A. 生物传感器的设备分类
用固定化生物成分或生物体作为敏感元件的传感器称为生物传感器(biosensor)。生物传感器并不专指用于生物技术领域的传感器,它的应用领域还包括环境监测、医疗卫生和食品检验等。生物传感器主要有下面三种分类命名方式:
1.根据生物传感器中分子识别元件即敏感元件可分为五类:酶传感器(enzymesensor),微生物传感器(microbialsensor),细胞传感器(organallsensor),组织传感器(tis-suesensor)和免疫传感器(immunolsensor)。显而易见,所应用的敏感材料依次为酶、微生物个体、细胞器、动植物组织、抗原和抗体。
2.根据生物传感器的换能器即信号转换器分类有:生物电极(bioelectrode)传感器,半导体生物传感器(semiconctbiosensor),光生物传感器(opticalbiosensor),热生物传感器(calorimetricbiosensor),压电晶体生物传感器(piezoelectricbiosensor)等,换能器依次为电化学电极、半导体、光电转换器、热敏电阻、压电晶体等。
3.以被测目标与分子识别元件的相互作用方式进行分类有生物亲和型生物传感器(affinitybiosensor)、代谢型或催化型生物传感器。
三种分类方法之间实际互相交叉使用。
B. 生物常用检测试剂有哪些
1、斐林试剂
作用:鉴定还原性糖:C6H12O6、果糖、麦芽糖、乳糖等.
还原性糖与斐林试剂发生作用,生成砖红色沉淀.如用于鉴定组织液中有否还原性糖、糖尿病人尿成分分析、酶专一性探索等.
2、班氏尿糖定性试剂
使用方法同斐林试剂,所不同的是班氏试剂可长期使用.
3、双缩脲试剂
作用:鉴定蛋白质,蛋白质与双缩脲试剂发生作用,可产生紫色反应.也可用于鉴定多肽.
4、苏丹Ⅲ
作用:鉴定脂肪,脂肪可以被苏丹Ⅲ染成橘黄色(或被苏丹Ⅳ染成红色).
5、质量分数为15%的盐酸和体积分数为95%的酒精溶液的混合液
作用:用于洋葱根尖的解离,即使组织中的细胞相互分离开来.能杀死细胞固定.
6、质量浓度为0.01g/mL的或0.02g/mL龙胆紫溶液(或醋酸洋红溶液)
作用:使细胞核内的染色体着色,便于观察.
7、质量浓度为0.3g/ml的蔗糖溶液
作用:观察成熟植物细胞质分离时用.经此处理细胞仍具活性.
8、质量浓度为0.1mg/ml的亚甲基蓝溶液
作用:(1)用于观察根对矿质元素离子的交换吸附观察;
(2)用于检测水中细菌情况,根据亚甲基蓝褪色情况,判断水质被细菌污染情况.
是活体染色剂.
9、丙酮
是有机溶剂,在叶绿体中色素提取时,用于溶解叶绿体中的色素.可用酒精替代,不过提取色素时将绿叶放入酒精中隔水加热
10、层析液
是一种脂溶性很强的有机溶剂,叶绿体中的色素在层析液中的溶解度不同:溶解度高的随层析液在滤纸上扩散很快;溶解度低的随层析液在滤纸上扩散得慢.
代用品:93号汽油、四氯化碳
11、SiO2、CaCO3
作用:加入少许SiO2是为了研磨得充分;加入少许CaCO3是为了防止在研磨时叶绿体中的色素受到破坏.
12、碘液
作用:用来测定淀粉,淀粉遇碘后,形成紫色的复合物.
13、二苯胺
作用:DNA遇二苯胺(沸水浴)会染成蓝色.
14、NaOH
作用:用于吸收CO2(验证光合作用需要CO2)或改变溶液的pH,
15、Ca(OH)2
作用:鉴定CO2(验证呼吸作用产生CO2).
16、NaHCO3
作用:提供CO2等.
