导航:首页 > 生物信息 > 什么是预测性微生物学

什么是预测性微生物学

发布时间:2022-08-18 16:45:46

微生物怎么定义的

微生物是一切肉眼看不见或看不清楚的微小生物的总称.人们通常要借助光学显微镜或者电子显微镜才能看清它们的形态和结构.
对于蘑菇,只是人们的习惯分类罢了.
微生物:原核生物,真核生物(原生生物,真菌),非细胞生物等
原核生物:细菌,蓝藻,防线菌,支原体,衣原体,立克次氏体等.
原生生物:原生动物(变形虫,喇叭虫等),原生植物(衣藻等)等单细胞真核生物.
真菌:酵母菌,霉菌,木耳,蘑菇等.
非细胞生物主要是病毒和亚病毒等.

② 学检验微生物名词解释

标准株:即标准菌株。在给某细菌定名,分类作记载和发表时,为了使定名准确和作为分类概念的准则,以纯粹活菌(可繁殖)状态所保存的菌种。每种标准株的特性,可以在《伯杰氏细菌鉴定手册》和《真菌鉴定手册》中找到。标准株一般在中检所购买。

外毒素:外毒素是指某些病原菌生长繁殖过程中分泌到菌体外的一种代谢产物,为次级代谢产物。其主要成分为可溶性蛋白质。许多革兰氏阳性菌及部分革兰氏阴性菌等均能产生外毒素。外毒素不耐热、不稳定、抗原性强,可刺激机体产生抗毒素,可中和外毒素,用作治疗。
这个网络里面有。

抗链O :ASO
抗溶血性链球菌“O”(Anti-Streptolysin “O”;ASO)是A族溶血性链球菌的重要代谢产物之一,它是一种具有溶血活性的蛋白质,能溶解人及一些动物的红细胞,同时溶血性链球菌“O”具有抗原性,能刺激机体产生相应的抗体,称为ASO
(备注:【参 考 值】 1:400及以下为阴性0-200IU/mL (免疫比浊法)
【临床意义】诊断溶血性链球菌感染症(增加),活动性风湿热,猩红热,丹毒等均可增高。1)ASO俗称抗“O”,测定其效价可知病人最近或以前有无溶血性链球菌感染。鉴于A组溶血性链球菌感染相当常见,故正常人能测到ASO的低滴度,但一般在500u以下。 2)ASO增高,常见于急性咽炎等上呼吸道感染,儿童多见。还可见于皮肤急软组织感染。 3)风湿性心肌炎、心包炎、风湿性关节炎,急性肾小球肾炎,ASO滴度升高。多次检验所呈现的趋势与病情平行,如渐渐下降提示病情好转。 4)A组溶血性链球菌所致败血症、菌血症心内膜炎等ASO均可升高。
注意事项: 1)不能认为ASO升高就是风湿病,须结合临床症状考虑。但ASO升高的各种致病因素中与A组溶血性链球菌最密切相关。 2)人体感染A组溶血性链球菌后ASO上升在4-6周内达到高峰,然后在血清中ASO升高可达数月至数年。故一次检查尚难肯定是否为最近感染所致,须多次检查,观察变化动态。在风湿热病人感染后4-6周,有80%可见ASO升高,常伴有血沉增快及白细胞增多,有助于鉴别诊断。近期建立的A群溶血性链球菌胞外产物的抗链酶试验(ASZ),比单测ASO阳性率高。对于诊断ASO不增高的急性风湿热和急性肾小球肾炎病人有助。 3)免疫机制不全及大量使用肾上腺皮质激素者,链球菌感染后ASO可不升高。)

干扰素:干扰素(IFN)是一种广谱抗病毒剂,并不直接杀伤或抑制病毒,而主要是通过细胞表面受体作用使细胞产生抗病毒蛋白,从而抑制乙肝病毒的复制;同时还可增强自然杀伤细胞(NK细胞)、巨噬细胞和T淋巴细胞的活力,从而起到免疫调节作用,并增强抗病毒能力干扰素是一组具有多种功能的活性蛋白质(主要是糖蛋白),是一种由单核细胞和淋巴细胞产生的细胞因子。它们在同种细胞上具有广谱的抗病毒、影响细胞生长,以及分化、调节免疫功能等多种生物活性
这个网络有。

基础培养基的配置方法:这个问题太笼统了,基础培养基有基础培养基如普通肉汤培养基和普通琼脂培养基,1%蛋白胨水培养基等属于此类。具体那种?写详细操作方法及注意事项?非常多。

