㈠ 如何弱化反馈抑制,增加反馈阻遏
微生物发酵通常是微生物的代谢控制过程。在这个过程中,对特定代谢链中关键反应的关键酶活性的控制有反馈阻遏和反馈抑制两种方式。反馈阻遏与反馈抑制通常也是共同作用的。
反馈抑制是通过变构效应物(通常是反应产物)与酶的变构中心结合,改变了酶的活性中心结构,从而降低-甚至抑制-了酶的活性,使反应停止。
而反馈阻遏则是通过反应产物与mRNA或rRNA(记不起来了)结合,阻止了酶分子的合成,从而减少了酶的产量,使反应速率下降,并最终停止。
可以说,反馈抑制是“短期行为”,没有从根本上解决问题。而反馈阻遏则是“长期行为”,是“釜底抽薪”,是从根本上截断了反应链条。
解除反应产物对关键反应中关键酶的反馈阻遏,是提高发酵产物产量的关键因素之一。
㈡ 如何利用代谢调控提高微生物发酵产物的产量
一般改变微生物代谢调节的方法有如下几种:
第一种 是采用物理化学诱变,获得营养缺陷型
第二种方法是应用抗反馈调节突变法。
第三种就是控制发酵条件,改变细胞的渗透性。
一、应用营养缺陷型菌株以解除正常的反馈调节
这是氨基酸生产菌育种的最有效的办法。营养缺陷型是指某菌种失去合成某种物质的能力,即合成途径中某一步发生突变,使合成反应不能完成,最终产物不能积累到引起反馈调节的浓度,从而有利于中间产物的积累。例如,用高丝氨酸缺陷型生产菌进行赖氨酸发酵。一般在形成赖氨酸的过程中有3种产物生成,只有赖氨酸和苏氨酸都达到一定浓度时,才能形成反馈抑制,从高丝氨酸切断这两个分支后,不能形成苏氨酸,也就不能形成反馈抑制。最后使赖氨酸的大量积累,这是打破代谢调节的第一种方法。
在直线式的合成途径中,营养缺陷型突变株只能累积中间代谢物而不能累积最终代谢物。
在分支代谢途径中,通过解除某种反馈调节,就可以使某一分支途径的末端产物得到累积。
二、应用抗反馈调节的突变株解除反馈调节
抗反馈调节突变菌株,指对反馈抑制不敏感或对阻遏有抗性的组成型菌株,或兼而有之的菌株。在这类菌株中,因其反馈抑制或阻遏已解除,或是反馈抑制和阻遏已同时解除,所以能分泌大量的末端代谢产物。
例如,当把(钝齿棒杆菌)培养在含苏氨酸和异
亮氨酸的结构类似物AHV(α-氨基-β-羟基戊酸)的培养基上时,由于AHV可干扰该菌高丝氨酸脱氢酶、苏氨酸脱氢酶以及二羧酸脱水酶,所以抑制了该菌的正常生长。如果采用诱变(如用亚硝基胍作为诱变剂)后所获得的抗AHV突变株进行发酵,就能分泌较多的苏氨酸和异亮氨酸。这是因为,该突变株的高丝氨酸脱氢酶或苏氨酸脱氢酶和二羧酸脱水酶的结构基因发生了突变,故不再受苏氨酸或异亮氨酸的反馈抑制,于是有大量的苏氨酸和异亮氨酸的累积。如进一步再选育出甲硫氨酸缺陷型菌株,则其苏氨酸产量还可进一步提高,原因是甲硫氨酸合成途径上的两个反馈阻遏也被解除了。
三、控制细胞膜的渗透性
微生物的细胞膜对于细胞内外物质的运输具有高度选择性。 细胞内的代谢产物高浓度累积着,并自然地通过反馈阻遏限制了它们的进一步合成。采取生理学或遗传学方法,改变细胞膜的透性,使细胞内的代谢产物迅速渗漏到细胞外。这种解除末端产物反馈抑制作用的菌株,可以提高发酵产物的产量。
