导航:首页 > 生物信息 > 如何进行生物信息学的序列比对

如何进行生物信息学的序列比对

发布时间:2022-08-12 02:54:26

⑴ 怎样进行局部比对 生物信息

SW-local经典算法,可以自己写写程序,实现局部比对,主要应用打分矩阵+动态规划实现。
已有的软件包括,blat, blast, est2genome, sim4, exonerate, genewise, xat 等等。
主要是针对非短序列比对。

⑵ 生物信息系统序列比对存入什么数据

生物信息系统序列比对存入什么数据
生物信息学在短短十几年间,已经形成了多个研究方向,以下简要介绍一些主要的研究重点。
序列比对
序列比对(Sequence Alignment)的基本问题是比较两个或两个以上符号序列的相似性或不相似性。从生物学的初衷来看,这一问题包含了以下几个意义:从相互重叠的序列片断中重构DNA的完整序列。在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列,比较两个或多个序列的相似性,在数据库中搜索相关序列和子序列,寻找核苷酸(nucleotides)的连续产生模式,找出蛋白质和DNA序列中的信息成分。序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等。两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达10^9bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效。因此,启发式方法的引入势在必然,着名的BLAST和FASTA算法及相应的改进方法均是从此前提出发的。
蛋白质比对
基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似。蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等。氨基酸的序列内在的决定了蛋白质的3维结构。一般认为,蛋白质有四级不同的结构。研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找dockingdrugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成。直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构在进化中更稳定的保留,同时也包含了较AA序列更多的信息。蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应(不一定全真),物理上可用最小能量来解释。从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构。同源建模(homology modeling)和指认(Threading)方法属于这一范畴。同源建模用于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较进化族中不同的蛋白质结构。然而,蛋白结构预测研究现状还远远不能满足实际需要。

⑶ 生物信息学角度解释已知有一条未知序列,如何预测它的功能

咨询记录 · 回答于2021-12-21

⑷ 如何通过生物信息学手段确定基因组中编码序列,非编码序列

这个可以用NCBI的数据库进行查询。
1、可以直接进行Blast序列比对,在数据库中进行比对。
2、采用ORF Finding,可以对编码区进行预测。

⑸ 如何使用seqbuilder比对序列

这里对多重序列比对格式(Multiple sequence alignment – MSA)进行总结。在做系统演化分析、序列功能分析、基因预测等,都需要涉及到多重序列比对。特别是当需要用不同软件对多重比对序列进行批量操作时,会遇到各种的格式,而这些格式是如何产生的,有什么区别,格式之间如何转换,从哪里可以下载到相关的格式序列,不同的格式又有什么特殊的用途等,本篇文章将就这些问题进行总结与讨论。因为涉及内容较多,不足之处,欢迎大家补充或者批判。
生物信息学的基础是基于这样的一个假设:序列相似,结构相似,功能相似。所以相似的一组序列,就可能同属于一个基因家族,而这样的一组序列相似的部分,就可能使其功能之所在,称其为结构域。这是对于基因家族分类的一种方式,将结构与功能进行联系,从而实现从结构预测功能(序列称为一级结构)。

进行多重比对、多重序列的编辑、多重序列注释、存储与展示、系统演化分析等,不同的软件、不同的系统,除了要兼容现有的格式,还会根据自身的需要,都定义新的格式。所以这些本身可以进行部分的格式转换,同时许多脚本模块比如bioperl等也提供了一些格式之间转换的脚本。这些格式同发布其软件平台有着密切的联系,随着软件的流行而流行。

