‘壹’ 现代科学表明物质是由什么和什么组成的
略 细胞是生物体的结构和功能单位,细胞中的物质也是由分子构成的。例如,细胞中含有水、蛋白质、核酸、脂肪酸、糖类等物质,正是这些物质的分子在细胞中以特定的形式存在,细胞才能表现出多种多样的生命现象,所以说细胞中的物质也是由分子构成的。但是,细胞中仅仅有各种物质的分子,并不能表现出生命的功能。只有这些物质组成细胞后,才有功能表现,所以细胞是生物体的结构与功能单位。
‘贰’ 每种生物的学名由哪两种
考点: 生物的分类及分类单位 专题: 分析: 18世纪瑞典科学家创立了生物命名法--双名法,即植物的常用名由两部分组成,前者为属名,要求用名词;后者为种名,要求用形容词. 按照双名法,每个物种的科学名称(即学名)由两部分组成,第一部分是属名,第二部分是种加词,种加词后面还应有命名者的姓名,有时命名者的姓名可以省略.双名法的生物学名部分均为拉丁文,并为斜体字;命名者姓名部分为正体.因此在双名法中规定,每种生物只能有一个学名,这个学名由两个字组成,分别是属名+种名.故选:A. 点评: 解答此类题目点关键是熟记植物命名的方法“双名法”.
‘叁’ 生物的学名由( )部分组成,前部分是( ),后半部分是( ) 8. 藻类不能算是植物,是
生物的学名由两部分组成,前部分是种名,后半部分是属名。藻类不能算植物,是低等自养生物。
‘肆’ 哪种动物有学名
在人类已知的动物,或新发现的动物,都有它的学名。
动物学名是依照生物学上对生物种类的命名规则,所给定的学名之形式,成为动物种的学名形式。每个动物种学名的由两个部分构成:属名和种加词(种小名)。属名由拉丁语法化的名词形成,但是它的字源可以是来自拉丁词或希腊词或拉丁化的其他文字构成,首字母须大写;种加词是拉丁文中的形容词,首字母不大写。通常在种加词的后面加上命名人及命名时间,如果学名经过改动,则既要保留最初命名人,并加上改名人及改名时间。命名人、命名时间一般可省略。
不同的动物有不同的学名。“动物”是生物分类学中的最高一级,叫“动物界”,学名就是“Animal”。具体到任何一种动物,都有它的学名。如狼,习惯名称为“wolf”,但它的学名是“ Canis lupus”。前一个词表示狼所在的“属名”,后一个是狼具体的“种名”。动物种的学名通常用拉丁文拼写,不用英文。
在动物分类学中,一个动物物种可以往下细分,应用三名法来命名一个亚种(有时亦称为种族race),例如新西兰的普通鸬鹚跟其它地方的有所不同,所以被归入一个亚种。由于动物学仅使用一个种下分类阶元,所以不需要在亚种名前插入任何阶元指示符,人们也明白第三个名称就是亚种名。
‘伍’ 生物学的基础知识
生物的分类
1:非细胞生命形态
病毒不具备细胞形态,一般由一个核酸长链和蛋白质外壳构成(核酸长链包括RNA与DNA,病毒复制时有DNA的直接进行转录,而含有RNA的病毒需要进行逆转录成DNA后再进行复制)。根据组成核酸的核苷酸数目计算,每一病毒颗粒的基因最多不过 300个。寄生于细菌的病毒称为噬菌体。病毒没有自己的代谢机构,没有酶系统,也不能产生三磷酸腺苷(ATP)。因此病毒离开了寄主细胞,就成了没有任何生命活动,也不能独立地自我繁殖的化学物质。只有在进入寄主细胞之后,它才可以利用活细胞中的物质和能,以及复制、转录和转译的全套装备,按照它自己的核酸所包含的遗传信息产生和它一样的新一代病毒。病毒基因同其他生物的基因一样,也可以发生突变和重组,因而也是能够演化的。
由于病毒没有独立的代谢机构,也不能独立地繁殖,因而被认为是一种不完整的生命形态。关于病毒的起源,有人认为病毒是由于寄生生活而高度退化的生物;有人认为病毒是从真核细胞脱离下来的一部分核酸和蛋白质颗粒;更多的人认为病毒是细胞形态发生以前的更低级的生命形态。近年发现了比病毒还要简单的类病毒,它是小的RNA 分子,没有蛋白质外壳。另外还发现一类只有蛋白质却没有核酸的朊粒,它可以在哺乳动物身上造成慢性疾病。这些不完整的生命形态的存在缩小了无生命与生命之间的距离,说明无生命与生命之间没有不可逾越的鸿沟。因此,在原核生物之下,另辟一界,即病毒界是比较合理的。
2:原核生物
原核细胞和真核细胞是细胞的两大基本类型,它们反映细胞进化的两个阶段。把具有细胞形态的生物划分为原核生物和真核生物,是现代生物学的一大进展。原核细胞的主要特征是没有线粒体、质体等膜细胞器,染色体只是一个环状的DNA分子,不含组蛋白及其他蛋白质,没有核膜。原核生物包括细菌和蓝菌,它们都是单生的或群体的单细胞生物。
细菌是只有通过显微镜才能看到的原核生物。大多数细菌都有细胞壁,其主要成分是肽聚糖而不是纤维素。细菌的主要营养方式是吸收异养,它分泌水解酶到体外,将大分子的有机物分解为小分子,然后将小分子营养物吸收到体内。细菌在地球上几乎无处不在,它们繁殖得很快,数量极大,在生态系统中是重要的分解者,在自然界的氮素循环和其他元素循环中起着重要作用(见土壤矿物质转化)。有些细菌能使无机物氧化,从中取得能来制造食物;有些细菌含有细菌叶绿素,能进行光合作用。但是细菌光合作用的电子供体不是水而是其他化合物如硫化氢等。所以细菌的光合作用是不产氧的光合作用。细菌的繁殖为无性繁殖,在某些种类中存在两个细胞间交换遗传物质的一种原始的有性过程──细菌接合。