C. 常用生物医学仪器有哪些
1、立体定位仪
立体定位仪(stereotaxic instrument)由固定动物头部的耳扦、门齿钩及三维可调的电极架组成。参照某种动物脑图谱上标定的某一脑结构的三维坐标,调好仪器的三维定向标尺,即可将电极或针头准确插入此动物的脑结构中。
2、老鼠断头器
老鼠断头器是神经解剖,神经生理,神经药理和神经外科等领域内的重要研究设备,其别名又可称为啮齿动物断头器。多用于小白鼠实验。
3、肺功能测试仪
个人肺功能仪可以进行肺功能测试并追踪肺部健康情况,可测量包含FVC、FEV1、FEV1/FVC等常用肺功能检测参数。
4、离体动物心脏灌流装置
Langendorff离体心脏灌流系统是配合做离体心脏灌流实验的一套系统,适用于离体哺乳动物心脏灌流(langendorff氏法)和离体心脏冠脉流量(coronaryfilw.cf)的测定.可直接进行恒压灌流,加上蠕动泵可进行恒流灌流。
5、微量注射泵
微量注射泵(简称微量泵)是一种新型泵力仪器,将少量流体精确、微量、均匀、持续地输出。由控制器,执行机构和注射器组成。
D. 什么是生物传感器生物传感器所用的活性物质主要有哪些
生物传感器(biosensor)对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)与适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。
E. 什么是生物传感器其基本组成有哪些生物传感器的种类
1)光纤传感器
光纤传感器技术是随着光导纤维实用化和光通信技术的发展而形成的一门崭新的技术。光纤传感器与传统的各类传感器相比有许多特点,如灵敏度高.抗电磁干扰能力强,耐腐蚀,绝缘性好,结构简单,体积小.耗电少,光路有可挠曲性,以及便于实现遥测等。
光纤传感器一般分为两大类,一类是利用光纤本身的某种敏感特性或功能制成的传感器.称为功能型传感器;另一类是光纤仅仅起传输光波的作用,必须在光纤端面或中间加装其他敏感元件才能构成传感器,称为传光型传感器。无论哪种传感器,其工作原理都是利用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已调制的光信号进行检测,从而得到被测量。
光纤传感器可以测量多种物理量.目前已经实用的光纤传感器可测量的物理量达70多种,因此光纤传感器具有广阔的发展前景。
2)红外传感器
红外传感器是将辐射能转换为电能的一种传感器,又称为红外探测器.常见的红外探测器有两大类,热探测器和光子探m器.热探测器是利用人射红外辐射引起探测器的敏感元件的沮度变化,进而使有关物理参数发生相应的变化,通过测量有关物理参数的变化来确定红外探测器吸收的红外辐射.热探测器的主要优点是响应波段宽,可以在室沮下工作,使用方便。但是,热探测器响应时间长,灵敏度较低,一般用于红外辐射变化缓慢的场合.如光谱仪、测温仪、红外摄像等。光子红外探测器是利用某些半导体材料在红外辐射的照射下,产生光子效应,使材料的电学性质发生变化,通过测最电学性质的变化,可以确定红外辐射的强弱。光子探测器的主要优点是灵敏度高,响应速度快,响应频率高。但一般需在低温下_L作,探测波段较窄,一般用于侧温仪、航空扫描仪、热像仪等。红外传感器广泛用于测温、成像、成分分析、无损检测等方面,特别是在军事上的应用更为广泛,如红外侦察、红外雷达、红外通信、红外对抗等。
3)气敏传感器
气敏传感器是指能将被侧气体浓度转换为与其成一定关系的电量输出的装置。气敏传感器的性能必须满足下列条件:
(1)能够检渊易爆炸气体的允许浓度、有害气体的允许浓度和其他基准设定浓度.并能及时给出报薯、显示与控制信号;
(2)对被侧气体以外的共存气体或物质不敏感;
(3)长期稳定性好、重复性好;
(4)动态特性好、响应迅速;
(5)使用、维护方便,价格便宜等。
4)生物传感器