沙门菌的检查过程:不知道你检食品还是药品,检验药品有中国药典做标准,检验食品有食品安 食品微生物学检验标准汇编做标准。你可以在做下相关功课。

HBV-DNA即是乙肝病毒的脱氧核糖核酸(即乙肝病毒基因)。 HBV-DNA是HBV感染最直接、特异性强和灵敏性高的指标,HBV-DNA阳性,提示HBV复制和有传染性。HBV-DNA越高表示病毒复制越厉害,传染性强。乙肝病毒检测有两个意义,一个是乙肝病毒DNA定性检测,一个是定量检测,另外还有一个是基因分形和耐药的变异,定性检测比定量要求高,在这点国内是比较忽视的。 还有定量的问题,强调用干扰素和核苷类似物进行抗病毒治疗,无论是哪一种药物的治疗,乙型肝炎病毒的滴度和阴转都是考核抗病毒治疗的硬性指标,所以这项检测指标是非常重要的,而且在很多药物治疗过程中,乙肝病毒DNA下降的速度和幅度对于抗病毒治疗应达的疗效具有重要的预测价值,所以是非常重要的。第三点要对乙肝病毒进行基因分形和耐药变异问题测定,比如说有的病人服药之后从阴性转成阳性,还有乙肝病毒DNA的升高,这样的病人要充分重视是否产生了耐药变异,这个检测对医生更换药物或者更换治疗方案是非常有关系的。

大部分网络上都有。我这借花献佛了。

③ 什么是微生物

现代定义:微生物是一切肉眼看不见或看不清的微小生物的总称。 形体微小,结构简单,通常要用光学显微镜和电子显微镜才能看清楚的生物,统称为微生物。 (但有些微生物是可以看见的,像属于真菌的蘑菇、灵芝等。)
特点
个体微小,一般<0.1mm。 构造简单,有单细胞的,简单多细胞的,非细胞的。进化地位低,大多依靠有机物维持生命。
分类
原核类: 三菌,三体。 三菌:细菌、蓝细菌、放线菌 三体:支原体、衣原体、立克次氏体 真核类: 真菌,原生动物,显微藻类。 非细胞类: 病毒,亚病毒 ( 类病毒,拟病毒,朊病毒)。
五大共性:
体积小,面积大; 吸收多,转化快 微生物
; 生长旺,繁殖快; 适应强,易变异; 分布广,种类多。
编辑本段类群
种类 原核:细菌、放线菌、螺旋体、支原体、立克次氏体、衣原体。 真核:真菌
、藻类、原生动物。 非细胞类:病毒和亚病毒。 一般地,在中国大陆地区的教科书中,均将微生物划分为以下8大类: 细菌、病毒、真菌、放线菌、立克次体、支原体、衣原体、螺旋体。
细菌
(1)定义:一类细胞细短,结构简单,胞壁坚韧,多以二分裂方式繁殖和水生性强的原核生物 (2)分布:温暖,潮湿和富含有机质的地方 (3)结构:主要是单细胞的原核生物,有球形,杆形,螺旋形 基本结构:细胞膜 细胞壁 细胞质 核质 特殊结构:荚膜、鞭毛、菌毛、芽胞 (4)繁殖: 主要以二分裂方式进行繁殖的 (5)菌落: 单个细菌用肉眼是看不见的,当单个或少数细菌在固体培养基上大量繁殖时,便会形成一个肉眼可见的,具有一定形态结构的子细胞群落. 菌落是菌种鉴定的重要依据.不同种类的细菌菌落的大小,形状光泽度颜色硬度透明度都不同.
放线菌
(1)定义:一类主要成菌丝状生长和以孢子繁殖的陆生性较强的原核生物
(2)分布:含水量较低,有机物较丰富的,呈微碱性的土壤中 (3)形态构造:主要由菌丝组成,包括基内菌丝和气生菌丝(部分气生菌丝可以成熟分化为孢子丝,产生孢子) (4)繁殖:通过形成无性孢子的形式进行无性繁殖 无性繁殖 有性繁殖 (5)菌落:在固体培养基上:干燥,不透明,表面呈致密的丝绒状,彩色干粉
病毒
(1) 定义:一类由核酸和蛋白质等少数几种成分组成的“非细胞生物”,但是它的生存必须依赖于活细胞. (2)结构:[font class="Apple-style-span" style="font-family: -webkit-monospace; font-size: 13px; line-height: normal; white-space: pre-wrap; "]蛋白质衣壳以及核酸(核酸为DNA或RNA)[/font] (3)大小:一般直径在100nm左右,最大的病毒直径为200nm的牛痘病毒,最小的病毒直径为28nm的脊髓灰质炎病毒 (4)增殖:病毒的生命活动中一个显着的特点为寄生性。病毒只能寄生在某种特定的活细胞内才能生活。并利用会宿主细胞内的环境及原料快速复制增值。在非寄生状态时呈结晶状,不能进行独立的代谢活动。以 噬菌体为例: 吸附→DNA注入→复制、合成→组装→释放 噬菌体侵染细菌过程示意图