支原体、立克次氏体和衣原体均属细菌。支原体无细胞壁,细胞非常微小,甚至比某些大的病毒粒还小,能通过细菌滤器,是能够独立地进行生长和代谢活动的最小的生命形态。立克次氏体的酶系统不完全,它只能氧化谷氨酸,而不能氧化葡萄糖或有机酸以产生ATP。衣原体没有能量代谢系统,不能制造ATP。大多数立克次氏体和衣原体不能独立地进行代谢活动,被认为是介于细菌和病毒之间的生物。
蓝藻(也称蓝细菌)是能光合自养的原核生物,是单生的,或群体的,也有多细胞的。和细菌一样,蓝藻细胞壁的主要成分也是肽聚糖,细胞也没有核膜和细胞器,如线粒体、高尔基器、叶绿体等。但蓝藻细胞有由膜组成的光合片层,这是细菌所没有的。蓝藻含有叶绿素a,这是高等植物也含有的而为细菌所没有的一种叶绿素。蓝藻还含有类胡萝卜素和蓝色色素──藻蓝蛋白(或称之为藻蓝素),某些种还有红色色素──藻红蛋白,这些光合色素分布于质膜和光合片层上。蓝藻的光合作用和绿色植物的光合作用一样,用于还原CO2产生的H+,因而伴随着有机物的合成还产生分子氧,这和光合细菌的光合作用截然不同。
最早的生命是在无游离氧的还原性大气环境中发生的(见生命起源),所以它们应该是厌氧的,又是异养的。从厌氧到好氧,从异养到自养,是进化史上的两个重大突破。蓝菌光合作用使地球大气从缺氧变为有氧,这样就改变了整个生态环境,为好氧生物的发生创造了条件,为生物进化展开了新的前景。在现代地球生态系统中,蓝菌仍然是生产者之一。
近年发现的原绿藻,含叶绿素a、叶绿素b和类胡萝卜素。从它们的光合色素的组成以及它们的细胞结构来看,很像绿藻和高等植物的叶绿体,因此受到生物学家的重视。
3:真核生物
和原核细胞相比,真核细胞是结构更为复杂的细胞。它有线粒体等各种膜细胞器,有围以双层膜的细胞核,把位于核内的遗传物质与细胞质分开。DNA为长链分子,与组蛋白以及其他蛋白结合而成染色体。真核细胞的分裂为有丝分裂和减数分裂,分裂的结果使复制的染色体均等地分配到子细胞中去。
原生生物是最原始的真核生物。原生生物的原始性不但表现在结构水平上,即停留在单细胞或其群体的水平,不分化成组织;也表现在营养方式的多样性上。原生生物有自养的、异养的和混合营养的。例如,眼虫能进行光合作用,也能吸收溶解于水中的有机物。金黄滴虫除自养和腐食性营养外,还能和动物一样吞食有机食物颗粒。所以这些生物还没有明确地分化为动物、植物或真菌。根据这些特性,R.H.惠特克吸收上世纪E.海克尔的意见,将原生生物列为他的5界系统中的1界,即原生生物界。但是有些科学家主张撤销这 1界,他们的理由是原生生物界所包含的生物种类过于庞杂,大部分原生生物显然可以归入动物、植物或者真菌,那些处于中间状态的原生生物也不难使用分类学的分析方法适当地确定归属。
植物是以光合自养为主要营养方式的真核生物。典型的植物细胞都含有液泡和以纤维素为主要成分的细胞壁。细胞质中有进行光合作用的细胞器即含有光合色素的质体──叶绿体。绿藻和高等植物的叶绿体中除叶绿素a外,还有叶绿素b。多种水生藻类,因辅助光合色素的组成不同,而呈现出不同的颜色。植物的光合作用都是以水为电子供体的,因而都是放氧的。光合自养是植物界的主要营养方式,只有某些低等的单细胞藻类,进行混合营养。少数高等植物是寄生的,行次生的吸收异养,还有很少数高等植物能够捕捉小昆虫,进行吸收异养。植物界从单细胞绿藻到被子植物是沿着适应光合作用的方向发展的。在高等植物中植物体发生了光合器官(叶)、支持器官(茎)以及用于固定和吸收的器官(根)的分化。叶柄和众多分枝的茎支持片状的叶向四面展开,以获得最大的光照和吸收 CO2的面积。细胞也逐步分化形成专门用于光合作用、输导和覆盖等各种组织。大多数植物的生殖是有性生殖,形成配子体和孢子体世代交替的生活史。在高等植物中,孢子体不断发展分化,而配子体则趋于简化。植物是生态系统中最主要的生产者,也是地球上氧气的主要来源。
真菌是以吸收为主要营养方式的真核生物。真菌的细胞有细胞壁,至少在生活史的某一阶段是如此。细胞壁多含几丁质,也有含纤维素的。几丁质是一种含氨基葡萄糖的多糖,是昆虫等动物骨骼的主要成分,植物细胞壁从无几丁质。真菌细胞没有质体和光合色素。少数真菌是单细胞的,如酵母菌。多细胞真菌的基本构造是分枝或不分枝的菌丝。一整团菌丝叫菌丝体。有的菌丝以横隔分成多个细胞,每个细胞有一个或多个核,有的菌丝无横隔而成为多核体。菌丝有吸收水分和养料的机能。菌丝体常疏松如蛛网,以扩大吸收面积。真菌的繁殖能力很强,繁殖方式多样,主要是以无性或有性生殖产生的各种孢子作为繁殖单位。真菌分布非常广泛。在生态系统中,真菌是重要的分解者,分解作用的范围也许比细菌还要大一些。
粘菌
是一种特殊的真菌。它的生活史中有一段是真菌性的,而另一段则是动物性的,其结构、行为和取食方法与变形虫相似。粘菌被认为是介于真菌和动物之间的生物。