生物传感器是利用生物或生物物质做成的、用以检测与识别生物体内的化学成分的传感器。生物或生物物质是指酶、微生物、抗体等,被侧物质经扩散作用进人生物敏感膜,发生生物学反应(物理、化学反应),通过变换器将其转换成可定量、可传输、处理的电信号.按照所用生物活性物质的不同,生物传感器包括酶传感器、微生物传感器、免疫传感器、生物组织传感器等。酶传感器具有灵敏度高、选择性好等优点,目前已实用化的商品达200种以上,但由于酶的提炼工序复杂,因而造价高,性能也不太稳定。微生物传感器与酶传感器相比,价格便宜,性能稳定,它的缺点是响应时间较长(数分钟),选择性差,目前微生物传感器已成功应用于环境监测和医学中,如测定水污染程度、诊断尿毒症和搪尿病等。免疫传感器的基本原理是免疫反应,目前已研制成功的免疫传感器达儿十种以上。生物组织传感器制作简便,工作寿命长,在许多情况下可取代酶传感器,但在实用化中还存在选择性差、动植物材料不易保存等问题。目前生物传感器的开发与应用正向着多功能化、集成化的方向发展。半导体生物传感器是将半导体技术与生物技术相结合的产物,为生物传感器的多功能化、小型化、微型化提供了重要的途径。
5)机器人传感器
机器人传感器是一种能将机器人目标物特性(或参量)变换为电量输出的装置,机器人通过传感器实现类似于人类的知觉作用。
机器人传感器分为内部检测传感器和外界检测传感器两大类。内部检测传感器是在机器人中用来感知它自己的状态,以调整和控制机器人自身行动的传感器。它通常由位置、加速度、速度及JR力传感器组成。外界检测传感器是机器人用以感受周围环境、目标物的状态特征信息的传感器.从而使机器人对环境有自校正和自适应能力。外界枪侧传感器通常包括触觉、接近觉、视觉、听觉、嗅觉、味觉等传感器。机器人传感器是机器人研究中必不可缺的重要课题,需要有更多的、性能更好的、功能更强的、集成度更高的传感器来推动机器人的发展。
6)智能传感器
智能传感器是一种带有微处理机的,兼有信息检测、信息处理、信息记忆、逻辑思维与判断功能的传感器。本书第9章将对这种传感器进行详细阐述。
F. 按分子识别元件来分类,生物传感器怎样分类
生物特异分子识别包含2方面的含义,一是DNA即基因方面的识别,而是蛋白质方面的识别。在医学检验方面的应用主要有:
分子生物传感器在医学检验中的应用
分子生物传感器是利用一定的生物或化学的固定技术,将生物识别元件(酶、抗体、抗原、蛋白、核酸、受体、细胞、微生物、动植物组织等)固定在换能器上,当待测物与生物识别元件发生特异性反应后,通过换能器将所产生的反应结果转变为可以输出、检测的电信号和光信号等,以此对待测物质进行定性和定量分析,从而达到检测分析的目的。
分子生物传感器可以广泛地应用于对体液中的微量蛋白、小分子有机物、核酸等多种物质的检测。在现代医学检验中,这些项目是临床诊断和病情分析的重要依据。能够在体内实时监控的生物传感器对于中和重症监护的病人很有帮助。
Skladal等用经过寡核苷酸探针修饰的压电传感器检测血清中的丙型肝炎病毒(HCV)并实时监测其DNA的结构转录和聚合酶链式反应(PCR)扩增过程,完成整个监测过程仅需10 min且装置可重复使用。
Petricoin等用压电传感器研究了破骨细胞生成抑制因子(OPG)和几种相应抗体的相互作用,研发出可快速检验血清中OPG的压电免疫传感器。
Dro-sten等报道了检测神经递质的酶电报,将电极放置在神经肌肉接点附近可实时测定并记录邻近的神经元去极化后所释放的递质谷氨酸。
2.分子生物芯片技术在医学检验中的应用
随着分子生物学的发展及人们对疾病过程的认识加深,传统的医学检验技术已不能完全适应微量、快速、准确、全面的要求。
所谓的生物芯片是指将大量探针分子固定于支持物上(通常支持物上的一个点代表一种分子探针),并与标记的样品杂交或反应,通过自动化仪器检测杂交或反应信号的强度而判断样品中靶分子的数量。
在检测病原菌方面,由于大部分细菌、病毒的基因组测序已完成,将许多代表每种微生物的特殊基因制成1张芯片。通过反转录可检测标本中的有无病原体基因的表达及表达的情况,以判断病人感染病原及感染的进程、宿主的反应。由于P53抑癌基因在多数肿瘤中均发生突变,因此其是重要的肿瘤诊断靶基因。