编辑本段微生物的特点
微生物的化学组成
C,H,O,N,P,S以及其他元素
微生物的营养物质
1 水和无机盐 2 碳源:凡能为微生物提供生长繁殖所需碳元素的营养物质 来源 作用 3氮源:凡能为微生物提供所必需氮元素的营养物质 来源 作用:主要用于合成蛋白质,核酸以及含氮的代谢产物 4 能源:能为微生物生命活动提供最初能源来源的营养物质或辐射能
根据碳源和能源分类
5生长因子:微生物生长不可缺少的微量有机物
能引起人和动物致病的微生物叫病源微生物,有八大类: 1.真菌:引起皮肤病。深部组织上感染。 2放线菌:皮肤,伤口感染。 3螺旋体:皮肤病,血液感染 如梅毒,钩端螺旋体病。 4细菌:皮肤病化脓,上呼吸道感染 ,泌尿道感染,食物中毒,败血压症,急性传染病等。 5立克次氏体:斑疹伤寒等。 6衣原体:沙眼,泌尿生殖道感染。 7病毒:肝炎,乙型脑炎,麻疹,艾滋病等。 8支原体:肺炎,尿路感染。 生物界的微生物达几万种,大多数对人类有益,只有一少部份能致病。有些微生物通常不致病,在特定环境下能引起感染称条件致病菌。 能引起食品变质,腐败,正因为它们分解自然界的物体,才能完成大自然的物质循环。
微生物的作用
微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。 微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物非常小,必须通过显微镜放大约1000 倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。想象一下一滴牛奶,每毫升腐败的牛奶中约有5千万个细菌,或者讲每夸脱牛奶中细菌总数约为50亿。也就是一滴牛奶中可能含有50 亿个细菌。 微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。 微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。 随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。 以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大! 从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。 工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。 据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。 经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及中国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。 在全面推进经济发展的同时,滥用资源、破坏环境的现象也日益严重。面对全球环境的一再恶化,提倡环保成为全世界人民的共同呼声。而生物除污在环境污染治理中潜力巨大,微生物参与治理则是生物除污的主流。微生物可降解塑料、甲苯等有机物;还能处理工业废水中的磷酸盐、含硫废气以及土壤的改良等。微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。 在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。 有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。
编辑本段贡献
现代生物学的若干基础性的重大发现与理论,是在研究微生物的过程中或以微生物为实验材料与工具取得的。这些理论包括:证明DNA(脱氧核糖核酸)是遗传信息的载体(三大经典实验:肺炎球菌的转化实验、噬菌体实验、植物病毒的重组实验)。DNA的半保留复制方式(双螺旋的每一条子链分别、都是复制模板)。遗传密码子的解读(64个密码子各对应20种氨基酸及终止信号的哪一种)。基因的转录调节(operon, promoter, operator, repressor, activator的概念与调节方式)。信使RNA的翻译调节(terminator)等等……。 现在,很多常用、通用的生物学研究技术依赖于微生物,比如:分子克隆重组蛋白在细菌或酵母中的表达。很多医学技术也依赖于微生物,比如:以病毒为载体的基因治疗。
编辑本段基因因素
农业微生物基因组研究认清致病机制发展控制病害的新对策。据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及我国正在开展的黄单胞菌的研究等正在进行之中。 日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。 环境保护微生物基因组研究找到关键基因降解不同污染物。在全面推进经济发展的同时,滥用资源、破坏环境的现象也日益严重。面对全球环境的一再恶化,提倡环保成为全世界人民的共同呼声。而生物除污在环境污染治理中潜力巨大,微生物参与治理则是生物除污的主流。微生物可降解塑料、甲苯等有机物;还能处理工业废水中的磷酸盐、含硫废气以及土壤的改良等。 微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。极端环境微生物基因组研究深入认识生命本质应用潜力极大。在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。