动物是以吞食为营养方式的真核生物。吞食异养包括捕获、吞食、消化和吸收等一系列复杂的过程。动物体的结构是沿着适应吞食异养的方向发展的。单细胞动物吞入食物后形成食物泡。食物在食物泡中被消化,然后透过膜而进入细胞质中,细胞质中溶酶体与之融合,是为细胞内消化。多细胞动物在进化过程中,细胞内消化逐渐为细胞外消化所取代,食物被捕获后在消化道内由消化腺分泌酶而被消化,消化后的小分子营养物经消化道吸收,并通过循环系统而被输送给身体各部的细胞。与此相适应,多细胞动物逐步形成了复杂的排泄系统、进行气体交换的外呼吸系统以及复杂的感觉器官、神经系统、内分泌系统和运动系统等。神经系统和内分泌系统等组成了复杂的自我调节和自我控制的机构,调节和控制着全部生理过程。在全部生物中,只有动物的身体构造发展到如此复杂的高级水平。在生态系统中,动物是有机食物的消费者。在生命发展的早期,即在地球上只有蓝菌和细菌时,生态系统是由生产者和分解者组成的两环系统。随着真核生物特别是动物的产生和发展,两环生态系统发展成由生产者、分解者和消费者所组成的三环系统。出现了今日丰富多彩的生物世界。
从类病毒、病毒到植物、动物,生物拥有众多特征鲜明的类型。各种类型之间又有一系列中间环节,形成连续的谱系。同时由营养方式决定的三大进化方向,在生态系统中呈现出相互作用的空间关系。因而,进化既是时间过程,又是空间发展过程。生物从时间的历史渊源和空间的生活关系来讲,都是一个整体。
编辑本段生物的特征
生物不仅具有多样性,而且具有一些共同的特征和属性。人们对这些共同的特征、属性和规律的认识,使内容十分丰富的生物学成为统一的知识体系。
生物化学的统一性
大量实验研究表明,组成生物体生物大分子的结构和功能,在原则上是相同的。例如各种生物的蛋白质的单体都是氨基酸,种类不过20种左右,各种生物的核酸的单体都是核苷酸,种类不过8种,这些单体都以相同的方式组成蛋白质或者核酸的长链,它们的功能对于所有生物都是一样的。在不同的生物体内基本代谢途径也是相同的,甚至在代谢途径中各个不同步骤所需要的酶也是基本相同的。不同生物体在代谢过程中都以 ATP的形式传递能量。生物化学的同一性深刻地揭示了生物的统一性。
多层次的结构模式
19世纪德国科学家M.J.施莱登和T.A.H.施旺提出细胞学说,认为动、植物都是由相同的基本单位──细胞所组成。这对于病毒以外的一切生物,从细菌到人都是适用的。细胞是由大量原子和分子所组成的非均质的系统。在结构上,细胞是由蛋白质、核酸、脂质、多糖等组成的多分子动态体系;从信息论观点看,细胞是遗传信息和代谢信息的传递系统;从化学观点看,细胞是由小分子合成的复杂大分子,特别是核酸和蛋白质的系统;从热力学观点看,细胞又是远离平衡的开放系统。所有这些,对于原核细胞和真核细胞都是一样的。
除细胞外,生物还有其他结构单位。在细胞之下有细胞器、分子和原子,在细胞之上有组织、器官、器官系统、个体、种群、群落、生态系统、生物圈等单位。
生物的各种结构单位,按照复杂程度和逐级结合的关系而排列成一系列的等级,称为结构层次。在每一个层次上表现出的生命活动不仅取决于它的组成成分的相互作用,而且取决于特定的有序结构,因此在较高层次上可能出现较低的层次所不曾出现的性质和规律。
有序性和耗散结构
生物是由大量分子和原子组成的宏观系统(相对于研究亚原子事件的微观系统而言),它的代谢历程和空间结构都是有序的。热力学第二定律指出,物理的化学的变化导致系统的无序性或随机性(即熵) 的增加。生物无休止的新陈代谢,不可避免地使系统内部的熵增涨,从而干扰和破坏系统的有序性。现代生物学证明,在生物体中同时还存在一种使熵减少的机制。20世纪60年代,I.普里戈任提出耗散结构理论。按此理论,生物体是远离平衡的开放系统,它从环境中吸取以食物形式存在的低熵状态的物质和能,把它们转化为高熵状态后排出体外。这种不对称的交换使生物体和外界熵的交流出现负值,这样就可能抵消系统内熵的增涨。生物有序正是依赖新陈代谢这种能量耗散过程得以产生和维持的。(见耗散结构和生物有序)
稳态
生物对体内的各种生命过程有良好的调节能力。生物所处的环境是多变的,但生物能够对环境的刺激作出反应,通过自我调节保持自身的稳定。例如,人的体温保持在37℃上下,血液的酸度保持在 pH7.4左右等。这一概念先是由法国生物学家C.贝尔纳提出的。他指出身体内部环境的稳定是自由和独立生活的条件。后来,美国生理学家W.B.坎农揭示内环境稳定是通过一系列调节机制来保证的,并提出“稳态”一词。稳态概念的应用现在已远远超出个体内环境的范围。生物体的生物化学成分、代谢速率等都趋向稳态水平,甚至一个生物群落、生态系统在没有激烈外界因素的影响下,也都处于相对稳定状态。
生命的连续性
1855年R.C.菲尔肖提出,所有的细胞都来自原已存在的细胞。这个概念对于现存的所有生物来说是正确的。除了最早的生命是从无生命物质在当时的地球环境条件下发生的以外,生物只能来自已经存在的生物。只能通过繁殖来实现从亲代到子代的延续。因此,遗传是生命的基本属性。
