㈠ 如何测生物接触氧化池填料上的生物量(给水预处理)
概述 生产淀粉和淀粉糖吨耗水量较大,同时排出含有高浓度有机废水,造成环境污染,现就废水治理问题谈些看法,有不妥之处,请同行专家指正。 1.1 废水特点 淀粉及淀粉糖废水存在三高一低一大的特点,即有机污染物浓度高、悬浮物浓度高、氨氮浓度高,PH低,负荷变化大(即水质和水量变化大),由于这些特点,给治理带来诸多困难。 1.2 水质情况 淀粉厂废水主要来源于玉米浸渍水和工艺过程水,中小淀粉厂浸渍水有直接排放或制做菲汀后直接排放,此时COD含量将达10000mg/L左右,大型淀粉厂浸渍水经蒸发浓缩后加入纤维饲料中,但在蒸发浓缩过程中也有冷凝水排出,淀粉糖厂主要排水点有离子交换系统的再生排水,排出水质情况为: 化学耗氧量COD 400~11500mg/L 平均约 2200~5000mg/L 生物需氧量BOD 2000~6000mg/L 平均约 1500~3500mg/L 悬浮物SS 150~6000mg/L 平均约 1000mg/L 氨氮 30~250mg/L 平均约 60mg/L PH4.5~6 由于生产工艺不同及操作关系,上述排出水质各厂不尽相同,而且变化幅度较大。 1.3 废水的危害 由于上述废水含有大量蛋白质及其它有机物,若不经过治理排入水体,要消耗水中大量的溶解氧,造成水体缺氧使鱼类和水生生物死亡,废水中的悬浮物沉积在水体后会腐烂,释放出硫化氢有害气体,恶化水质,臭气难闻。不经治理的废水流入农田、鱼池中而成为被告或索赔的淀粉或淀粉糖厂也屡有报道。 由于废水的危害,根据国家环保部门的要求,废水排放近一二年内部要求达标排放,所以废水治理必须给予高度重视和实施。 1.4 废水治理情况 目前全国几百家大、中、小淀粉及淀粉糖厂,一般在建厂时都没有同时建设废水治理装置,只有几家大型淀粉及淀粉糖厂在建厂同时建立了废水治理装置,由于环保部门要求,近几年也有一部分淀粉及淀粉糖厂建立了废水治理装置,但还有相当一部分的淀粉及淀粉糖厂废水都没有治理,据了解,就已建立的废水治理装置运行较好,达到效果的也为数不多,有的厂家由于废水治理工艺、设计、操作等问题还不能达标排放。 2 目前废水治理方法 淀粉及淀粉糖厂废水治理方法,目前有以下几种方法。 2.1 氧化塘法 东北某大型淀粉厂建厂时因地制宜采用氧化塘法治理废水,投资近200万元,实际运行时,由于水量、水质及结冰等问题,惊处理的废水发黑,臭气熏人,影响几公里,经处理后的水质无法达标,可以说这种处理方法是失败的 。 2.2 厌氧-好氧处理工艺 厌氧-好氧工艺处理有机废水,国内外实例很多,有的厂家采用国内外流行的UASB反应器、由于UASB反应器对某些物理环境条件要求严格,如要求废水PH稳定,温度恒定,负荷(水质及水量)变化小,这些严格的控制条件给操作带来较多困难,所以有的厂家运行较好,可以达标排放,有的厂家运行不够稳定。据了解,经省市环保有关部门正式验收的厂家为数不多。加之如不能形成颗粒污泥,污泥流失严重,很难保证足够的污泥浓度,处理系统一旦出现异常现象,短时间内很难启动,并很长时间才能恢复正常运行。 2.3 好氧-气浮串联处理工艺 据“淀粉及淀粉糖”刊物报道,该方法简单易行,现不知是否经环保部门验收,笔者未做实地考察。 2.4 光合细菌(PSB)氧化-生物接触氧化处理工艺 该工艺是一种新颖实用的方法,具有工艺简单,流程短,占地面积少,一次性投资省,运行效果稳定及费用低,操作管理方便等特点,具有一定技术优势,此工艺在日本已大量应用,在韩国、澳大利亚、台湾等也有应用,在我国已有三家淀粉及淀粉糖厂实行工厂化设计,其中黑龙江某制药厂(由北方设计研究院环保所设计)运行已达半年,市区环保部门跟踪监测,现已通过有关部门正式验收,运行情况很好,取得应有处理效果,受到专家及同行一致好评。