编辑本段微生物在整个生命世界中的地位
当人类在发现和研究微生物之前,把一切生物分成截然不同的两大界-动物界和植物界。随着人们对微生物认识的逐步深化,从两界系统经历过三界系统、四界系统、五界系统甚至六界系统,直到20世纪70年代后期,美国人Woese等发现了地球上的第三生命形式-古菌,才导致了生命三域学说的诞生。该学说认为生命是由古菌域(Archaea)、细菌域(Bacteria)和真核生物域(Eucarya)所构成。在图示“生物的系统进化树”中,左侧的黄色分枝是细菌域;中间的褐色和紫色分枝是古菌域;右侧的绿色分枝是真核生物域。 古菌域包括嗜泉古菌界(Crenarchaeota)、广域古菌界(Euryarchaeota)和初生古菌界(Korarchaeota);细菌域包括细菌、放线菌、蓝细菌和各种除古菌以外的其它原核生物;真核生物域包括真菌、原生生物、动物和植物。除动物和植物以外,其它绝大多数生物都属微生物范畴。由此可见,微生物在生物界级分类中占有特殊重要的地位。 生命进化一直是人们关注的热点。Brown等依据平行同源基因构建的“Cenancestor”生命进化树,认为生命的共同祖先Cenancestor是一个原生物。原生物在进化过程中产生两个分支,一个是原核生物(细菌和古菌),一个是原真核生物,在之后的进化过程中细菌和古菌首先向不同的方向进化,然后原真核生物经吞食一个古菌,并由古菌的DNA取代寄主的RNA基因组而产生真核生物。 从进化的角度,微生物是一切生物的老前辈。如果把地球的年龄比喻为一年的话,则微生物约在3月20日诞生,而人类约在12月31日下午7时许出现在地球上。
编辑本段生物形成
目前,有关生命起源最为坚实的证据还是来自于地球,科学家们一直在寻找地球上最古老的生命化石。从已得到的非常稀少的化石推算,地球生命出现在35亿年前,之后地球在漫长的岁月中经历了剧烈的火山活动和地质变迁,彻底地改变了模样,寻找古老生命化石并非易事。值得庆幸的是,在非洲、澳大利亚和格陵兰岛等地还是发现了35亿年形成的火山熔岩和沉积燧石,最早的生命被凝固在这些岩石内。 尽管人们对生命起源有不同的看法,但有一点是一致的,那就是最早生命的诞生必须有水。正因如此,人们发现木星的一颗卫星表面覆盖大量冰时,自然会联想起是否存在有生命的可能。就地球而言,最早的生命肯定起源自海洋。科学家认为海水能溶解许多物质,这些物质的分子在水中不停地碰撞和结合,极有可能产生一些大而复杂的生命诞生所必需的大分子物质。由于合成这样的大分子物质需要巨大的能量,而这种能量很可能来自海底的火山活动,为此,科学家将探索的目光瞄向海底的火山。 1977年,海洋生物学家在海底火山口附近发现了生物,尽管火山口附近的水温高达350℃,生命却依然生机勃勃。在火山附近的热水中生活着巨蛤、贻贝、有孔线虫和其他一些说不出名的生物,它们不需要阳光,仅仅依靠海水中的硫化物作为能量。 令人称奇的是,海底的活火山口会不断向外喷射出黑色的液体,就像股股的黑色烟雾袅袅上升,科学家将这一景观称之为“黑色烟雾”。 “黑色烟雾”的形成似乎非常简单,活火山通过地壳的裂缝不时向外喷射熔岩,熔岩遇到低温的海水立即冷却下来,使得喷射口处熔岩凝固成像“烟囱”一样。火山喷发时,海水不断地通过缝隙流入“烟囱”,由于“烟囱”内温度极高,海水会在极短的时间内急剧升高到1000℃左右。在极度的高压下,海水无法变为气体,这样,极度高温的海水就会与周围的岩石发生作用,使岩石内含有的硫化铁、硫化锌和硫酸钙等矿物质溶解在水中。然后含有大量矿物质的海水随着熔岩一起从“烟囱”口喷射出来,遇到冰冷的海水时,这些硫化物又形成黑色的沉淀物,随着水流上升,就形成所谓的“黑色烟雾”。 “黑色烟雾”大小不一,多数高度为10米,最高的“黑烟”可高达13米,“黑烟”直径也从30厘米到1米不等。 认为生命起源于海洋的科学家相信,“黑色烟雾”是产生生命的摇篮,海水中所含有硫和其他矿物质在高温、高压下合成有机化合物,当黑色的海水逐渐上升时,这些有机物分子开始冷却,水中含铁颗粒和其他矿物质与有机物分子相互作用,吸附在有机物的表面,然后再经过一系列复杂的化学反应,使水中的有机物质形成氨基酸或更大的有机分子,这些分子再通过链接成为蛋白质样颗粒。这些蛋白质样颗粒非常之小,呈球形,冷却后就成了细胞最基本的结构。 值得注意的是,在实验室模仿海底火山口高温高压情况已合成了相应的一些大分子物质,支持了这一学说。科学家还认为黑色的海水除了为生命的起源提供了必需的物质外,还可以遮挡来自太空的有害射线的辐射,这一点在生命诞生时确是至关重要的。 为了证明这一学说,2000年,海洋生物学家乔治和安娜乘坐深海潜水器对海底“黑色烟雾”进行了探险。他们操纵潜水器上的机械臂对“黑色烟雾”化学成分和温度,以及是否存在微生物进行探测。果然,在“烟囱”出口处的海水中发现了微生物,他们认为这种生活在极端高温下的微生物是最早微生物的后代,是地球上所有生物的祖宗。由于微生物生存的海水中硫化氢和硫化铁含量很高,推测这两种化学物质反应后能产生氢气是微生物生长所需的能量。当然也有人不同意他们的这一看法的,认为只有当微生物学家对微生物的DNA进行分析鉴定后才能定论。
编辑本段研究和发展
综述