1866年G.J.孟德尔通过豌豆杂交试验发现了遗传因子的分离规律和自由组合规律。20世纪20年代,以T.H.摩尔根为代表的一批科学家提出基因论,证明孟德尔假设的因子就是在染色体上线性排列的基因,补充了一个新的规律,即基因的连锁和交换规律,并证明这些规律在动物界和植物界是普遍适用的。40年代,J.莱德伯格发现细菌的有性杂交,M.德尔布吕克发现了噬菌体的交叉重组现象,从而证明病毒、原核生物和动物、植物都遵循同样的遗传规律。分子生物学的发展证明一切生物的基因的化学实体都是核酸(DNA和RNA),遗传信息都是以核苷酸的排列来编码的,DNA以半保留复制产生新的拷贝。在分子水平上,生命的连续性首先表现在基因物质DNA的连续性上。
个体发育
通常是指多细胞生物从单个生殖细胞到成熟个体的成长过程。生物在一生中,每个细胞、每个组织、器官都随时间而发展变化,它在任何一个特定时间的状态都是本身发育的结果。生物个体发育是按一定的生长模式进行的稳定过程。个体发育的概念对单细胞生物和病毒在原则上也是适用的。单细胞生物从一代到下一代经历一定的细胞周期,病毒的发育也要经历遗传物质的复制,结构蛋白的合成以及病毒颗粒的装配过程。因此,所有的生物都有各自的按一定规律进行的生活史。
对于个体发育规律的认识,经历了漫长的过程。1797年C.F.沃尔夫发表《发生论》,对鸡胚的发育过程作了较为详细的描述。19世纪初К.M.贝尔提出胚层理论,指出胚胎组织和器官的发生是以内、中、外三个胚层为出发点的。20世纪初,H.施佩曼及其学派通过把胚胎组织从一处移植到另一处能改变其发育过程和方向的实验,证明了胚胎发育是通过各部分的相互作用而完成的,现代生物学证明,个体发育是由遗传信息所控制的,不论是在分子层次上,还是在细胞、组织、个体层次上,发育的基本模式都是由基因决定的。
进化
1859年C.R.达尔文所着《物种起源》的出版,创立了以自然选择为基础的生物进化论。进化是普遍的生物学现象。每个细胞、每种生物都有自己的演变历史,都在随着时间的发展而变化,它们目前的状态是它们本身进化演变的结果。进化导致物种的分化,生物不再被认为是一大堆彼此毫无联系的、偶然的、“神造的”不变的物种。生物世界是一个统一的自然谱系,各种生物,归根结底,都来自一个最原始的生命类型。生物不仅有一个复杂的纵深层次(从生物圈到生物大分子),它还具有个体发育历史和种系进化历史,有一个极广阔的历史横幅。
生态系统中的相互关系 在自然界里,生物的个体总是组成种群,不同的种群彼此相互依赖,相互作用形成群落。群落和它所在的无生命环境组成了生物地理复合体──生态系统。在生态系统中,不同的种群具有不同的功能和作用。譬如,绿色植物是生产者,它能利用日光能制造食物;动物包括人在内是消费者;细菌和真菌是分解者。生物彼此之间以及它们和环境之间的相互关系决定了生态系统所具有的性质和特点。任何一个生物,它的外部形态、内部结构和功能,生活习性和行为,同它在生态系统中的作用和地位总是相对适应的。这种适应是长期演变的结果,是自然选择的结果。根据上面这些叙述,不难看到,尽管生物世界存在惊人的多样性,但所有的生物都有共同的物质基础,遵循共同的规律。生物就是这样的一个统一而又多样的物质世界。因而,生物学也就是一个统一而又十分丰富的知识领域。
编辑本段研究方法
生物学的一些基本研究方法——观察描述的方法、比较的方法和实验的方法等是在生物学发展进程中逐步形成的。在生物学的发展史上,这些方法依次兴起,成为一定时期的主要研究手段。现在,这些方法综合而成现代生物学研究方法体系和研究框架。
观察描述的方法
在17世纪,近代自然科学发展的早期,生物学的研究方法同物理学研究方法大不相同。物理学研究的是物体可测量的性质,即时间、运动和质量。物理学把数学应用于研究物理现象,发现这些量之间存在着相互关系,并用演绎法推算出这些关系的后果。生物学的研究则是考察那些将不同生物区别开来的、往往是不可测量的性质。生物学用描述的方法来记录这些性质,再用归纳法,将这些不同性质的生物归并成不同的类群。18世纪,由于新大陆的开拓和许多探险家的活动,生物学记录的物种几倍、几十倍地增长,于是生物分类学首先发展起来。生物分类学者搜集物种进行鉴别、整理,描述的方法获得巨大发展。要明确地鉴别不同物种就必须用统一的、规范的术语为物种命名,这又需要对各种各样形态的器官作细致的分类,并制定规范的术语为器官命名。这一繁重的术语制定工作,主要是C.von林奈完成的。人们使用这些比较精确的描述方法收集了大量动、植物分类学材料及形态学和解剖学的材料。
比较的方法
18世纪下半叶,生物学不仅积累了大量分类学材料,而且积累了许多形态学、解剖学、生理学的材料。在这种情况下,仅仅作分类研究已经不够了,需要全面地考察物种的各种性状,分析不同物种之间的差异点和共同点,将它们归并成自然的类群。比较的方法便被应用于生物学。
运用比较的方法研究生物,是力求从物种之间的类似性找到生物的结构模式、原型甚至某种共同的结构单元。G.居维叶在动物学方面,J.W.von歌德在植物学方面,是用比较方法研究生物学问题的着名学者。用比较的方法研究生物,愈来愈深刻地揭示动物和植物结构上的统一性,势必触及各个不同类型生物的起源问题。19世纪中叶,达尔文的进化论战胜了特创论和物种不变论。进化论的胜利又给比较的方法以巨大的影响。早期的比较,还仅仅是静态的共时的比较,在进化论确立后,比较就成为动态的历史的比较了。现存的任何一个物种以及生物的任何一种形态,都是长期进化的产物,因而用比较的方法,从历史发展的角度去考察,是十分必要的。
