聚物
一种正在研究的新型合成材料,以二氧化碳为单体原料在双金属配位PBM型催化剂作用下,被活化到较高的程度时,与环氧化物发生共聚反应,生成脂肪族聚碳酸酯(PPC),经过后处理,就得到二氧化碳树脂材料。国内内蒙古蒙西集团公司采用长春应用化学研究所的技术,已建成年产3000吨二氧化碳/环氧化合物共聚物树脂的装置,产品主要应用在包装和医用材料上。