④ 微生物学知识点

简述致病菌引起全身感染后,常见的几种类型?

答:①毒血症②菌血症③败血症④内毒素血症⑤脓毒血症

试述构成细菌侵袭力的物质基础。

答:①荚膜②黏附素③侵袭性物质

简述病原菌感染机体后,机体如何发挥抗菌免疫功能?

答:首先遇到机体的非特异性免疫包括皮肤与粘膜构成的屏障结构,血脑屏障,胎盘屏障及吞噬细胞对细菌的非特异性的吞噬和体液中杀菌抑菌物质对细菌的攻击。7-10天后,机体产生特异的细胞免疫和体液免疫与非特异性免疫一起杀灭病原菌

简述细菌耐药性产生的主要机制。

答:①钝化酶的产生②药物作用靶位发生改变③胞壁通透性的改变和主动外排机制④抗菌药物的不合理使用形成了抗菌药物的选择压力,在这种压力的作用下,原来只占很少比例的耐药菌株被保留下来,并不断扩大。

举例说明细菌命名的原则。

答:细菌的命名一般采用国际上通用的拉丁文双命名法。一个细菌种的学名由两个拉丁字组成,属名在前,用名词,首字母大写;种名在后,用形容词,首字母小写;两者均用斜体字。中文译名种名在前,属名在后。如Mycobaterium tuberculosis (结核分枝杆菌)。属名亦可不将全文写出,只用第一个大写字母代表,如M. tuberculosis

如何确定从标本中分离的细菌为葡萄球菌?并确定其有无致病性。

答:①直接镜检,经革兰染色后镜检发现革兰染色阳性呈葡萄状排列的球菌,可初步报告疑为葡萄球菌,需进一步分离培养鉴定。②分离培养:血培养需经增菌后转种血平板进一步鉴定,若无细菌生长,需连续观察7天,并以血平板确定有无细菌的生长。脓液、尿道分泌物、脑脊液沉淀物可直接接种血平板,37℃过夜,可形成直径约2-3mm、产生不同色素的菌落。金葡菌菌落周围有透明溶血环。③试验鉴定:血浆凝固酶试验,甘露醇发酵试验,耐热核酸酶试验,肠毒素测定,SPA检测。致病性葡萄球菌菌落周围有透明溶血环,血浆凝固酶试验阳性,甘露醇发酵试验阳性,耐热核酸酶试验阳性,SPA检测有A蛋白的存在。

什么是不耐热肠毒素(LT)?它的物理性质、基本结构、致病机理及与霍乱毒素(CT)的关系如何。

答:LT是肠产毒型大肠杆菌产生的致病物质,因对热不稳定,故称为不耐热肠毒素。其65℃30min可被破坏。LT分为LT-Ⅰ和LT-Ⅱ,LT-Ⅱ与人类疾病无关,LT-Ⅰ是引起人来胃肠炎的致病物质。其结构包括1个A亚单位和5个B亚单位,其中A亚单位是毒素的活性部分。B亚单位与肠粘膜上皮细胞表面的GM1神经节苷脂结合后,使A亚单位穿越细胞膜与腺苷环化酶作用,令胞内ATP转变为cAMP。胞质内cAMP水平增高后,导致肠粘膜细胞内的水、氯和碳酸氢钾等过度分泌到肠腔,同时钠的吸收减少,导致可持续几天的腹泻。LT-Ⅰ与霍乱肠毒素两者间的氨基酸的同源性达75%,他们的抗原高度交叉。

⑤ 微生物可以分成哪“三行八大类”啊详细点!谢谢啊!