Nam等人将硅基质上合成的寡核苷酸芯片用于血清样品中的丙型肝炎病毒分型。
2.分子生物纳米技术在医学检验中的应用生物活性物质的检测有很多种方法,其中,以抗体为基础的技术尤其重要。免疫分析加上磁性修饰已成功地用于各种生物活性物质和异生质(如物、致癌物等)的检测。将特异性抗体或抗原固定到纳米磁球表面,并以酶、放射性同位素、荧光染料或化学发光物质为基础所产生的检测与传统微量滴定板技术相比具有简单、快速和灵敏的特点。
Van Helden等将抗体连接的纳米磁性微球与高效率、快速的化学发光免疫测定技术相结合的自动检测系统,则成功地用于血清中人免疫缺陷病毒1型和2型(HIV-1和HIV-2)抗体的检测。另外,用于人胰岛素检测的全自动夹心法免疫测定技术也已建立,其中亦用到抗体、蛋白纳米磁性微粒复合物和碱性磷酸酶标记二抗。
4.分子蛋白组学在医学检验中的应用
当前有关分子蛋白质组学的大量研究成果喜人,但一大部分结论是众说纷纭、甚至是互相矛盾。一些经典的肿瘤标志物却无法在当前以表面增强激光解析离子化-飞行时间质谱(SELDI-TOF-MS)技术为代表的蛋白质组学技术中体现出来。可能存在以下几方面的问题。一方面是SELDI-TOF-MS技术自身的限制性,包括敏感性、重复性以及使用当前设备对每个峰值蛋白确认的局限性;另一方面是实验设计及对照组选择是否恰当,某个蛋白组模式反映的是肿瘤的特异性,还是炎症反应,或是代谢紊乱等无法定论;另一方面是不同实验室结果可比性、标本处理过程的差异无法探究。只有这些问题得到解决, SELDI-TOF-MS技术在检验医学中才能发挥革命性作用。
5.分子生物学技术在医学检验发展中的趋势
检验医学中的分子生物学技术发展趋势有二:一是定量PCR;二是PCR的全自动化,如应用扩增与检测于一体的一次性试验卡,可较好地解决PCR污染问题。除PCR以外的体外基因扩增技术如连接酶反应(LCR),链置换扩增系统(SDA),转录扩增系统(TAS),自限序列扩增系统(3SR),QB复制酶扩增系统等技术也将由科研进入临床。分子生物学技术的标准化和质量控制引起了广泛关注,特别是卫生部颁发的PCR实验室管理办法对PCR技术应用的健康发展起到了关键作用。为解决PCR交叉污染问题,从标本制备到检测的全封闭系统及相应的自动化仪器已在国内逐步普及。
G. 人体微纳米生物力学传感器有哪些
纳米生物传惑器 是利用生物特异性识别过程来实现检测的传感器件。生物敏感
元件包括生物体、组织、细胞、细胞器、细胞膜、酶、抗体、核酸等,而生物传感器是利用这些从微观到宏观多个层次相关物质的特异性识别能力的器件总称。纳米生物传感器是纳米科技与生物传感器的融合。其研究涉及到生物技术、信息技术、纳米科学、界面科学等多个重要领域,并综合应用光声电色等各种先进检测技术,因而成为国际上的研究前沿和热点。一方面。其设计与开发涉及到很多基本科学问题。为基础研究提供了许多源头创新思路。另一方面.纳米生物传感器可能对临床检测、遗传分析、环境检测、生物反恐和国家安全防御等多个领域产生革命性的影响。正因为这样,世界各国及很多国际性公司纷纷拨巨资支持纳米生物传感器的研究,并吸引着众多领域的研究人员。
纳米生物传感器的信号传导方式主要包括光学、电学、力学、声学等。传统上光学检测是生物传感器的主流,然而近年来随着界面科学(如分子自组装技术)与纳米科学(如扫描探针显微镜)的发展,电化学纳米生物传感器获得了前所未有的发展机遇并引起了极大的关注。
H. 生物实验室必备设备有哪些
1、样品保存:
冰箱/超低温冰箱(荷兰SKADI)
液氮罐(英国STATEBOURNE CRYOGENICS)
2、样品前处理:
移液器(gilson,ependof,biocos)
天平(梅特勒,赛多利斯)
均质/搅拌系列(IKA,KINEMATICA,LABSCAN)
离心机(sigma,日立,ebendof,hettich,beckman)