笔者曾两次对上述工艺进行实地调研,实际运行情况为:排水不稳定,不定时,水质变化大,COD=700~8000mg/L,平均3000mg/L,BOD未测(环保局未作考核项目),SS=200~3000mg/L,PH2.5~6.5,废水量为30t/h,该厂采用上述工艺处理结果:COD=60~90mg/L,SS=30~50mg/L,PH6~9,达到国家排放标准,该厂投资210万元,运行费用1.00元/吨废水以下。 3 光合细菌(PSB)氧化-生物接触氧化处理工艺与厌氧-好氧处理工艺比较 两种工艺比较见附表。 附表 两种工艺比较 序号 项 目 光合细菌-生物接触氧化 厌氧-好氧 1 投资 100 150 2 占地面积 100 120 3 运行费用 100 125 4 工艺 简单,流程短 较复杂,流程长 5 耐冲击负荷 能力强 能力弱 6 污泥产量 少 多 7 操作条件 对废水温度、负荷、PH要求不严,操作简单稳定 对废水温度、负荷、PH要求严格,操作复杂,不稳定 光合细菌(PSB)氧化-生物接触氧化处理工艺投资费用与废水量多少,水质含量(COD)高低和排放标准高低有直接关系,例如:废水量2000t/d,COD2300~5000mg/L,处理后达国家二级排放标准时,按日排放总量计算吨水投资为2000~3000元,远远低于同类水质其它治理方法平均投资费用,当处理后要求达国家一级排放标准时,吨水投资约增加20%左右。 4 光合细菌(PSB)氧化-生物接触氧化处理工艺流程 4.1 工艺流程简图(见附图) 4.2 各级主要处理单元的简要说明 ①格栅:去除废水中的机械杂质,减轻废水中废水的有机负荷,避免管道堵塞。 ②调节及可溶化池:为了节省占地面积与投资,采用一池二用,即可以起到调节水质、水量的作用,又可起到可溶化的作用。所谓可溶化,就是将废水中成分复杂的有机污染物在好气和兼气菌的生化作用下,将大分子物质分解成小分子物质,为光合细菌提供合适的营养基质,最大限度地利用其生化效果,提高废水的净化效率。该池分为多格,各池内的微生物菌群不尽相同,对废水中有机物可溶化的效果和途径也不太一样,但可溶化的目的是相同的。该单元是处理工艺的技术关键之一,只有可溶化的目的达到了,才能有效地保证光合细菌氧化的高效去除效果。此时的COD去除率为15%左右。 ③可溶化沉淀池:废水在可溶化池进行可溶化后由泵提升入可溶化沉淀池进行固液分离。清液流入光合细菌氧化池,沉淀污泥部分返回可溶化池,剩余部分排入污泥池。 ④光合细菌氧化池:是该处理工艺的主要技术关键。光合细菌处理高浓度有机废水技术,北方设计研究院在80年代末就进行了大量试验研究,取得了丰硕成果,并通过部级鉴定。利用光合细菌法处理高浓度有机废水的可行之处,就是对原废水不加稀释而直接进入处理系统,处理系统内能承受较高的有机负荷,处理效果稳定,容积负荷可达COD6kg/m3·d.该方案中光合细菌氧化池分三池进行,各池中光合细菌的种类和数量分布有所不同。对有机物的去除效果不同,同化分解有机物的时间也不同,这就形成了各池中光合细菌对有机物的生物降解逐级进行。最后废水中的有机物在光合细菌菌群的同化、异化作用下得以去除,该单元COD去除率在85%以上。 ⑤光合细菌沉淀池:废水中有机物在光合细菌氧化池中大部分被分解去除,同时产生一定量的菌体污泥,故此要进行泥水分离。上清液进入接触氧化池,沉淀污泥部分回流后剩余部分进入污泥池。 ⑥生物接触氧化池:高浓度的淀粉、葡萄糖废水经光合细菌氧化后,有机污染物大部分被去除,但还不能达到排放标准。采用生物接触氧化法作为把关。该法与活性污泥法相比,占地少,单位体积的池容中拥有更多的生物量,所以处理效率高,耐各种冲击能力强,停留时间短,不会发生活性污泥法中令人头痛的污泥膨胀问题,容易操作管理,该单元COD去除率达80%以上。 ⑦接触氧化沉淀池:生物接触氧化池中生物填料上的生物膜经过一段时间生长后将会不断老化脱落,不断更新。脱落的生物膜随出水进入接触氧化沉淀池进行泥水分离。清水达到排放标准,排出厂外,沉淀分离出的污泥进入污泥池。 ⑧生物炭池:为确保废水处理达标,在接触氧化沉淀池后加一生物炭池,当某一处理单元出现问题,或进水浓度、进水负荷发生较大变化对系统造成大的冲击,使出水不能完全达标时,接触氧化沉淀池出水进入生物炭池进行深度处理,出水完全达标后排放。