微生物的分类,鉴定及命名
1,生物界的分类
地球上的物种估计大约有150万,其中微生物超过10万种,而且其数目还在不断增加.
在生物进化历史过程中演化形成生物种类和种群的多样性.
生物分类就是通过研究生物的系统发育及其进化历史,揭示各类生物的多样性及其系统关系,编制分类系统,还原生物的自然历史位置.
高等动植分类
化石资料,形态学,比较胚胎学
较正确反映其系统发育
微生物分类的难题:
绝大部分微生物个体小,形态简单,易受环境影响而变异,缺少有性繁殖,缺乏化石资料.
生物分类的二种基本原则:
a)根据表型(phenetic)特征的相似程度分群归类,这种
表型分类重在应用,不涉及生物进化或不以反映生
物亲缘关系为目标;
b)按照生物系统发育相关性水平来分群归类,其目标
是探寻各种生物之间的进化关系,建立反映生物系
统发育的分类系统.
★从两界系统经历过三界系统,四界系统,五界系统甚至六界系统,最后又有了三原界(或三总界)系统.
★传统的,为多数学者所接受的是1969年魏塔克(R.H.Whittaker)在《Science》上提出的五界学说,它以纵向显示从原核生物到真核单细胞生物再到真核多细胞生物的三大进化过程.
生物的界级分类学说
利用16SrRNA建立分子进化树的美国科学家
Carl Woese
三域学说的建立
(1)古细菌原界(Archaebacteria) ,包括产甲烷细菌,极端嗜盐菌和嗜热嗜酸菌;
(2)真细菌原界(Eubacteria) ,包括蓝细菌和各种除古细菌以外的其它原核生物;
(3)真核生物原界(Eucaryotes),包括原生生物,真菌,动物和植物.
2,微生物分类学
经典分类学:按微生物表型分类
微生物系统学:按亲缘关系和进化规律分类
发展
表型特征:形态学,生理生化学,生态学等,推断微生物的系统发育.
表型特征结合分子水平上比较微生物的基因型特征(如16S rRNA)探讨微生物进化,系统发育和分类鉴定.
★微生物分类学的三个任务:分类,鉴定及命名
☆分类是根据微生物的相似性和亲缘关系,将微生物归入不同的分类类群.
☆鉴定是确定一个新的分离物属于已经确认的分类单元的过程.
☆命名是根据国际命名法规给微生物分类单元以科学的名称.
以啤酒酵母为例,它在分类学上的地位是:
界(Kindom):真菌界
门(Phyllum):真菌门
纲(Class):子囊菌纲
目(Order):内孢霉目
科(Family):内孢霉科
属(Genus):酵母属
种(Species):啤酒酵母
3,微生物的分类单位
界,门,纲,目,科,属,种
种是最基本的分类单位
每一分类单位之后可有亚门,亚纲,亚目,亚科...
种(species):是一个基本分类单位;是一大群表型特征高度相似,亲缘关系极其接近,与同属内其他种有明显差别的菌株的总称.
菌株(strain): 表示任何由一个独立分离的单细胞繁殖而成的纯种群体及其一切后代(起源于共同祖先并保持祖先特性的一组纯种后代菌群).因此,一种微生物的不同来源的纯培养物均可称为该菌种的一个菌株.菌株强调的是遗传型纯的谱系.
例如:大肠埃希氏杆菌的两个菌株:
Escherichia coli B 和Escherichia coli K12
★菌株的表示法:
★种是分类学上的基本单位,菌株是实际上应用的基本单位,因为同一菌种的不同菌株在产酶上种类或代谢物产量上会有很大的不同和差别!
亚种(subspecies)或变种(variety):
为种内的再分类.
当某一个种内的不同菌株存在少数明显而稳定的变异特征或遗传形状,而又不足以区分成新种时,可以将这些菌株细分成两个或更多的小的分类单元——亚种.
变种是亚种的同义词,因"变种"一词易引起词义上的混淆,从1976年后,不在使用变种一词.通常把实验室中所获得的变异型菌株,称之为亚种.
如:E.coli k12(野生型)是不需要特殊aa的,而实验室变异后,可从k12获得某aa的缺陷型,此即称为E.coli k12的亚种.
型(form):
常指亚种以下的细分.当同种或同亚种内不同菌株之间的性状差异不足以分为新的亚种时,可以细分为不同的型.
例如:按抗原特征的差异分为不同的血清型;
学名—是微生物的科学名称,它是按照有关微生物分类国际委员会拟定的法则命名的.学名由拉丁词,或拉丁化的外来词组成.学名的命名有双名法和三名法两种.
①双名法:
学名=属名+种名+(首次定名人)+现定名人+定名年份
属名:拉丁文的名词或用作名词的形容词,单数,首字母大写,表示微生物的主要特征,由微生物构造,形状或由科学家命名.
种名:拉丁文形容词,字首小写,为微生物次要特征,
如微生物色素,形状,来源或科学家姓名等.
4,微生物的命名
必要,用斜体表示
可省略,用正体字
微生物的名字有俗名和学名两种.如: 红色面包霉———粗糙脉孢霉
绿脓杆菌———铜绿假单胞菌
例:大肠埃希氏杆菌
Escherichia coli (Migula)Castellani et Chalmers 1919
金黄色葡萄球菌
Staphylococcus aureus Rosenbach 1884
◆当泛指某一属微生物,而不特指该属中某一种(或未定种名)时,可在属名后加sp.或ssp.(分别代表species 缩写的单数和复数形式)
例如:Saccharomyces sp.
表示酵母菌属中的一个种.
◆菌株名称——在种名后面自行加上数字,地名或符号等,如: Bacillus subtilis AS1.389 AS=Academia Sinica
Bacillus subtilis BF7658 BF=北纺
Clostridium acetobutylicum ATCC824 丙酮丁醇梭菌
ATCC=American Type Culture Collection美国模式菌种保藏中心
◆当文章中前面已出现过某学名时,后面的可将其属名缩写成1~3个字母.
如:Escherichia coli 可缩写成 E.coli
Staphylococcus aureus可缩写成 S. aureus
②三名法:用于对亚种的命名,这时在属和种名后加写一个subsp.,然后再附上亚种名称(斜排体). 如:
Bacillus thuringiensis subsp. galleria
苏云金芽孢杆菌腊螟亚种
形态结构,生理生化,少量的化石资料,行为习性,等等
表型特征:
5, 进化指征的选择:
b)形态特征在不同类群中进化速度差异很大,仅根据形态推断进化关系往往不准确;
缺点:
a)由于微生物可利用的形态特征少,很难把所有生物放在同一水平上进行比较;
蛋白质,RNA和DNA序列进化变化的显着特点是进化速率相对恒定,也就是说,分子序列进化的改变量(氨基酸或核苷酸替换数或替换百分率)与分子进化的时间成正比.
生物大分子作为进化标尺依据