⑹ 详细介绍双序列比对、blast 以及多序列比对的区别,以及均适用于哪些场 景

序列比对是将两个或多个序列排列在一起,标明其相似之处。使用间隔表示未比对上,比对上的相同或相似的符号排列在同一列上。序列比对是生物信息学以及基因组学与进化的基础之一,其基本思想是:在生物学中普遍存在的序列决定结构、结构决定功能的规律,通过将核酸序列或者蛋白质序列的一级结构看成由基本字符构成的字符串,通过序列比对我们可以找到相似的序列并由此发现生物序列中的功能、结构和进化信息。
全局比对:全局比对是指将参与比对的两条序列里面的所有字符进行比对。全局比对在全局范围内对两条序列进行比对打分,找出最佳比对,主要被用来寻找关系密切的序列。其可以用来鉴别或证明新序列与已知序列家族的同源性,是进行分子进化分析的重要前提。其代表是Needleman-Wunsch算法。
局部比对:与全局比对不同,局部比对不必对两个完整的序列进行比对,而是在每个序列中使用某些局部区域片段进行比对。其产生的需求在于、人们发现有的蛋白序列虽然在序列整体上表现出较大的差异性,但是在某些局部区域能独立的发挥相同的功能,序列相当保守。这时候依靠全局比对明显不能得到这些局部相似序列的。其次,在真核生物的基因中,内含子片段表现出了极大变异性,外显子区域却较为保守,这时候全局比对表现出了其局限性,无法找出这些局部相似性序列。其代表是Smith-Waterman局部比对算法。
双重序列比对:双序列比对是指对两条序列M和N进行比对,找到其相似性关系,这种寻找生物序列相似性关系的过程被称为双序列比对。其算法可以主要分成基于全局比对的Needleman-Wunsch算法和基于局部比对的Smith-Waterman局部比对算法
多重序列比对:多序列比对是双序列比对推广,即把两个以上字符序列对齐,逐列比较其字符的异同,使得每一列字符尽可能一致,以发现其共同的结构特征的方法称为多序列比对。多序列比对算法可以分成渐进法和同步法。其可以发现不同的序列之间的相似部分,从而推断它们在结构和功能上的相似关系,主要用于分子进化关系,预测蛋白质的二级结构和三级结构、估计蛋白质折叠类型的总数,基因组序列分析等。
基因组比对:是多序列比对的一种特例,指对基因组范围内的序列信息进行比对的过程。通过对不同亲缘关系物种的基因组序列进行比较,能够鉴定出编码序列、非编码调控序列及给定物种独有的序列。而基因组范围之内的序列比对,可以了解不同物在核苷酸组成、同线性关系和基因顺序方面的异同,进而得到基因分析预测与定位、生物系统发生进化关系等方面的信息。
BLAST:BLAST[1](Basic Local Alignment Search Tool)是在在1990年由Altschul等人提出的双序列局部比对算法,是一套在蛋白质数据库或DNA数据库中进行相似性比较的分析工具。BLAST是一种启发式算法,用于在大型数据库中寻找比对序列,是一种在局部比对基础上的近似比对算法,可以在保持较高精度的情况下大大减少程序运行的时间。
算法思想描述:
双重序列比对主要分成以Needleman-Wunsch算法为代表的全局比对和以Smith-Waterman局部比对算法为代表的局部比对,BLAST是局部比对的一种推广。多重比对算法可以主要分成动态规划算法、随机算法、迭代法和渐进比对算法。
(1)双重序列比对:
Needleman-Wunsch算法:该算法是基于动态规划思想的全局比对的基本算法,动态规划的比对算法的比对过程可以用一个以序列S为列,T为行的(m+1)×(n+1)的二维矩阵来表示,用
sigma表示置换矩阵。
在计算完矩阵后,从矩阵的右下角单元到左上单元回溯最佳路径(用箭头表示),根据最佳路径给出两序列的比对结果。其中,斜箭头表示2个残基匹配,水平箭头表示在序列S的相应位置插入一个空位,垂直方向的箭头表示在序列T的相应位置插入一个空位。

Smith-Waterman算法:该算法是一种用来寻找并比较具有局部相似性区域的动态规划算法,这种算法适用于亲缘关系较远、整体上不具有相似性而在一些较小的区域上存在局部相似性的两个序列。该算法的基本思想是:使用迭代方法计算出两个序列的相似分值,存在一个得分矩阵M中,然后根据这个得分矩阵,通过动态规划的方法回溯找到最优的比对序列。与全局比对相比,这种算法的改变是把矩阵单元值为负者一律取为0,这是因为分值为负的比对丧失了比对的生物学意义,因此把得分为负值的子序列丢弃。

