① 生物分离工程中有什么方法啊
蒸发、过滤(普通过滤,膜过滤)、离心分离、萃取、层析、色谱(薄层色谱、柱色谱)、电泳、
② 工业常用的生物分离技术有哪几种
常用到得分离方法:盐析。常用的中性盐有硫酸铵、氯化钠、硫酸钠等,但以硫酸铵为最多。得到的蛋白质一般不失活,一定条件下又可重新溶解,故这种沉淀蛋白质的方法在分离、浓缩,贮存、纯化蛋白质的工作中应用极广。
萃取分离法(包括溶剂萃取、胶团萃取、双水相萃取、超临界流体萃取、固相萃取、固相微萃取、溶剂微萃取等)、医学|教育|网搜集整理膜分离方法(包括渗析、微滤、超滤、纳滤、反渗透、电渗析、膜萃取、膜吸收、渗透汽化、膜蒸馏等)。
层析方法(离子交换层析、尺寸排阻层析、疏水层析、固定离子交换层析IMAC、亲和层析等)。在这些方法中膜分离的方法和层析技术越来越受到人们的重视。
(2)生物分离包括哪些扩展阅读:
离心分离
借助于离心力,使比重不同的物质进行分离的方法。除常见的固-液离心分离、液-液、气-气(如235U的浓缩)、固-气离心分离等以外,由于超速离心机的发明,不仅能分离胶体溶液中的胶粒,更重要的是它能测定胶粒的沉降速率、平均分子量及混合体系的重量分布。
因而在胶体化学研究、测定高分子化合物(尤其是天然高分子)的分子量及其分布,以及生物化学研究和细胞分离等都起了重大作用。
离心分离法与色谱法结合而产生的场流分级法(或称外力场流动分馏法),则是新的更有效的分离方法,不但对大分子和胶体有很强的分离能力,而且其可分离的分子量有效范围约为103~1017。
③ 生物分离工程可分为几大部分,分别包括哪些单元操作
全书共十章,包括发酵液的预处理、细胞的分离、沉淀、萃取、膜技术、吸附与离子交换、色谱技术、离心、生物产品的浓缩结晶与干燥等生物产品分离纯化过程所涉及的全部技术内容。本书通俗易懂、深入浅出,可读性较强。
本书可作为高等院校相关专业本科生的教材,也可供从事生物分离工程工作及研究的有关人员参考。
前言
第一章 绪论
第一节 生物分离工程的性质、内容与分类
一、生物分离工程的性质
二、生物分离工程的研究内容
三、生物分离过程的分类
第二节 生物分离工程的一般流程
一、发酵液的预处理
二、产物的提取
三、产物的精制
四、成品的加工处理
五、生物分离纯化工艺过程的选择依据
第三节 生物分离过程的特点
一、生物分离过程的体系特殊
二、生物分离过程的工艺流程特殊
三、生物分离过程的成本特殊
第四节 生物分离工程的发展趋势
一、生物分离工程的发展趋势
二、生物分离工程研究应注意的问题
思考题
第二章 发酵液的预处理
第一节 发酵液预处理的方法
一、发酵液的一般特征
二、发酵液预处理的目的和要求
三、发酵液预处理的方法
第二节 发酵液的过滤,
一、发酵液过滤的目的
二、影响发酵液过滤的因素
三、发酵液过滤的方法
四、提高过滤性能的方法
五、过滤介质的选择
六、过滤操作条件优化
七、过滤设备
思考题
第三章 细胞分离技术
第一节 细胞分离
一、过滤
二、离心沉降
第二节 细胞破碎
一、细胞壁的结构
二、细胞破碎动力学
三、细胞破碎的方法
第三节 胞内产物的溶解及复性
一、包含体及其形成
二、包含体的分离和溶解
三、蛋白质复性
思考题
第四章 沉淀技术
第一节 概述
第二节 蛋白质表面性质
一、蛋白质表面的亲水性和疏水性
二、蛋白质表面的电荷
三、蛋白质胶体的稳定性
第三节 蛋白质沉淀方法
一、盐析法
二、有机溶剂沉淀法