1.通过生理学手段控制细胞膜的渗透性在谷氨酸发酵生产中,生物素的浓度对谷氨酸的累积有着明显的影响,只有把生物素的浓度控制在亚适量情况下,才能分泌出大量的谷氨酸。
生物素影响细胞膜渗透性的原因,是由于它是脂肪酸生物合成中乙酰CoA羧化酶的辅基此酶可催化乙酰CoA的羧化并生成丙二酸单酰辅酶A,进而合成细胞膜磷脂的主要成分——脂肪酸。因此,控制生物素的含量就可以改变细胞膜的成分,进而改变膜的透性和影响谷氨酸的分泌。当培养液内生物素含量很高时,只要添加适量的青霉素也有提高谷氨酸产量的效果。其原因是青霉素可抑制细菌细胞壁肽聚糖合成中转肽酶的活性,结果引起其结构中肽桥间无法进行交联,造成细胞壁的缺损。这种细胞的细胞膜在细胞膨压的作用下,利于代谢产物的外渗,并因此降低了谷氨酸的反馈抑制和提高了产量。
2.通过细胞膜缺损突变而控制其渗透性应用谷氨酸产生菌的油酸缺陷型菌株,在限量添加油酸的培养基中,也能因细胞膜发生渗漏而提高谷氨酸的产量。这是因为油酸是一种含有一个双键的不饱和脂肪酸(十八碳烯酸),它是细菌细胞膜磷脂中的重要脂肪酸。油酸缺陷型突变株因其不能合成油酸而使细胞膜缺损。另一种可以利用石油发酵产生谷氨酸的(解烃棒杆菌)的甘油缺陷型突变株,由于缺乏a-磷酸甘油脱氢酶,故无法合成甘油和磷脂。其细胞内的磷脂含量不到亲株含量的一半,但当供应适量甘油(200μg/ml)时,菌体即能合成大量谷氨酸(72g/L),且不受高浓度生物素或油酸的干扰。
㈢ 如何避开固有的反馈调节方法
微生物的细胞膜对于细胞内外物质的运输具有高度选择性。采取生理学或遗传学方法,可以改变细胞膜的透性,使细胞内的代谢产物迅速渗漏到细胞外,这种解除末端产物反馈抑制作用的菌株,可以提高发酵产物的产量。
㈣ 说明反馈调节过程
所谓反馈,就是系统的输出变成了决定系统未来功能的输入;一个系统,如果其状态能够决定输入,就说明它有反馈机制的存在。要使反馈系统能起控制作用,系统应具有某个理想的状态或位置点,系统就能围绕位置点而进行调节。反馈分为正反馈和负反馈。负反馈控制可使系统保持稳定,正反馈使偏离加剧。在中学生物学里,反馈调节的方式涉及多个方面。
一、生态系统中抵抗力稳定性的反馈调节
生态系统抵抗力稳定性是指生态系统具有抵抗外界干扰并使得自身的结构和功能保持原状的能力。这种能力是通过自身的自动调节能力实现的,这种自动调节的能力是通过生态系统内部的反馈机制来实现的,包括负反馈机制和正反馈机制。例如,在生物生长过程中个体越来越大,在种群持续增长过程中,种群数量不断上升,这都属于正反馈。正反馈也是有机体生长和存活所必需的。但是,正反馈不能维持稳态,要使系统维持稳态,只有通过负反馈控制。
1、负反馈
负反馈是比较常见的一种反馈,它的作用是能够使生态系统保持相对稳态。反馈的结果是抑制或减弱最初发生变化的那种成分所发生的变化。例如,草原上的草食动物因为迁入而增加,植物就会因为受到过度啃食而减少,植物数量减少以后,反过来就会抑制动物的数量。同样,当草原上的兔子数量增多的时候,植被迅速减少造成兔的食物不足,这时食兔动物(如狐、鹰等)有了丰富的食物来源,数量随之增加。由于食物不足和天敌数量增加,就会使兔的数量下降,从而减轻了对植物的压力,植物数量得以恢复。 由于生态系统具有负反馈的自我调节机制,所以在通常情况下,生态系统会保持自身的生态平衡。