冻干机(荷兰SKADI)
高压灭菌器(MMM,SANYO,STURDY)
电泳仪(bio-rad,epondorf)
3、培养过程
培养箱系列(美国SI)
生物安全柜/超净工作台(telstar,baker,thermo)
发酵罐(infors,labconco)
摇床(IKA,INFORS,LAB-LINE)
水浴(LABSCAN,JULABO)
转瓶机(WHEATON,IBS)
PCR(thermo,epondorf,ABI,BIO-RAD,MJ)
酶标仪(Awareness,epondorf,ABI)
4、观察分析
显微镜(Hund,olympus,leica,nikon)
菌落计数仪(INTERSCIENCE)
流式细胞仪(bd,日立)
DNA测序仪(ABI)
高效色谱系列(agilent,whatman,abi,dionex,mathon)
5、其它
洗瓶机(labconco,miele)
超纯水系列(MILLIPORE,ELGA,PALL)
超声波清洗(英国Prima)
微生物实验室主要用于无菌环境下微生物提纯、分离、增殖及鉴定等工作,对无菌环境的要求很高。那么微生物实验室中需要用到哪些仪器设备呢?
一、无菌室
无菌室是实验室的核心部分,主要为样品提供保护,保证实验结果的准确和人员的安全。
二、超净工作台
微生物的培养都是在特定培养基中进行无菌培养,那么无菌培养必然需要超净工作台提供一个无菌的工作环境。超净工作台的主要用途是微生物的接种及处理时的无菌操作。
六、微波炉/电炉
其主要作用是用于溶液的快速加热,微生物固体培养基的加热溶化等。
七、摇床
摇床又称摇瓶机,它是培养好气性微生物的小型试验设备或作为种子扩大培养之用。
八、冰箱
冰箱是实验室中保存试剂和样品必不可少的仪器。微生物学实验中用到的试剂有些要求是4度保存,有些要求是负20度保存,实验人员一定要看清试剂的保存条件,放置在恰当的温度下保存。
九、显微镜
微生物个体微小,必须借助显微镜才能观察清楚它们的个体形态和细胞结构。因此,在微生物学的各项研究中,显微镜就成为不可缺少的工具。
十、生物安全柜
微生物实验中所涉及到的部分试剂和样品微生物有些是有毒的,对于操作人员来说伤害比较大。为了防止有害德悬浮微粒、气溶胶的扩散,可以利用生物安全柜对操作人员、样品及样品间交叉感染和环境提供安全的保护作用。
微生物实验室用到的仪器设备都有哪些
A2生物安全柜
十一、菌落计数器
菌落计数仪可帮助操作者计数菌落数量。通过放大,拍照,计数等方式来准确的获取菌落的数量。有些高性能的菌落计数器还可直接连接电脑来完成自动计数的操作,方便快捷的计数。
十二、分光光度计
分光光度计在微生物试验中用于测定微生物悬液的浓度,可以正确选取合适的培养时间。
十三、离心机
离心机是用于收集微生物菌体以及其他沉淀物。有冷冻离心机和常温离心机之分。
十四、液氮罐
液氮罐里装有液氮,可用于微生物实验室中各菌种的长期保存。
I. 电化学生物传感器有哪些
电化学生物传感器
传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。
传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。
根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。
(1) 酶电极传感器
以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:
根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。 目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。
J. 微生物检测仪器有哪些
微生物学实验室是生物学领域的一个基本实验室,对于一个完备的微生物学实验室,我们需要配置哪些仪器呢?