早期的生物学仅仅是对生物的形态和结构作宏观的描述。1665年英国R.胡克用他自制的复式单孔反射显微镜,观察软木片,看到软木是由他称为细胞的盒状小室组成的。从此,生物学的观察和描述进入了显微领域。但是在17世纪,人们还不能理解细胞这样的显微结构有何等重要意义。那时的显微镜未能消除使影像失真的色环,因而还不能清楚地辨认细胞结构。19世纪30年代,消色差显微镜问世,使人们得以观察到细胞的内部情况。1838~1839年施莱登和施万的细胞学说提出:细胞是一切动植物结构的基本单位。比较形态学者和比较解剖学者多年来苦心探求生物的基本结构单元,终于有了结果。细胞的发现和细胞学说的建立是观察和描述深入到显微领域所获得的成果,也是比较方法研究的一个重要成果。
实验的方法
前面提到的观察和描述的方法有时也要对研究对象作某些处理,但这只是为了更好地观察自然发生的现象,而不是要考察这种处理所引起的效应。实验方法则是人为地干预、控制所研究的对象,并通过这种干预和控制所造成的效应来研究对象的某种属性。实验的方法是自然科学研究中最重要的方法之一。17世纪前后生物学中出现了最早的一批生物学实验,如英国生理学家W.哈维关于血液循环的实验,J.B.van黑尔蒙特关于柳树生长的实验等。然而在那时,生物学的实验并没有发展起来,这是因为物理学、化学还没有为生物学实验准备好条件,活力论还占统治地位。很多人甚至认为,用实验的方法研究生物学只能起很小的作用。
到了19世纪,物理学、化学比较成熟了,生物学实验就有了坚实的基础,因而首先是生理学,然后是细菌学和生物化学相继成为明确的实验性的学科。19世纪80年代,实验方法进一步被应用到了胚胎学,细胞学和遗传学等学科。到了20世纪30年代,除了古生物学等少数学科,大多数的生物学领域都因为应用了实验方法而取得新进展。
系统的方法
系统科学源自对还原论、机械论反省提出的有机体、综合哲学,从C.贝尔纳与W.B.坎农揭示生物的稳态现象、维纳与艾什比的控制论到贝塔郎菲的一般系统论,系统生态学、系统生理学等先后建立与发展,20世纪70-80年代系统论与生物学、系统生物学等概念发表。从香农信息论到I.普里戈津的耗散结构理论,将生命看作自组织化系统。细胞生物学、生化与分子生物学发展,艾根提出细胞、分子水平探讨的超循环理论,20世纪90年代曾邦哲的系统遗传学及系统医药学、系统生物工程概念发表。随着基因组计划、生物信息学发展,高通量生物技术、生物计算软件设计的应用,带来系统生物学新的时期,形成系统生物学“omics”组学与计算系统生物学 - 系统生物技术的发展,国际国内系统生物学研究机构建立而进入系统生物学时代。
‘陆’ 生物细胞分子的组成成分
水:生命活动的介质环境
水是生物体的第一大化合物,含量在50%以上,甚至可达99%。人体的含水量随年龄增长而减少,从新生儿80%到老年的55%。
地球表面的70%为水覆盖,水是地球表面最丰富的物质,水在地球表面以三种状态同时存在。液态水是良好的极性溶剂,很多物质都能溶于水中,众多的化学反应在水中能非常好的进行。生命现象主要是生物体内一系列生物化学反应的外部体现,因此,水是生命存在的介质环境,没有水就没有生命。
水分子的形状是一个等腰三角形,分子内O-H间的键长约为0.0965nm,H-O-H键角为104.5°。氢原子的电子由于氧原子核的强力吸引而偏向氧,结果使氢被氧化而呈正电,氧呈负电。由于氧原子只有两对电子是与质子(氢原子核)共享的,在8电子壳层中还有两对电子暴露在O-H的外部,这两对电子吸引相邻水分子上的正电,从而形成氢键。因此,水分子通过氢键而相互连接起来。水与其他分子的负电性原子形成键能大致相同的氢键,例如羧基中的-OH基团中的氧或蛋白质-NH基团中的氮都可与水分子的氢形成氢键。在分子中如果含有-OH、-NH等极性基团的分子与电负性强的原子也能形成氢键。在蛋白质分子中,存在着大量的氢键,从而使蛋白质的结构得到加固。氢键在加固核酸的特殊结构中也起着重要的作用。此外,水还能够和一些小分子有机化合物形成氢键。氢键的键能大约只有共价键的十分之一,幅度较小的温度变化就可以使氢键断开。这就使得带氢键的结构具有显着的柔顺性,使它们能随着内外环境的变化而变化。
生物体内物质的运输是依赖水良好的流动性完成的,另外水还有恒温、润滑等多种作用。
无机盐:参与和调节新陈代谢
无机盐在细胞里含量很小,人体内的无机盐大约占5%左右,种类很多,含量最多的无机盐是钙和磷盐约占无机盐含量的一半左右,主要沉积在骨骼和牙齿中,无机盐的另一半大多以水合离子状态存在于体液中。由于无机盐的种类多样,因此功能不一。总体来说,无机盐有如下功能:
1.构成骨骼和牙齿的无机成分,对身体起支撑作用。骨骼中无机物约占1/3,有机物占2/3。存在于骨骼中的无机盐主要是钙和磷,有机物主要是蛋白质。有机物使骨骼具有韧性,无机盐使骨骼具有硬度。骨骼中的钙磷盐是体液中钙磷盐的贮存场所(钙磷库)。
2.维持生命活动的正常生理环境。Na+、Cl-、K+、HPO42-在维持细胞内外液的容量方面起着重要的作用。体内各种酶的作用需要相对恒定的pH,体液的缓冲系统由这些盐类构成,发挥稳定氢离子浓度的功能。同样,无机盐对肌肉、心肌的应激性的维持也有重要的作用。