三、等电点沉淀法
四、非离子多聚物沉淀法
五、变性沉淀
六、生成盐类复合物的沉淀
七、亲和沉淀
八、SIS聚合物与亲和沉淀
第四节 沉淀技术应用
一、蛋白质
二、多糖
三、茶皂甙纯化工艺研究
四、杜仲水提液中氯原酸的提取
思考题
第五章 萃取技术
第一节 基本概念
一、萃取的概念、特点及分类
二、分配定律
三、分配系数、相比、分离系数
第二节 液液萃取的基本理论与过程
一、液液萃取的基本原理
二、液液萃取类型及工艺计算
第三节 有机溶剂萃取
一、有机溶剂萃取分配平衡
二、影响有机溶剂萃取的因素
三、有机溶剂萃取的设备及工艺过程
第四节 双水相萃取
一、双水相体系的形成
二、相图
三、双水相中的分配平衡
四、影响双水相分配系数的主要因素
五、双水相萃取的设备及工艺过程
第五节 液膜萃取
一、液膜及其分类
二、液膜萃取机理
三、液膜分离操作
四、乳化液膜分离技术的工艺流程
五、液膜分离过程潜在问题
六、液膜分离技术的应用
第六节 反胶团萃取
一、胶团与反胶团
二、反胶团萃取
三、反胶团制备
四、反胶团萃取的应用
第七节 液固萃取
一、液固萃取过程
二、液固萃取类型
三、浸取的影响因素
四、浸取的其他问题
五、浸取的工业应用
第八节 超临界流体萃取
一、超临界流体
二、超临界流体萃取
三、超临界萃取的实验装置与萃取方式
四、超临界流体萃取条件的选择
五、超临界流体萃取的基本过程
六、超临界流体萃取的应用实例
第九节 萃取技术应用及研究进展
一、双水相萃取技术应用及研究进展
二、液膜萃取技术应用及研究进展
三、反胶团萃取技术应用及研究进展
四、超临界流体萃取技术应用及研究进展
思考题
第六章 膜分离过程
第一节 概述
一、膜分离过程的概念和特征
二、膜过程分类
三、分离膜
第二节 压力驱动膜过程
一、反渗透和纳滤
二、超滤和微滤
第三节 电推动膜过程——电渗析
一、电渗析的基本原理
二、电渗析传递过程及影响因素
三、电渗析膜
四、应用
第四节 膜接触器——膜萃取
一、膜萃取的基本原理
二、膜萃取的传质过程
三、膜萃取过程影响因素
四、应用
第五节 其他膜分离过程
一、浓差推动膜过程——渗透蒸发
二、温差推动膜过程——膜蒸馏
第六节 膜分离过程装置
一、滤筒式膜组件
二、板框式膜组件
三、螺旋卷式膜组件
四、管式膜组件
五、毛细管式膜组件
六、中空纤维式膜组件
思考题
第七章 吸附与离子交换
第一节 概述
一、吸附过程
二、吸附与离子交换的特点
第二节 吸附分离介质
一、吸附剂
二、离子交换剂
第三节 吸附与离子交换的基本理论
一、吸附平衡理论
二、影响吸附的主要因素
三、离子交换平衡理论
第四节 基本设备与操作
一、固定床吸附操作
二、移动床吸附器
三、膨胀床吸附操作
四、流化床吸附操作
五、吸附器净化效率的计算与选择
思考题
第八章 色谱分离技术
第一节 色谱分离技术概述
一、色谱技术的基本概念
二、色谱法的分类
三、色谱系统的操作方法
第二节 吸附色谱法
一、吸附色谱基本原理
二、吸附薄层色谱法
三、吸附柱色谱法
第三节 分配色谱法
一、基本原理
二、分配色谱条件
三、分配色谱基本操作
四、分配色谱法的应用
第四节 离子交换色谱法
一、离子交换色谱技术的基本原理
二、离子交换剂的类型与结构
三、离子交换剂的理化性能
四、离子交换色谱基本操作
五、离子交换色谱的应用
第五节 亲和色谱
一、亲和色谱概述
二、亲和色谱原理
三、亲和色谱介质