当其它单元运转正常,达到设计指标时,该单元可不参与运行。 ⑨污泥处理系统:各级沉淀池分离出的污泥剩余部分都进入污泥池,再由污泥泵打到污泥脱水设备进行脱水处理。泥饼是很好 的有机肥料,无毒害,可直接用于肥田,也可视同一般固体垃圾丢弃。 ⑩供气系统:各级生化处理单元均需鼓入压缩空气,向废水中充氧,以保证好氧微生物的生命代谢活动。压缩空气由离心风机提供,可溶化池和光合细菌氧化池采用穿孔管曝气,接触氧化池采用高效曝气头曝气。 5 结论 光合细菌(PSB)氧化-生物接触氧化处理工艺具有流程简单,处理效率高,运行稳定,处理成本低,承受水力负荷、有机负荷冲击能力强,操作方便,容易管理,动力消耗小,污泥产生量少,投资小等特点,是处理中、高浓度有机废水行之有效的实用、成熟方法,该工艺适用于淀粉及淀粉糖厂,味精厂,柠檬酸厂等中、高浓度有机废水处理
㈡ 常用测定微生物生长量的方法有几种
v常用测定微生物生长的方法有:1)称干重法。可用离心法或过滤法测定。优点:可适用于一切微生物,缺点:无法区别死菌和活菌。2)比浊法。原理:由于微生物在液体培养时,原生质的增加导致混浊度的增加,可用分光光度计测定。优点:比较准确。3)测含氮量,大多数微生物的含氮量占干重的比例较一致,根据含氮量再乘以6.25即可测得其粗蛋白的含量。4)血球计数板法。优点:简便、快速、直观。缺点:结果包括死菌和活菌。5)液体稀释法。对未知菌样作连续的10倍系列稀释,经培养后,记录每个稀释度出现生长的试管数,然后查mpn表,再根据样品的稀释倍数就可计算其中的活菌含量。优点:可计算活菌数,较准确。缺点:比较繁琐。6)平板菌落计数法。取一定体积的稀释菌液涂布在合适的固体培养基,经培养后计算原菌液的含菌数。优点,可以获得活菌的信息。缺点:操作繁琐,需要培养一定时间才能获得,测定结果受多种因素的影响。
㈢ 发酵过程中生物量的测定方法有哪些
1.
直接计数测定
根据微生物种类,有血球计数板和细菌计数板;或者用电子计数器计数
2.
比浊法
根据菌悬液的浓度在一定范围内与光密度成正比,可以用分光光度计测OD值,用OD值表示样品菌液浓度
3.
核酸计数法
荧光定量PCR技术
4.
活菌计数法
MPN和平板计数法
由于测定方法的限制,前几种计数结果不太准确,目前应用广泛的是第四种
对粪大肠菌群和光合细菌可用MPN,对其他微生物可用平板计数法
本人学生物,望采纳,谢谢。
㈣ 土壤微生物量碳氮的测定方法
取一定重量的土壤,称取1g,置于100ml无菌水中,充分振荡,然后离心,取上清液,就得到土壤浸出液(可以看做土壤中的微生物全部转移至水中)。然后做梯度稀释,取一定稀释度的溶液,涂平板,培养后数菌落数,然后乘上稀释倍数,就可得到1g土壤中该微生物的数量。
例如,你在稀释10的7次方的平板上数出了15个菌落,则1g土壤中微生物数量为1.5×10的8次方个。
㈤ 土壤微生物生物量测量为什么要用鲜土
微生物量测定方法主要有:熏蒸法、底物诱导法和成分分析法,都要利用微生物的活性才能获得准确结果。鲜土中的微生物存在代谢和呼吸,能最大程度反映原位条件下微生物的量,如果是风干土,微生物会大量死亡或休眠,用上述方法难以准确测定。
㈥ 土壤微生物检测标准有哪些呢
土壤微生物生物量的测定 熏蒸提取法GB/T 39228-2020
土壤微生物毒性试验GB/T31270.16—2014
㈦ 生物膜反应器的生物膜反应器微生物量的测量
在正常运行状况下,复合生物反应器下部是固定生物膜滤床,上部是移动床,其微生物量为:
1、CBBR混合液SS为1 604 mg/L,总量约为2.456 g。
2、固定填料生物膜总量为12.036 g。
3、移动床悬浮填料生物膜总量为1.428 g。
4、CBBR微生物总量约为15.92 g。
该工艺对污水除臭起到了很大作用,它的除臭工艺简单且效果显出。复合生物反应器与其他污水处理设备相结合,降低污水处理难度,从而改善周边环境,有效遏制病菌的传播。随着医疗技术的不断提高,新型药剂的产生将继续加大污水处理难度,所以水处理技术仍需随之提升,满足时代发展需求。