3.参与或调节新陈代谢。体内很多酶需要离子结合才具有活性,有些离子可以增强或抑制酶的活性。某些离子参与物质转运、代谢反应、信息传递等多种功能。
无机盐是机体新陈代谢的重要调节和参与因素。
蛋白质:生命活动的主要表现者
蛋白质是生物体的第二大化合物,在细胞的干重中,约一半以上是蛋白质,在活细胞中的含量在15%以上。蛋白质是大分子物质,分子量在6000至百万道尔顿。蛋白质的英文名叫做protein,源自希腊文προτο,它是“最原初的”,“第一重要的”意思。“朊”这个词就是根据protein的原意翻译的,但由于蛋白质一词沿用已久,所以“朊”并未被广泛采用。蛋白质在生物体内占有特殊的地位。蛋白质和核酸构成原生质中的主要成分,而原生质是生命现象的物质基础。
蛋白质是生命的结构基础和功能基础。蛋白质广泛地存在于细胞膜、液态基质、细胞器、核膜、染色体等结构中,蛋白质中的一半左右是酶-生物催化剂,细胞中众多的化学反应由酶分子催化。蛋白质种类众多,功能各异,总体来说,蛋白质具有下述功能:
1.催化和调控:体内物质代谢的一系列化学反应几乎都是由酶催化的。体内各组织细胞各种代谢的进行和协调,都与蛋白质的调控功能密切相关。
2.在协调运动中的作用:肌肉收缩是一种协调运动,肌肉的主要成分是蛋白质,肌肉收缩是肌肉中多种蛋白质组装成的粗丝、细丝完成的,从微观上看是细胞内微丝、微管的活动,精子、纤毛的运动等都与蛋白质的作用有关。
3.在运输及贮存中的作用:蛋白质在体内物质的运输和贮存中起重要作用。例如,全身各组织细胞时刻不能缺少的氧分子,就是由血红蛋白运输的;氧在肌肉中的贮存靠肌红蛋白来完成。铁在细胞内需与铁蛋白结合才能贮存。
4.在识别、防御和神经传导中的作用:体内各种传递信息的信使需与特异的受体相互识别,受体多为蛋白质,可见蛋白质在信息传递过程中起重要作用,另外,抗体对抗原的结合,神经冲动的传递等也是蛋白质参与完成的。
因此,蛋白质是生命过程中的主要分子,是生命现象的主要“演员”,蛋白质-生命的体现者。
糖:生命活动的主要能源物质
糖在动物体内是四大类生物分子中含量最小的,但糖类是草食动物及人体消化吸收最多的食物成分(不计水),原因在于吸收的糖类消耗很快(能源物质)、可大量转化为脂肪贮存及糖原贮存量较小造成的。
糖是多羟基醛或多羟基酮类化合物。糖的基本单位是单糖,如葡萄糖、果糖等。多数单糖有链式和环式两种结构,并且环式结构存在α和β两种异构体,三者之间可以相互转化。由单糖可以聚合成双糖、寡糖、多糖。双糖如蔗糖(葡萄糖-果糖二聚体)、麦芽糖(葡萄糖二聚体)和乳糖(半乳糖二聚体),多糖的典型代表是植物中的淀粉和动物体的糖原。
糖在植物体中贮存较多,在动物体相对含量较小。动物体不能由无机物合成糖,动物体内的糖最初都是由植物提供的,植物通过光合作用能将二氧化碳和水合成为糖。
糖在体内有以下两方面的功能:
1.细胞的重要能源物质:动物体摄取糖后,大量的糖是作为能源物质被使用。糖在体内氧化,释放能量,释放的能量以热散发维持体温和贮存于ATP、磷酸肌酸中以供生命活动所用。动物体摄取的糖如果有剩余,能够合成肝糖原和肌糖原以贮存糖,但量相对较小,一个中等身材的人只能贮存约500g左右的糖原。糖在身体内很容易转化为高度还原的能源贮存形式脂肪,贮存于脂肪组织,以供糖缺乏的时候给身体提供能量。
2.糖在细胞内与蛋白质构成复合物,形成糖蛋白和蛋白聚糖,广泛地存在与细胞间液、生物膜和细胞内液中,它们有些作为结构成分出现,有些作为功能成分出现。因此,糖蛋白和蛋白聚糖也是生命现象的“演员”。
核酸:生命活动的主宰者
核酸在体内含量很少,分为两类:脱氧核糖核酸(DNA)和核糖核酸(RNA)。DNA主要存在于细胞核中,RNA主要存在于细胞质中。RNA主要有信使核糖核酸(mRNA)、转运核糖核酸(tRNA)和核糖核蛋白体核糖核酸(rRNA)三种。
核酸是重要的生物大分子,是生物化学与分子生物学研究的重要对象和领域。生物的特征是生物大分子决定的。生物大分子有四类:核酸、蛋白质、多糖和脂质复合物。糖和脂质的合成由酶(蛋白质)催化完成,它们与蛋白质在一起,增加了蛋白质结构与功能的多样性。蛋白质的合成取决于核酸;然而生物功能通过蛋白质来实现,包括核酸的合成也需要蛋白质的作用。因此,生物体内最重要的大分子物质是DNA、RNA和蛋白质。由生物大分子和有关生物分子与无机分子或离子共同构成生物机体不同层次的结构;生物大分子之间以及与其他分子之间的相互作用决定了一切生命活动。概括地说,核酸(主要是DNA)是生命的操纵者,蛋白质是生命的表现者,糖和脂肪是生命的能源物质,磷脂是生物膜的结构基础,水是生命存在的介质环境,无机盐参与和调节新陈代谢。