2、正反馈
正反馈是一种比较少见的反馈,其作用正好与负反馈调节相反,即生态系统中某一成分的变化所引起的其他一系列变化,反过来加速最初发生变化的成分所发生的变化,因此正反馈调节的作用往往是使生态系统远离稳态。在自然生态系统中正反馈的实例不多,常见的例子是一个湖泊受到了污染,鱼类的数量就会因为死亡而减少,鱼体死亡腐烂后又会进一步力加重污染并引起更多的鱼类死亡。
因此生态系统稳态的维持,主要是通过负反馈来调节实现的。由于正反馈机制的存在,提醒我们不能轻易地破坏生态系统的稳态。
二、微生物代谢中酶活性的反馈调节
微生物代谢的调节机制主要有两种:酶合成调节机制和酶活性调节机制。酶活性调节又包括酶活性的激活和抑制两个方面。酶活性的抑制主要是反馈抑制,它主要表现在某个代谢途径的末端产物(即最终产物)过量时,这个产物会反过来直接抑制该途径中第一个酶的活性,促使整个反应过程减慢或停止,从而避免了末端产物的过多累积。反馈抑制具有作用直接、高效快速以及当末端产物浓度降低时又可重新解除等优点。如谷氨酸棒状杆菌合成谷氨酸过程中的调节机制。
三、动物激素分泌的反馈调节
在大脑皮层的影响下,下丘脑可以通过垂体分泌一种激素(如促甲状腺激素)来调节和控制某些内分泌腺(如甲状腺)中某激素(如甲状腺激素)的合成和分泌;而某激素进入血液后,其浓度的高低又可以反过来调节下丘脑和垂体中有关激素的合成和分泌。这种调节作用叫做反馈调节。如果这种反馈调节是促进原来激素的分泌,叫做正反馈;如果这种反馈调节是抑制原来激素的分泌,就叫做负反馈(上述例子是负反馈调节)。其中以负反馈较为明显。通过反馈调节作用,血液中的激素能够经常维持在正常的相对稳定的水平。正反馈与负反馈都是适应机体需要的激素分泌调节的一种重要形式。
㈤ 1、微生物遗传育种里的 三板斧是什么 2、微生物代谢控制育种中的理论依据有哪些
微生物遗传育种里的 三板斧是:诱变,筛选,鉴定
微生物代谢控制育种中的理论依据:解除产物反馈抑制
㈥ 微生物进行酶调节的方式有哪些
包括酶活性的激活和抑制两个方面,抑制主要通过反馈抑制。酶活力的激活:酶活力的激活是指代谢途径中催化后面反应的酶活力被前面的中间代谢产物(分解代谢时)或前体(合成代谢时)所促进的现象。例如,粪肠球菌的乳酸脱氢酶活力为1,6-二磷酸果糖所促进,粗糙脉孢菌的异柠檬酸脱氢酶活力为柠檬酸所促进,这是分解代谢途径中酶活力激活的例子。在大肠杆菌、节杆菌和深红红螺菌等合成糖原时,1-磷酸葡萄糖对焦磷酸酶促反应有激活作用。酶活力的抑制:酶活力的抑制主要为产物抑制,它发生在酶促反应的产物没有被后面反应用去的时候。一个酶与其底物结合在一起便发生酶促反应,同时有反应产物释放出来。因为酶促反应通常都是平衡反应,所以如果有反应产物积累,催化该步反应的酶活力就受到抑制。抑制大多属反馈抑制类型。反馈抑制是指生物合成途径的终产物反过来对该途径中第一个酶(调节酶)活力的抑制作用。例如,当细胞内氨基酸或核苷酸等终产物过量而积累的时候,积累的终产物反过来直接抑制该途径中第一个酶的活力,使整个合成过程减慢或停止。从而避免了不必要能量和养料浪费。反馈抑制是酶活力调节的一种主要方式,它具有调节精细、快速以及需要这些终产物时可以消除抑制再重新合成等优点。在从苏氨酸合成异亮氨酸的途径中,异亮氨酸的过多合成抑制该合成途径第一个酶一一苏氨酸脱氨酶便是最简单的一个例子。