4 MBR研究进展
目前,MBR的研究主要集中在以下几个方面:(1)降低膜污染,提高膜通量;(2)探求合适的工作条件和工艺参数;(3)降低处理工艺的运行成本。
张少辉, 郑平, 华玉妹〔1〕用反硝化生物膜启动厌氧氨氧化反应器的研究等选取不同截留分子量的聚醚砜膜(PES),采用板框式膜组件构成的厌氧MBR对高浓度食品废水进行处理,考察了截留分子量对膜通量和出水效果的影响。
王荣昌,文湘华,钱易〔2〕 分析了生物膜反应器中好氧颗粒污泥形成机理,研究了MBR运行条件对膜过滤特性的影响。
杨玉旺〔3〕研究了移动床生物膜反应器处理污水的研究应用进展。
邢传宏等进行了管式MBR(分置式)处理城市污水的工艺设计,认为运行成本主要由电费、药剂费和人工费等3部分组成。其中电费是最主要的,电耗为2.3kW·h/m3。
鲁敏,曾庆福,张跃武〔4〕对一种新型生物膜反应器处理污水的研究发生了浓厚兴趣。
王亚娥等分析了影响超滤膜通量和过滤阻力的主要因素。
杨磊等对MBR运行过程中的膜污染和清洗进行了较详尽的试验。
李军, 彭永臻, 杨秀山 ,王宝贞 ,杨海燕〔5〕着重研究了序批式生物膜法反硝化除磷特性及其机理。
姜苏等〔6〕研究了一体化A/O生物膜法处理生活污水。
白宇等〔7〕研究分析了污水深度处理生物滤层中菌群的时空分布特征。
陈壁波等〔8〕对移动床生物膜反应器及对造纸废水处理的意义进行了卓有成效的研究论证。
Cote P 研究了浸没式膜系统的电耗,包括抽吸泵及曝气2部分。每立方米产水仅耗电0.3~0.6 kW·h,而电耗是运行费用的主要部分。
荣宏伟等〔9〕在实验室条件下对序批式生物膜法生物除磷进行了试验研究,得出了令人期待的结论。
Wang L-Choo Ho等比较了浸没式和分置式MBR工艺运行时的电耗,结果是,在通量为18L/(m2·h)的情况下,前者电耗仅为0.2~0.4 kW·h /m3,而后者电耗为2~10 kW·h /m3。
鲍立宁等〔10〕在电极生物膜脱氮工艺中反硝化菌相分析方面进行了研究。
MBR因自身特殊的工艺也要求了不同于一般的超、微滤膜材料,但制备针对于MBR所用的膜材料的研究还很少。显然选择合适的膜材料是降低膜污染的一个重要方法,这还有待于进一步研究。
5 MBR应用实例
随着研究的深入,国内外已有了MBR应用的实例。实践表明,膜污染严重、水通量低,是限制MBR推广应用最主要的原因。
加拿大Cote P等 报道了北美洲在20世纪90年代MBR发展的概况。其中ZENON环保公司在1996年推出了组件膜面积为46m2、体积密度为63m2/m3的ZW-500型膜生物反应器,该设备已成功地应用于市政污水处理。目前以小规模装置为主,处理能力为10~200m3/d,主要在办公楼、购物中心、学校、医院和疗养地推广使用。装置的水力停留时间(HRT)为24h,SRT为1~2年。滤出液经过紫外线消毒或活性炭吸附后,用作厕所冲洗水。在安大略省建成的日处理污水3 800m3的MBR装置,安装了ZW-500型膜组件144个,总膜面积6624m2。曝气池体积440m3,正常HRT为3.8h;厌氧反应池体积为380m3,HRT为2.4h。运行期间的MLSS浓度为12 000~20 000mg/L,MLVSS浓度仅为MLSS的55%~70%。运行9个月以来出水BOD和有机磷的去除率都接近100%。
日本自1998年以来,着重推广了中水道系统的开发利用。其目的主要是将以厨房排水、洗脸及洗澡后的排水为主体的楼房排水进行处理,然后作为厕所冲洗水再利用。比如,日立工厂建设公司用高浓度活性污泥法和旋转平板超滤膜装置组合而成的系统作为大楼中水道的回用系统。因为膜板旋转,使膜表面的污泥被搅拌,从而可控制膜面污染。