四、亲和色谱介质的制备
五、亲和色谱的操作过程
六、影响亲和色谱的因素
第六节 色谱分离技术的应用
一、亲和色谱的应用
二、离子交换色谱的应用
三、吸附色谱的应用
四、分配色谱的应用
五、多种色谱技术的组合应用
思考题
第九章 离心技术
第一节 离心分离原理
一、离心沉降原理
二、离心过滤原理
第二节 离心分离设备
一、离心分离设备概述
二、离心沉降设备
三、离心过滤设备
四、离心分离设备的放大
第三节 超离心技术
一、超速离心技术原理
二、超速离心技术分类
三、超速离心设备
第四节 离心技术在生物分离中的应用
一、离心技术在生物分离应用中的注意事项
二、离心分离的优缺点
三、离心机的选择
四、离心在生物分离中的应用
思考题
第十章 浓缩、结晶与干燥
第一节 蒸发浓缩工艺原理与设备
一、蒸发浓缩工艺
二、蒸发浓缩设备
第二节 结晶工艺原理和设备
一、结晶操作工艺原理
二、结晶设备
第三节 干燥工艺原理与设备
一、干燥工艺原理
二、干燥设备
思考题
④ 分离纯化微生物的方法有哪些各方法适用分离什么菌种
主要有:划线法、倒平板法、涂布法,根据分离的菌种选择不同的培养基。
稀释混合倒平板法、稀释涂布平板法、平板划线分离法、稀释摇管法、液体培养基分离法、单细胞分离法、选择培养分离法等。其中前三种方法最为常用,不需要特殊的仪器设备,分离纯化效果好。
从混杂微生物群体中获得只含有某一种或某一株微生物的过程称为微生物分离与纯化。在分子生物学的研究及应用中,不仅需要通过分离。
分离技术
主要是稀释和选择培养,稀释是在液体中或在固体表面上高度稀释微生物群体,使单位体积或单位面积仅存留一个单细胞,并使此单细胞增殖为一个新的群体。最常用的为平板划线法。
如果所要分离的微生物在混杂的微生物群体中数量极少或者增殖过慢而难以稀释分离时,需要结合使用选择培养法,即选用仅适合于所要分离的微生物生长繁殖的特殊培养条件来培养混杂菌体,改变群体中各类微生物的比例,以达到分离的目的。为保证分离到的微生物是纯培养,分离时必须用。
以上内容参考:网络-微生物分离纯化
⑤ 什么是生物细胞分离
生物细胞分离是在高渗透液中细胞壁和细胞膜发生分离。原理是细胞膜的流动性和透过性。
细胞分离技术包括离心技术、流式细胞术和细胞电泳。离心是研究如细胞核、线粒体、高尔基体、溶酶体和微体,以及各种大分子基本手段。流式细胞术是对单个细胞进行快速定量分析与分选的一门技术。细胞电泳是指在一定PH 值下细胞表面带有净的正或负电荷,能在外加电场的作用下发生泳动
⑥ 生物样品分离有哪些实验技术
生物样品分离的实验技术:吸附柱层析,薄层层析,离子交换层析,凝胶过滤。
离子交换层析是在以离子交换剂为固定相,液体为流动相的系统中进行的。离子交换剂是由基质、电荷基团和反离子构成的。离子交换剂与水溶液中离子或离子化合物的反应,主要以离子交换方式进行,或借助离子交换剂上电荷基团对溶液中离子或离子化合物的吸附作用进行。
典型性
采样的部位要能充分反映所了解的情况,这就是典型性。而适时性是根据研究的目的和环境污染物对植物的影响,必须按照植株的生长状况,发育阶段以及植株的不同部位,如根、茎、叶和果实或具体要求进行分别采样。为了植株同一部分进行比较分析,不能将植株的上、下部位随意混合。
以上内容参考:网络-生物样品
⑦ 生物分离技术和原理是
离心力、分子大小(筛分)、浓度差、压力差、电荷效应、吸附作用、静电作用、亲和作用、疏水作用、溶解度、平衡分离等原理对原料或产物进行分离、纯化