㈦ 如何人工克服微生物次级代谢调控作用的限制
1.改变其遗传物质 2.控制发酵条件,
第2个是高3生物课本的原话
㈧ 微生物问题
因为这道题属于微生物代谢控制的题,回答起来挺麻烦,就没回答。可好几天了,一直没人回答。还是我来吧。。。
由代谢途径看出,C→D反应受产物F的反馈抑制和阻遏。可见C→G是优先途径,其次为C→F途径。当G和F都满足微生物需要时,C→D反应受产物F的反馈抑制和阻遏,C→D反应中止,才会进行C→E途径。再考虑到A→B反应受E、F的反馈抑制,所以:
(1)若要得到产物E的高产菌株,首先是把由C到D的反应打断,使C积累,让反应链由C到E进行。因此,一是要让催化由C到D的酶不再产生,以解除产物F对C→D酶的反馈抑制和阻遏。则遗传标记是F缺陷型。此标记的目的是打断C→D反应,以积累C(不用考虑G。只要是F缺陷型,C→G就一定被打断了)。二是解除A→B反应受到E、F的反馈抑制。但由于A→B反应是产生产物E所必需的,所以A→B酶必须存在,且必须保持高活性。由于已经有了F缺陷型标记,则剩下的就是解除A→B反应受到E、F的反馈抑制,即A→B酶对E、F的反馈抑制不敏感。由于A→B酶是受到E、F的协同反馈抑制(即需要E、F同时存在,才能对A→B酶产生抑制作用),而F已经不存在了,所以E、F对A→B的反馈抑制也得以解除。
(2)应采用缺乏F的培养基,且在缺乏F的培养基中不能生长。原因是该菌株没有C→D酶,不能合成F,必须由培养基中供给。如果培养基中缺乏F,则该菌株就不能生长。这是筛选E高产菌株的必需条件。该培养基可当“筛子”用。
(3)如果添加前体C,可大幅度提高产物E的产量。在保持发酵培养基中F供给亚适量条件下(不会对A→B酶产生协同反馈抑制),添加前体C,可补充前体A和/或B的不足,为产物E的大量积累创造良好条件。
上面的代谢途径看上去是赖氨酸的代谢途径。
㈨ 微生物的反馈抑制有哪几种类型
同工酶反馈抑制:在分支途径中的第一个酶有几种结构不同的一组同工酶,每一种代谢终产物只对一种同工酶具有反馈抑制作用,只有当几种终产物同时过量时,才能完全阻止反应的进行。
协同反馈抑制:在分支代谢途径中,几种末端产物同时都过量,才对途径中的第一个酶具有抑制作用。若某一末端产物单独过量则对途径中的第一个酶无抑制作用。
累积反馈抑制:在分支代谢途径中,任何一种末端产物过量时都能对共同途径中的第一个酶起抑制作用,而且各种末端产物的抑制作用互不干扰。当各种末端产物同时过量时,它的抑制作用累加。
顺序反馈抑制:分支代谢途径中的两个末端产物,不能直接抑制代谢途径中的第一个酶,而是分别抑制分支点后的反应步骤,造成分支点上中间产物的积累,这种高浓度的中间产物再反馈抑制第一个酶的活性。因此,只有当两个末端产物都过量时,才能对途径中的第一个酶起到抑制作用。