天津清华德人环境公司和天津大学共同研制的MBR已有了一些的应用实例。以处理天津某写字楼排放的污水为例,该写字楼的建筑面积约为17 000m2,采用了日处理能力为25m3 的装置,设备本体占地3.2m2,投资10余万元,能耗为0.8kW·h/m3。处理出水可用作冲厕、绿化及洗车等。
郑斐等〔11〕研制出生物膜法的新工艺—无泡曝气膜生物反应器。
吕晓辉等〔12〕对移动床生物膜反应器脱氮除磷技术情有独衷,使脱氮除磷效率又有了较大的发展。
6结语 1 MBR综合了膜分离技术和生物处理技术的优点,超、微滤膜组件能替代CAS中的二沉池,更有效地进行泥水分离,并延长SRT,提高微生物对污水中有机物的处理能力。经超、微滤膜处理后出水水质好可以直接用于非饮用水回用。系统占地面积小,几乎不排剩余污泥,具有较高的抗冲击能力。 2 MBR具有一定的实用性,但膜污染仍是制约MBR推广应用的最主要因素。因为MBR中膜材料既要面临活性污泥、污水中固体颗粒的污染,又要面临活性污泥中微生物的侵蚀。虽可以通过控制抽停时间、曝气量等工艺参数以及采用适当的清洗技术来减少膜面的污染,但最有效、最根本的方法是研制出一种抗污染、耐微生物侵蚀的新的膜材料及对膜进行适当的改性。 3 在应用MBR技术处理市政、生活污水并实现中水回用时,还要考虑另外一个关键因素,即运行成本。因此,在研究中要始终将运行成本。作为考虑试验方案和确定试验结果的主要出发点。 7参考文献
1张少辉, 郑平, 华玉妹. 反硝化生物膜启动厌氧氨氧化反应器的研究. 环境科学学报,2004,24(2):220~224
2王荣昌,文湘华,钱易. 生物膜反应器中好氧颗粒污泥形成机理. 中国给水排水,2004,20(3):5~8.
3杨玉旺.移动床生物膜反应器处理污水的研究应用进展. 工业水处理,2004,24(2):12~15.
4 鲁 敏,曾庆福,张跃武. 一种新型生物膜反应器处理污水的研究. 中国给水排水,2004,17(4):5~8.
5 李 军, 彭永臻, 杨秀山 ,王宝贞 ,杨海燕. 序批式生物膜法反硝化除磷特性及其机理. 中国环境科学 2004,24(2):219~223。
6 姜苏, 周集体, 郭海燕, 张志勇. 一体化A/O生物膜法处理生活污水. 中国给水排水,2004,20(5):56~58.
7 白宇, 张杰, 闫立龙, 陈淑芳, 郜玉楠. 污水深度处理生物滤层中菌群的时空分布特征. 城市环境与城市,2004,17(4):21~23.
8 陈壁波,李友明. 移动床生物膜反应器及对造纸废水处理的意义. 中国造纸,2004,23(8):47~50.
9 荣宏伟, 吕炳南, 张子辉. 序批式生物膜法生物除磷的试验研究. 湘潭矿业学院学报,2004,19(1):88~91.
10 鲍立宁, 洪桂云, 黄显怀. 电极生物膜脱氮工艺中反硝化菌相分析. 安徽建筑工业学院学报(自然科学版), 2004,12(5):1~4.
11 郑斐,朱文亭. 生物膜法新工艺—无泡曝气膜生物反应器. 工业用水与废水,2004,35(3):11~14.
12吕晓辉, 胡龙兴. 移动床生物膜反应器脱氮除磷技术. 化学工程师,2004,108(9):20~22
㈧ 悬浮填料生物膜上的生物量怎么测量
悬浮填料生物膜上的生物量怎么测量
是近似解的误差不能超过实际问题所允许的误差范围。 第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么? 第五步:按数学模型求出结果。 第六步:验证数学模型。验证时可根据情况对模型进行修正,使其符合程度更高,当然这以求原模型与实际情况基本相符为原则。
㈨ 我们有什么办法测量微生物生物量
1.直接计数测定 根据微生物种类,有血球计数板和细菌计数板;或者用电子计数器计数
2.比浊法 根据菌悬液的浓度在一定范围内与光密度成正比,可以用分光光度计测OD值,用OD值表示样品菌液浓度
3.核酸计数法 荧光定量PCR技术
4.活菌计数法 MPN和平板计数法
由于测定方法的限制,前几种计数结果不太准确,目前应用广泛的是第四种
对粪大肠菌群和光合细菌可用MPN,对其他微生物可用平板计数法