1、超净工作台
微生物的培养都是在特定培养基中进行无菌培养,那么无菌培养必然需要超净工作台提供一个无菌的工作环境。
2、培养箱
培养箱有多种类型,它的作用在于为微生物的生长提供一个适宜的环境。生化培养箱只能控制温度,可作为一般细菌的平板培养;霉菌培养箱可以控制温度和湿度,可作为霉菌的培养;CO2培养箱适用于厌氧微生物的培养。
ES5000-6S型智能配平仪
3、天平
天平用于精确称量各类试剂。实验室常用的是电子天平,电子天平按照精度不同有不同的级别。
4、微生物均质器
用于从固体样品中提取细菌。用微生物均质器制备微生物检测样本具有样品无污染、无损伤、不升温、不需要灭菌处理,不需洗刷器皿等特点,是微生物实验中使用较为方便的仪器。
5、菌落计数器
菌落计数仪可协助操作者计数菌落数量。通过放大,拍照,计数等方式准确的获取菌落的数量。有些高性能的菌落计数器还可连接电脑完成自动计数的操作。
6、微波炉/电炉
用于溶液的快速加热,微生物固体培养基的加热溶化。
7、高压灭菌锅
微生物学所用到的大部分实验物品、试剂、培养基都应严格消毒灭菌。灭菌锅也有不同大小型号,有些是手动的,有些是全自动的。用户需要根据自己的需要选购。
8、移液器
液体量器用于精密量取各类液体。常见的液体量器有量筒、移液管、微量取液器、刻度试管、烧杯。
9、低温冰箱
冰箱是实验室保存试剂和样品必不可少的仪器。微生物学实验中用到的试剂有些要求是4度保存,有些要求是负20度保存,实验人员一定要看清试剂的保存条件,放置在恰当的温度下保存。
10、生物安全柜
微生物实验中涉及的试剂和样品微生物有些是有毒的,对于操作人员来说伤害较大。为了防止有害悬浮微粒、气溶胶的扩散,可以利用生物安全柜对操作人员、样品及样品间交叉感染和环境提供安全保护。
11、摇床
摇床是实验室常用的一种仪器,在微生物实验操作过程中,液体培养基培养细菌时需要在特定温度下振荡使用。
12、纯水装置
超纯水器,制造出各精密检测无杂质、无污染的纯水,
纯水装置包括蒸馏水器和纯水机。蒸馏水器的价格便宜,但在造水过程中需要有人值守;纯水机价格高些,但是使用方便,可以储存一定量的纯水。纯水使用也有不同的级别,实验中配制试剂,配制培养基均需用纯水。一般所有的食品检测都要用的超纯水;
13、生物显微镜
由于微生物体积较小,所以在观察时需要借助生物显微镜。生物显微镜用于微生物和微小物品结构,形态等的观察
14、冷冻干燥机燥机
主要适用于细菌、微生物、酵母等的干燥。用于干燥保存易脱水的产品,在加水以后能够再次恢复原材料的特性,不影响其生物活性等。通过冷冻干燥,细菌之类的材料成为干燥状态,从而不会发生化学改变。
15、分光光度计