⑧ 生物 分离现象的定义
生物的分离现象是由孟德尔发现的,后来推出了分离定律(孟德尔第一定律)。
杂种生物在形成性细胞时,等位基因相互分离,进入到不同的配子中去的现象。设CC代表纯种开红花的豌豆植株,cc代表开白花的植株,则F1的杂合体为Cc,当减数分裂时,这对等位基因相互分离,形成C和c两种配子。这些配子随机受精,F2形成CC、Cc、cc三种基因型的个体,成1∶2∶1之比,这是基因型的分离比。如C对c为显性,则F2开红花的植株∶开白花的植株=3∶1,这是表现型的分离比。生物界普遍存在着分离现象。杂种一代(F1)所以不能真实遗传,就是因为后代发生了分离现象。
⑨ 什么是生物分离与化学分离相比有何特点
生物分离的基本概念
生物分离是从生物材料、微生物的发酵液、生物反应液或动植物细胞的培养液中分离并纯化有关产品(如具有药理活性作用的蛋白质等)的过程,又称为下游加工过程。
生物分离过程的主要特点
n
常无固定操作方法可循
生物材料组成非常复杂
n
分离操作步骤多,不易获得高收率
培养液(或发酵液)中所含目的物浓度很低,而杂质含量却很高
n
分离进程必须保护化合物的生理活性
生物活性成分离开生物体后,易变性、破坏
n
基因工程产品,一般要求在密封环境下操作。
生物分离的一般工艺流程
发酵液→预处理→细胞分离→(
细胞破碎→细胞碎片分离
)
↙
→初步纯化→高度纯化→成品加工
注:(1)胞内产物需经细胞破碎,细胞碎片分离等步骤;胞外产物则将细胞去除后,对余下的液体即可进行初步纯化。
(2)在初步纯化及其以前的各步操作,处理的体积较大,着重于浓缩,称为提取或分离;以后各步为精细的分离操作,着重于纯化,称为精制(或纯化)。
生物分离的各阶段的常用方法
(1)发酵液的预处理
n
加热
n
调pH
n
絮凝和凝聚
(2
)固液分离
n
沉降
n
离心分离
n
过滤
n
错流过滤
(3)细胞破碎
n
机械法
高压匀浆、高速珠磨、
超声波破碎
n
非机械法
化学法、酶解法、渗透压冲击法、冻结融化法、干燥法
(4
)初步纯化
n
沉淀法
n
吸附法
n
萃取法
n
超滤法
(5)高度纯化
n
层析
亲和层析、凝胶层析、离子交换层析
n
电泳
n
结晶和重结晶
(6
)成品加工
n
无菌过滤
n
去热原
n
干燥
冷冻干燥、喷雾干燥
n
制剂
生物分离方法的选择依据
n
传统生物药物(抗生素)
根据具体条件,通过小实验决定,选择时应考虑两个因素。
(1)抗生素的理化性质:极性、酸碱性、溶解度等,了解其理化性质,通常利用纸层析和纸电泳的方法。
(2)抗生素的稳定性:要了解它在什么样的pH和温度范围易受破坏。
纸层析
抗生素在某一种溶剂中的Rf值大,表明它在该种溶剂中溶解度大;相反,如Rf值小,则溶解度小。如Rf为零,则说明不能溶解。如抗生素在极性强的溶剂中有较大的Rf值,则表明该抗生素是极性化合物;而非极性抗生素在非极性溶剂中Rf值较大,在极性溶剂中Rf值较小。
纸电泳
通过纸层析判断为水溶性的抗生素,可用纸电泳法进一步判断其电离性质。
电泳结果与样品性质的判断见课本第六页表1-1。
生物分离方法的选择依据
n
基因工程药物
应根据目标蛋白和杂蛋白在物理、化学和生物化学方面性质的差异,如,生物特异性、分子量、等电点值和稳定性等。当几种方法联用时,最好以不同的分离机理为基础,且前一种方法处理过的液体应能适于后一种方法的料液。