G. Mendel于1865年发现豌豆杂交后代性状分离和自由组合的遗传规律。F. Miescher于1868年发现核酸(当时称核素),细胞学家和遗传学家曾猜测核素可能与遗传有关。19世纪开始知道有两类核酸,直到20世纪40年代才了解DNA和RNA都是细胞的重要组成物质,前者可引起遗传性状的变化,后者可能参与蛋白质的生物合成。50年代初生物学家开始接受DNA是遗传物质的观点。1953年,Watson和Crick提出DNA的双螺旋结构模型,才从分子结构上阐明了其遗传功能。半个世纪以来,核酸研究已经成为生物化学与分子生物学研究的核心和前沿,其研究成果改变了生命科学的面貌,也促进了生物技术产业的迅猛发展,充分表明这类物质有重要的生物功能。
核酸的功能主要有以下三点:
1.DNA是主要的遗传物质:DNA分布在细胞核内,是染色体的主要成分,而染色体是基因的载体。细胞内的DNA含量十分稳定,而且与染色体数目平行。基因是染色体上占有一定位置的遗传单位。基因有三个基本属性:一是可通过复制,将遗传信息由亲代传给子代;二是通过转录表达产生表型效应;三是可突变形成各种等位基因。但有些病毒的基因组是RNA,基因是RNA的一个片段。一些可作用于DNA的物理化学因素均可引起DNA突变从而引起遗传性状的改变。DNA的突变是生物进化的基础,即突变的累积导致生物进化。
2.RNA参与蛋白质的生物合成:实验表明,由3类RNA共同控制着蛋白质的生物合成。核糖体是蛋白质合成的场所。过去以为蛋白质肽键的形成是由核糖体的蛋白质所催化,称转肽酶。1992年H. F. Noller等证明23S rRNA具有核酶活性,能够催化肽键形成。rRNA约占细胞总RNA的80%,它是装配者并起催化作用。tRNA占细胞总RNA的15%,它是转换器,携带氨基酸并起解译作用。mRNA占细胞总RNA的3~5%,它是信使,携带DNA的遗传信息并起蛋白质合成的模板作用。
3.RNA功能的多样性:20世纪80年代RNA的研究揭示了RNA功能的多样性,它不仅是遗传信息由DNA传递到蛋白质的中间传递体,虽然这是它的核心功能,。归纳起来,RNA有5类功能:①控制蛋白质合成;②作用于RNA转录后加工与修饰;③基因表达和细胞功能的调节;④生物催化与其他细胞持家功能;⑤遗传信息的加工与进化。病毒RNA是上述功能RNA的游离成分。
生物体通过DNA复制,而使遗传信息由亲代传给子代;通过RNA转录和翻译而使遗传信息在子代得到表达。RNA具备诸多功能,无不关系着生物机体的生长和发育,其核心作用是基因表达的信息加工和调节。
脂类:生命的备用能源和生物膜的结构基础
脂类是动物体内的第三大类物质。脂类大都是非极性物质,很难溶于水,脂类分为脂肪和类脂两大类。脂肪是由甘油和脂肪酸缩合而成,类脂有磷脂、胆固醇及胆固醇酯等形式。脂肪的含量不稳定,是体内贮存的能源物质,变化很大,称为可变脂或贮脂,一般成年男性脂肪占体重的10~20%。磷脂由于是细胞的结构成分,因此含量是稳定的,称固定脂或膜脂,约占体重的5%。
1. 三脂酰甘油(脂肪)的丙三醇头部是亲水的,而3条脂肪酸尾部是疏水的。
2. X基团是极性的,常见的有胆碱、乙醇胺、丝氨酸等。
3. 磷脂和糖脂只有2条或1条疏水性尾部,其余都是亲水的,因此磷脂和糖脂很容易形成油与水的分界膜。
脂类的主要作用有以下三点:
1.脂肪是贮存的能源物质:脂肪是高度还原的能源物质,含氧很少,因此相同质量的脂肪和糖相比氧化释放的能量很多,可达糖的两倍以上,并且由于脂肪疏水,因此可以大量贮存,但脂肪作为能源物质的缺点也是明显的,因为疏水,所以脂肪的动员速度比亲水的糖要慢。脂肪主要的贮存部位是皮下、大网膜、肠系膜和脏器周围,贮存量可达15~20kg,足以维持一个人一个月的能量需要。
2.磷脂是生物膜的结构基础:磷脂是脂肪的一条脂肪酸链被含磷酸基的短链取代的产物,因为这条磷酸基链的存在,使磷脂的亲水性比脂肪的大,能够自发形成磷脂双分子层膜。生物膜的骨架就是磷脂双分子层,再加上一系列的蛋白质和多糖就构成生物膜。生物膜在细胞中是广泛存在的,因此,一个细胞的膜表面积很大。膜分隔细胞的空间使不同类的化学反应可以在不同的区间完成而不互相干扰,很多化学反应在膜的表面上进行。神经元细胞由于树突轴突的存在,细胞膜面积十分巨大,因此神经组织是体内含磷脂最丰富的组织。
3.胆固醇的衍生物是重要的生物活性物质:胆固醇可在肝脏转化为胆汁酸排入小肠,胆汁酸可以乳化脂类食物而加速脂类食物的消化;7-脱氢胆固醇可在皮肤中(日光照射下)转化为维生素D3,然后在肝脏和肾脏的作用下形成1,25-(OH)2-D3,通过促进肠道和肾脏对钙磷的吸收使骨骼牙齿得以生长发育;胆固醇可在肾上腺皮质转化为肾上腺皮质激素和性激素;胆固醇可在性腺转化为性激素。另外,不饱和脂肪酸也是体内其他一些激素或活性物质的代谢前体,胆固醇也作为生物膜的结构成分出现。
脂类物质是贮存的能源物质、生物膜的结构成分和体内一些生理活性物质的代谢前体。
DNA分子
DNA即脱氧核糖核酸(英文Deoxyribonucleic acid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种性状的几乎所有蛋白质和RNA分子的全部遗传信息;编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应.除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA,极少数为RNA.