a)在两群生物中,如果同一种分子的序列差异很大时,
------------进化距离远,进化过程中很早就分支了.
b)如果两群生物同一来源的大分子的序列基本相同,
------------处在同一进化水平上.
大量的资料表明:功能重要的大分子,或者大分子中功能重要
的区域,比功能不重要的分子或分子区域进化变化速度低.
RNA作为进化的指征
16S rRNA被普遍公认为是一把好的谱系分析的"分子尺":
1)rRNA具有重要且恒定的生理功能;
2)在16SrRNA分子中,既含有高度保守的序列区域,又有中度保守和高度变化的序列区域,因而它适用于进化距离不同的各类生物亲缘关系的研究;
3)16SrRNA分子量大小适中,便于序列分析;
4)rRNA在细胞中含量大(约占细胞中RNA的90%),也易于提取;
5)16SrRNA普遍存在于真核生物和原核生物中(真核生物中其同
源分子是18SrRNA).因此它可以作为测量各类生物进化的工具.
Eubacteria
(真细菌界)
Archaebacteria
(古细菌界)
Eukarya
(真核生物界)
Carl Woese利用16SrRNA建立分子进化树
微生物
(病毒)
古生菌(Archaea)
细菌(Bacteria)
真菌(酵母,霉菌,蕈菌等),
单细胞藻类,原生动物等
非细胞型
细胞型
原核微生物
真核微生物(Eukarya)
古生菌在进化谱系上与真细菌及真核生物相互并列,且与后者关系
更近,而其细胞构造却与真细菌较为接近,同属于原核生物.
6,微生物分类鉴定的特征和技术
形态学特征,
生理学特征,
生态学特征
6.1 生物分类的传统指标:
☆形态学特征
培养特征,
运动性,
特殊的细胞结构,
细胞形态及其染色特性,
等等
微生物分类和鉴定的重要依据之一:
a)易于观察和比较,尤其是真核微生物和具有特殊
形态结构的细菌;
b)许多形态学特征依赖于多基因的表达,具有相对
的稳定性;
☆生理生化特征�
与微生物的酶和调节蛋白质的本质和活性直接相关;
代谢产物等
营养类型;
与氧的关系;
对温度的适应性;
对pH的适应性;
对渗透压的适应性;
酶及蛋白质都是基因产物;
对微生物生理生化特征的比较也是对微生物基因组的间接比较;
测定生理生化特征比直接分析基因组要容易得多;
常借助特异性的血清学反应来确定未知菌种,亚种或菌株.
★生态特性
包括在自然界的分布情况,与其他生物有否寄生或共生关系, 宿主种类及与宿主关系, 有性生殖情况, 生活史等.
★血清学反应
6.2 核酸的碱基组成和分子杂交
特点:
与形态及生理生化特性的比较不同,对DNA的碱基
组成的比较和进行核酸分子杂交是直接比较不同微
生物之间基因组的差异,因此结果更加可信.
(1) DNA的碱基组成(G+Cmol%)
DNA碱基因组成是各种生物一个稳定的特征,即使个别基因突变,碱基组成也不会发生明显变化.
分类学上,用G+C占全部碱基的克分子百分数(G+Cmol%)来表示各类生物的DNA碱基因组成特征.
◆每个生物种都有特定的GC%范围,因此后者可以作为分类鉴定的指标.细菌的GC%范围为25--75%,变化范围最大,因此更适合于细菌的分类鉴定.
◆GC%测定主要用于对表型特征难区分的细菌作出鉴定,并可检验表型特征分类的合理性,从分子水平上判断物种的亲缘关系.
使用原则:
G+C含量的比较主要用于分类鉴定中的否定
每一种生物都有一定的碱基组成,亲缘关系近的生物,
它们应该具有相似的G+C含量,若不同生物之间G+C含
量差别大表明它们关系远.
但具有相似G+C含量的生物并不一定表明它们之间具有近的亲缘关系.
同一个种内的不同菌株G+C含量差别应在4~5%以下;同属不同种的差别应低于10~15%;G+C含量已经作为建立新的微生物分类单元的一项基本特征,它对于种,属甚至科的分类鉴定有重要意义.
若二个在形态及生理生化特性方面及其相似的菌株,如果其G+C含量的差别大于5%,则肯定不是同一个种,大于15%则肯定不是同一个属.
在疑难菌株鉴定,新种命名,建立一个新的分类单位时,G+C含量是一项重要的,必不可少的鉴定指标.
其分类学意义主要是作为建立新分类单元的一项基本特征和把那些G+C含量差别大的种类排除出某一分类单元.
G+C含量的比较主要用于分类鉴定中的否定
(2) 核酸的分子杂交
不同生物DNA碱基排列顺序的异同直接反映生物之间亲缘关系的远近,碱基排列顺序差异越小,它们之间的亲缘关系就越近,反之亦然.
核酸分子杂交(hybridization)间接比较不同微生物DNA碱基排列顺序的相似性
a)DNA-DNA杂交;
(亲缘关系相对近的微生物之间的亲缘关系比较)
b)DNA-rRNA杂交;
(亲缘关系相对远的微生物之间的亲缘关系比较)
c)核酸探针;
(利用特异性的探针,用于细菌等的快速鉴定)
(3) 16SrRNA或18SrRNA的核酸序列分析
16SrRNA被普遍公认为是一把好的谱系分析的"分子尺":
16SrRNA的序列高度保守,可精确指示细菌之间的亲缘关系
16SrRNA的大小为1500bp左右,所含信息能反映生物界进化关系,易操作,适用于各级分类单元
目前常用的是建立在PCR技术基础上的16SrRNA基因的直接测序法,方便快捷.
《伯杰氏鉴定细菌学手册》
(Bergey's Manual of Determinative Bacteriology)
美国宾夕法尼亚大学的细菌学教授伯杰(D.Bergey)(1860-1937)
1957年第七版后,由于越来越广泛地吸收了国际上细菌分类学家参加编写(如1974年第八版,撰稿人多达130多位,涉及15个国家;现行版本撰稿人多达300多人,涉及近20个国家),所以它的近代版本反映了出版年代细菌分类学的最新成果,因而逐渐确立了在国际上对细菌进行全面分类的权威地位.
7.1 细菌分类系统
7,微生物分类系统
《伯杰氏系统细菌学手册》
(Bergey's Manual of Systematic Bacteriology)
伯杰氏手册是目前进行细菌分类,鉴定的最重要依据,其特点是描述非常详细,包括对细菌各个属种的特征及进行鉴定所需做的实验的具体方法.
(20世纪80年代末期)
7.2 真菌分类系统
真菌界分类系统很多,各国采用不同的系统,比较混乱.近年来为较多人接受的是Ainsworth的纲要.
俗名—common name简洁易懂,方便记忆,但涵义往往不够准确,还有适用范围和地区性的限制.
命名—scientific name菌种的科学名称.菌种的学名是按照《国际细菌命名法规》命名的国际学术界公认,并通用的名称.
命名原则:
学名=属名+种的加词+(首次定名人)+现名定名人和鲜明定名年份
规定与常识:属名应大写首字母,单数,可以组合外而成.种的加词代表一个种的次要特征,首字小写