BLAST: BLAST算法的基本思想是通过产生数量更少的但质量更好的增强点来提高比对的速度。算法的原理主要分为以下五步:(1)过滤:首先过滤掉低复杂度区域,即含有大量重复的序列;(2)Seeding:将Query序列中每k个字组合成一个表,即将一个序列拆分成多个连续的‘seed words’(通常蛋白质k=3,核酸k=11);(3)比对:列出我们所关心的所有可能的字组,再配合置换矩阵给出高分值的字组并组织成快速搜索树结构或者哈希索引,因此此步骤可以快速搜索出大数据集中的所有匹配序列,找到每个seed words在参考序列中的位置;(4)延伸:当找到seed words的位置后,接下来需要将seed word延伸成长片段,延伸过程中,得分值也在变化,当得分值小于阈值时即停止延伸,最后得到的片段成为高分片段对,HSP(High-scoring segment pair);(5)显着性分析,最后我们使用如下公式计算E值,E值衡量了在随机情况下,数据库存在的比当前匹配分数更好的比对的数目,因此可以用该值作为指标评价HSP比对序列的可信度。
其中,m是数据库长度,n是query的长度,S是HSP分数,其他两个参数是修正系数。

(2)多重序列比对

动态规划算法:其基本思想是将一个二维的动态规划矩阵扩展到三维或者多维,多序列比对的积分是n个序列中两两进行比对所得积分之和。矩阵的维度反映了参与比对的序列数。这种方法对计算资源要求比较高[6]。
随机算法:主要包括遗传算法和模拟退火算法,遗传算法是一类借鉴生物界进化规律演化来的全局意义上的自适应随机搜索方法。当用遗传算法进行生物序列分析时,每一代包含固定数量的个体,这些个体用他们的适应度来评价。变异则模拟了生物进化过程中的偶然残基突变现象。对产生的新一代群体进行重新评价、选择、交叉、变异,如此循环往复,使群体中最优个体的适应度不断提高,直到达到一个阈值,算法结束。模拟退火的基本思想是用一物质系统的退火过程来模拟优化问题的寻优方法,当物质系统达到最小能量状态时,优化问题的目标函数也相应地达到了全局最优解。这两种方法都是对构造好的目标函数进行最优解搜索,但实际比对效果并不好[6,7]。
迭代法:迭代法的代表是Muscle[8], Muscle是一个新的渐进比对和迭代比对的综合算法,主要由两部分构成,第一部分是迭代渐进比对:第一次渐进比对的目的是快速产生一个多序列比对而不强调准确率,以此为基础再对渐进比对进行改良。经过两次渐进比对,形成一个相对准确的多序列比对;第二部分是迭代比对:该过程类似于Prrp算法[9],即通过不断的迭代,逐步优化最终比对结果。其主要特点包括:使用kmer counting进行快速的距离测量,使用一个新的图谱比对打分函数进行渐进比对,使用依赖于数的有限分隔进行细化。
渐进比对算法:该算法以Feng和Doolittle提出的最为经典[10]。渐进比对算法的基本思想是迭代地利用两序列动态规划比对算法,先由两个序列的比对开始,逐渐添加新序列,直到所有序列都加入为止。但是不同的添加顺序会产生不同的比对结果。确定合适的比对顺序是渐进比对算法的一个关键问题。通常,整个序列的比对应该从最相似的两个序列开始,由近至远逐步完成。作为全局多序列比对的渐进比对算法有个基本的前提假设:所有要比对的序列是同源的,即由共同的祖先序列经过一系列的突变积累,并经自然选择遗传下来的,分化越晚的序列之间相似程度就越高。因此,在渐进比对过程中,应该对近期的进化事件比远期的进化事件给予更大的关注。由于同源序列是进化相关的,因此可以按着序列的进化顺序,即沿着系统发育树(指导树)的分支,由近至远将序列或已比对序列按双序列比对算法逐步进行比对,重复这一过程直到所有序列都己添加到这个比对中为止[10]。其三个步骤为:(1)利用双序列比对方法对所有的序列进行两两比对,得到相似性分值;(2)利用相似性矩阵(或距离矩阵)产生辅助导向树;(3)根据导向树进行渐进比对。渐进比对算法是最常用、简单又有效的启发式多序列比对方法,它所需时间较短、所占内存较小,其算法很多,主要有CLUSTAL W, T-Coffee和DiAlign等,其中 CLUSTAL W应用最广泛。
应用:
类型+应用
双重序列对比:判断两个序列的同源性和一致性。(1)全局多序列比对可以鉴别或证明新序列与己有序列家族的同源性;帮助预测新蛋白质序列的二级和二级结构,是进行分子进化分析的重要前提。适合序列相似性较高,序列长度近似时的比对;(2)局部比对考虑序列部分区域的相似性。局部多序列比对可以用来刻画蛋白质家族和超家族。适合于未知两个序列相似程度的,可能存在一些片段极其相似而另一些片段相异的序列比对情况。
多重序列比对:多重比对经常用来研究序列间的进化关系,构建进化树;探究序列间的保守性。主要用于分子进化关系,预测蛋白质的二级结构和三级结构、估计蛋白质折叠类型的总数,基因组序列分析等。
基因组比对:通过对不同亲缘关系物种的基因组序列进行比较,能够鉴定出编码序列、非编码调控序列及给定物种独有的序列。而基因组范围之内的序列比对,可以了解不同物在核苷酸组成、同线性关系和基因顺序方面的异同,进而得到基因分析预测与定位、生物系统发生进化关系等方面的信息。
其中,BLAST作为最重要的比对工具,意义特殊,拿出来单独讨论。BLAST可以分成Basic BLAST和 Specialized BLAST, BLAST包括常规的nucleotide blast, Protein blast和Translating blast;Specialize blast可以对特殊生物或特殊研究领域的序列数据库进行检索。