DNA分子就是带有以上特征结构的分子。DNA结构的发现是科学史
DNA结构的发现是科学史上最具传奇性的“章节”之一。发现DNA结构是划时代的成就,但发现它的方法是模型建构法,模型建构法就像小孩子拼图游戏一样的“拼凑”法。而在这场“拼凑”中表现最出色的是沃森和克里克。
1928年4月6日,沃森出生于美国芝加哥。16岁就在芝加哥大学毕业,获得动物学学士学位,在生物学方面开始显露才华。22岁时取得博士学位,随后沃森来到英国剑桥大学的卡文迪什实验室,结识了早先已在这里工作的克里克,从此开始了两人传奇般的合作生涯。克里克于1916年6月8日生于英格兰的北安普敦,21岁在伦敦大学毕业。二战结束后,来到剑桥的卡文迪什实验室,克里克和沃森一样,对DNA有着浓厚的兴趣,从物理学转向研究生物学。
当时人们已经知道,DNA是一种细长的高分子化合物,由一系列脱氧核苷酸链构成,脱氧核苷酸又是由脱氧核糖、磷酸和含氮碱基组成,碱基有4种。在1951年,很多科学家对DNA的结构研究展开了一场竞赛。当时有两个着名的DNA分子研究小组,一个是以着名的物理学家威尔金斯和化学家富兰克林为首的英国皇家学院研究小组,他们主要用X射线衍射来研究DNA结构。一个是以着名化学家鲍林为首的美国加州理工大学研究小组,他们主要用模型建构法研究DNA结构,并且已经用该方法发现蛋白质a螺旋。
1951年2月,威尔金斯将富兰克林拍的一张非常精美的DNA的X光衍射照片在意大利举行的生物大分子结构会议上展示,一直对DNA有浓厚兴趣的沃森看到这张图时,激动得话也说不出来,他的心怦怦直跳,根据此图他断定DNA的结构是一个螺旋体。他打定主意要制作一个DNA模型。他把这种想法告诉了他的合作者克里克,得到了克里克的认可。
沃森和克里克构建DNA分子结构模型的工作始于1951年秋。他们用模型构建法,仿照着名化学家鲍林构建蛋白质α螺旋模型的方法,根据结晶学的数据,用纸和铁丝搭配脱氧核苷酸。
他们构建了一个又一个模型,都被否定了。但沃森坚持认为,DNA分子可能是一种双链结构。因为自然界中的事物,很多是成双成对的,细胞中的染色体也是成对的。之后他们分别完成了以脱氧核糖和磷酸交替排列为基本骨架,碱基排在外面的双螺旋结构(如图一),和以脱氧核糖和磷酸交替排
列为基本骨架,碱基排在内部,且同型碱基配对的双螺旋结构(如图二)。
1952年,生物化学家查伽夫访问剑桥大学时向报道了他对人、猪、牛、羊、细菌和酵母等不同生物DNA进行分析的结果。查伽夫的结果表明,虽然在不同生物的DNA之间,4种脱氧核苷酸的数量和相对比例很不相同,但无论哪种物质的DNA中,都有A=T和G=C,这被称为DNA化学组成的“查伽夫法则”。1952年7月,查伽夫访问卡文迪什实验室时,向克里克详细解释了A:T=G:C=1:1的法则。之后,克里克的朋友,理论化学家格里菲斯通过计算表明,DNA的4种脱氧核苷酸中,A必须与T成键,G必须与C成键。这与查伽夫法则完成一致。随后,鲍林以前的同事多诺告诉沃森,A-T和G-C配对是靠氢键维系的。以上这些工作,就成了沃森和克里克DNA分子模型中A—T配对、G—C配对结构的基础。
至此,DNA模型已经浮现。2月28日,沃森用纸板做成4种碱基的模型,将纸板粘到骨架上朝向中心配对,克里克马上指出,只有两条单链的走向相反才能使碱基完善配对,这正好与X光衍射资料一致。完整的DNA分子结构模型完成于1953年3月7日。根据这个模型,DNA分子是一个双螺旋结构,每一个螺旋单位包含10对碱基,长度为34埃(1埃=10-10米)。螺旋直径为20埃。4月15日,沃森和克里克关于该模型的第一篇论文在《自然》(Nature)杂志上发表。
DNA分子双螺旋结构模型的发现,是生物学史上的一座里程碑,它为DNA复制提供了构型上的解释,使人们对DNA作为基因的物质基础不再怀疑,并且奠定了分子遗传学的基础。DNA双螺旋模型在科学上的影响是深远的。
‘柒’ 生物分类分为:界、门、纲、目、科、属、种 最具体是什么
1、界
在很长一段时间里,界(Kingdom)是生物科学分类法中最高的类别。一开始人只将生物分为动物和植物两界。
微生物被发现后,也长时期被分入动物或植物界:好动的微生物被分入动物界,有色素(藻类)的或细菌被分为植物,有些甚至被同时放入两界。
后来,没有细胞核的细菌被独立为一界,再后来真菌被分出植物界,也成为独立的一界,最后自立为界的是古细菌。
按照原本公认的分类-六界法将生物分为病毒界、原核生物界、真菌界、原生生物界、植物界以及动物界。
最新的基因研究发现这种分类法并不十分正确,因此引入了域作为生物最高的类别。现有的生物被分入非细胞生物域、真核生物域或原核生物域,没有细胞核的生物(细菌和古细菌)被分入原核生物。
只有在真核生物中还有界的分法。真核生物中分四个界:原生生物界、真菌界、植物界和动物界。总共九个界:
类病毒界、病毒界、古细菌界、细菌界、蓝藻界、原生生物界、真菌界、植物界、动物界。
2、门
生物学中把具有最基本最显着的共同特征的生物分为若干群,每一群叫一门,如原生动物门、裸子植物门等。门以下为纲。
3、纲
纲在门之下、目之上。有时还上有总纲、下有亚纲。例如哺乳纲(属于动物界、脊索动物门、脊椎动物亚门,下有食肉目、奇蹄目、偶蹄目等),单子叶植物纲(属于植物界、种子植物门、被子植物亚门,下有鸭拓草亚纲、禾本科等)。
4、目
目上有纲或亚纲,下有科。也可能有总目、亚目存在。例如食肉目(属动物界、脊索动物门、脊椎动物亚门、哺乳纲,下有猫科、熊科、犬科、熊猫科等),莎草目(属植物界、种子植物门、被子植物亚门、单子叶植物纲、鸭拓草亚纲,下有禾本科、莎草科等)。
5、科
科位于目和属之间。有人科、十字花科、猴科。
6、属
属隶于科,其用途是将该“目”内的生物再详细分类。例如:猕猴属、芸苔属、人。
7、种
又称物种,生物分类的基本单位,位于生物分类法中最后一级,在属之下。较为笼统的概念,是指一群或多或少与其它这样的群体形态不同,并能够交配繁殖且子代可育的相关的生物群体。
参考资料来源:网络——生物分类
‘捌’ 生物学名的构成
在生物学中,双名法是为生物命名的标准.正如“双”所说的,为每个物中命名的名字有两部分构成:属名和种名.
故选:C
‘玖’ 大学生物专业基础知识总结
1.生物体具有共同的物质基础和结构基础。
2. 从结构上说,除病毒以外,生物体都是由细胞构成的。细胞是生物体的结构和功能的基本单位。
3.新陈代谢是活细胞中全部的序的化学变化总称,是生物体进行一切生命活动的基础。
4.生物体具应激性,因而能适应周围环境。
5.生物体都有生长、发育和生殖的现象。
6.生物遗传和变异的特征,使各物种既能基本上保持稳定,又能不断地进化。
7.生物体都能适应一定的环境,也能影响环境。