⑺ 如何对已测序但其他信息未知的序列进行生物信息学分析

blast吧,先比对碱基序列的同源性,再比对氨基酸序列的同源性。
还可以看看序列中有没有rbs位点,以及起始密码和终止密码子等。如果有开放阅读框的话可以试着翻译一下,看看期蛋白质氨基酸序列。也可以用蛋白质结构预测软件分析其蛋白质高级结构

⑻ 列举常用的生物信息学数据库及序列对比常用软件及特点

一般来说所用的分析工具有在线跟下载的 下面简要列举一些常用在线软件的使用 1、使用VecScreen工具,分析下列未知序列,输出序列长度、载体序列的区域、可能使用的克隆载体都有哪些。一、步骤:
打开google 首页,搜索VecScreen,进入VecScreen首页,复制序列,运行,View report。
二、结果:
输出序列长度918bp,
载体序列的区域456bp——854bp.
克隆载体:M13mp18 phage,pGEM-13Zf(+),pBR322,pRKW2。
2、使用相应工具,分析下列未知序列的重复序列情况,输出重复序列的区域、包含的所有重复序列的类型、重复序列的总长度及Masked Sequence。
一、步骤:
进入google首页,进入ICBI主页,对序列进行BLAST。得出序列是human的。
进入google首页,搜索RepeatMasker,进入RepeatMasker主页,进入RepeatMasking,复制序列,DNA source选择human,运行!点击超链接,在结果中选择
Annotation File :RM2sequpload_1287631711.out.html
3、使用CpGPlot/CpGReport/Isochore工具,分析下列未知序列,输出CpG岛的长度、区域、GC数量、所占的百分比及Obs/Exp值。一、步骤:
进入google首页,搜索CpGPlot,进入CpGPlot主页,program中选择cpgreport复制序列,运行!
二、结果:

CpG岛的长度:385bp
区域:48——432;
GC数量:Sum C+G=297,百分数=77.14
Obs/Exp:1.01
4、预测下面序列的启动子,输出可能的启动子序列及相应的位置。一、步骤:
进入google首页,进入ICBI主页,对序列进行BLAST。得出序列是human的
进入google首页,搜索Neural Network Promoter Prediction,进入主页,复制序列,选择eukaryote,运行!
二、结果:

位置:711—761 ,1388—1438,1755—1805;
5、运用Splice Site Prediction工具分析下面序列,分别输出内含子-外显子剪接位点给体和受体的区域及剪接处位置的碱基。一、步骤:
进入google首页,进入ICBI主页,对序列进行BLAST。得出序列是human的
进入google首页,搜索Splice Site Prediction,进入主页,复制序列。Organism选择Human or other。其他默认,运行!
二、结果:
供体:

受体:
6、对下面序列进行六框翻译,利用GENESCAN综合分析(首先确定给定序列的物种来源)哪个ORF是正确的,输出六框翻译(抓图)和GENESCAN结果(包括predicted genes/exons 和 predicted peptide sequence(s) 两个部分)。一、步骤:
进入google首页,进入ICBI主页,对序列进行BLAST。得出序列是Zea的
进入google首页;搜索NCBI,进入主页,选择all resources(A~Z),选择O,选择ORF finder。复制序列,默认,运行!
二、结果:ORF图
三、步骤:进入google首页,搜索GENESCAN,进入主页,Organism:Maize, ,其他默认,运行!
四、结果:
G7、进入REBASE限制性内切酶数据库,输出AluI、MboI、EcoI三种内酶的Recognition Sequence和Type。
一、步骤:进入google首页,google in English,搜索REBASE,进入主页, 分别输入AluI、MboI、EcoI,运行!
在MboI中选择第一个,EcoI选择第二个。
二、结果:
ENSCAN图
8、使用引物设计工具,针对下列未知序列设计一对引物,要求引物长度为20-25bp,扩增产物长度300-500bp,退火温度为50-60℃。请写出选择的一对引物(Forward Primer and Reverse Primer)、及相应的GC含量、引物的位点、Tm值和产物长度。一、步骤:进入google首页,搜索genefisher,进入主页,复制fasta格式,chechk input, sunmit, ; ;设置一下引物长度为20-25bp,扩增产物长度300-500bp,退火温度为50-60℃; 。
二、结果:

GC含量:

引物的位点:

Tm值:

产物长度:。

9、将下面的序列用NEBcutter 2.0工具分析,用产生平末端及有四个酶切位点的酶进行酶切,并用抓图提交胶图(view gel),要求1.4% agarose和Marker为100bp DNA Ladder。
一、步骤:
进入google首页,进入ICBI主页,对序列进行BLAST,得知是linear。
进入google首页,搜索NEBcutter 2.0,进入主页,选择linear,运行!选择custom digest, ,把“1”改为“4”,选择平末端,后digest。View gel。选择1.4% agarose和Marker为100bp。
二、结果:

然后就是蛋白质的了一般都在expasy里swiss-prot 适用于检索的 compute pi/mw 求理论分子量 分子量 protparam物理化学性质 protscale亲水性疏水性 peptidemass分析蛋白酶和化学试剂处理后的内切产物
NCBI(www.ncbi.nlm.nih.gov)-GenBank数据库

数据库相似性搜索——核酸序列与核酸数据库比较(BLASTN)
蛋白质序列与数据库中蛋白质序列比较(BLASTP)
两序列比对(Align two sequences)

DNA序列分析——ORF Finder(www.ncbi.nlm.nih.gov/gorf/gorf.html)

分析实验序列外显子部分——GENSCAN(http://genes.mit.e/GENSCAN.html)
分析实验序列的可能酶切位点——NEBcutter2.0 (http://tools.neb.com/NEBcutter2/index.php)
注: Custom digest -- view gel

限制性内切酶数据库——REBASE(http://rebase.neb.com/rebase/rebase.html)

设计引物扩增实验序列——Genefisher
Primer 3

蛋白质序列分析及结构预测:
1.预测蛋白质的分子量及等电点:ExPASy(Compute pI/Mw)
2.分析蛋白质的基本物理化学性质:ExPASy(ProtParam)
3.分析蛋白质的亲水性和疏水性:ExPASy(ProtScale)
4.分析蛋白质在各种蛋白酶和各种化学试剂处理后的内切产物:ExPASy(PeptideMass) [* :kinase K]
5.分析蛋白质的信号肽:ExPASy(SignalP)
6.预测蛋白质的二级结构:ExPASy(Jpred 3)

多物种分子系统发育分析:EMBL(www.ebi.ac.uk/embl/)--Toolbox--Clustal2W

人脂联素蛋白质序列:NP_004788
人类胰岛素生长因子IB前体:P05019

阅读全文

与如何进行生物信息学的序列比对相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:744
乙酸乙酯化学式怎么算 浏览:1409
沈阳初中的数学是什么版本的 浏览:1360
华为手机家人共享如何查看地理位置 浏览:1051
一氧化碳还原氧化铝化学方程式怎么配平 浏览:891
数学c什么意思是什么意思是什么 浏览:1418
中考初中地理如何补 浏览:1309
360浏览器历史在哪里下载迅雷下载 浏览:709
数学奥数卡怎么办 浏览:1398
如何回答地理是什么 浏览:1032
win7如何删除电脑文件浏览历史 浏览:1061
大学物理实验干什么用的到 浏览:1491
二年级上册数学框框怎么填 浏览:1710
西安瑞禧生物科技有限公司怎么样 浏览:993
武大的分析化学怎么样 浏览:1253
ige电化学发光偏高怎么办 浏览:1342
学而思初中英语和语文怎么样 浏览:1662
下列哪个水飞蓟素化学结构 浏览:1428
化学理学哪些专业好 浏览:1491
数学中的棱的意思是什么 浏览:1068