⑥ 微生物学课件资料

一 、 微生物学
⒈定义: 研究微生物在一定条件下的形态结构,生理生化,遗传变异以及微生物的进化,分类,生态等生命活动规律及其应用的一门科学。
2.研究对象——微生物
1)微生物与我们
微生物无处不在,我们无时不生活在“微生物的海洋”中。
细菌数亿/g土壤,土壤中的细菌总重量估计为:10034 × 10 12 吨;
每张纸币带细菌:900万个
人体体表及体内存在大量的微生物:
皮肤表面:平均10万个细菌/平方厘米;
口腔:细菌种类超过500种;
肠道:微生物总量达100万亿,
粪便干重的1/3是细菌,每克粪便的细菌总数为:1000亿个;
每个喷嚏的飞沫含4500-150000个细菌,重感冒患者为8500万
少数微生物也是人类的敌人!
鼠疫;天花;艾滋病;疯牛病;埃博拉病毒;
可以说,微生物与人类关系的重要性,你怎么强调都不过分,微生物是一把十分锋利的双
刃剑,它们在给人类带来巨大利益的同时也带来“残忍”的破坏。它给人类带来的利益不仅是享受,而且实际上涉及到人类的生存。
微生物的特点:
(1)体积小, 面积大:测量单位:微米或钠米
杆菌的平均长度:2 微米;1500个杆菌首尾相连= 一粒芝麻的长度;10-100亿个细菌加起来重量 = 1毫克; 面积/体积比:人 = 1,大肠杆菌 = 30万;
这样大的比表面积特别有利于它们和周围环境进行物质、能量、信息的交换。微生物的其它很多属性都和这一特点密切相关。
对1cm3固体做10倍系列三维分割后的比面值变化
(2)吸收多 ,转化快:
微生物获取营养的方式多种多样,其食谱之广是动植物完全无法相比的!
纤维素、木质素、几丁质、角蛋白、石油、甲醇、甲烷、天然气、塑料、酚类、氰化物、各种有机物均可被微生物作为粮食一头500 kg的食用公牛,24小时生产 0.5 kg蛋白质,
而同样重量的酵母菌,以质量较次的糖液(如糖蜜)和氨水为原料,24小时可以生产 50000 kg优质蛋白质
(3)生长旺,繁殖快
大肠杆菌一个细胞重约10 –12 克,平均20分钟繁殖一代
24小时后: 4722366500万亿个后代,重量达到:4722吨
48小时后:2.2 × 10 43个后代,重量达到2.2 × 10 25 吨
相当于4000个地球的重量!
(4)适应强,易变异:
抗热:有的细菌能在265个大气压,250 ℃的条件下生长;自然界中细菌生长的最高温度可以达到113 ℃ ;有些细菌的芽孢,需加热煮沸8小时才被杀死;
抗寒:有些微生物可以在―12℃ ~ ―30℃的低温生长;
抗酸碱:细菌能耐受并生长的pH范围:pH 0.5 ~ 13
耐渗透压:蜜饯、腌制品,饱和盐水(NaCl, 32%)中都有微生物生长;
抗压力:有些细菌可在1400个大气压下生长
个体小、结构简、且多与外界环境直接接触繁殖快、 数量多(突变率:10-5 – 10-10)短时间内产生大量的变异后代。
(5)分布广,种类多:
(6)起源早,发现晚:38亿年前,生命在海洋中出现300多年前人们才真正发现微生物的存在26亿年前,陆地上就可能存在微生物,虽然目前已定种的微生物只有大约10万种,远较动植物为少,但一般认为目前为人类所发现的微生物还不到自然界中微生物总数的1%
级界宽
(7)休眠长:世界上最古老的活细菌(芽孢):2.5亿年
3.在生物界中的地位
微生物在生物五(六)界系统中的地位

Wittaker(1969): 五界系统
Woes(1977,1990): 三原界分类系统,包括细菌,古生菌,真核生物
4.内容及分科
二、微生物的发现和微生物学的建立和发展
(一)微生物的发现:我国8000年前就开始出现了曲蘖酿酒,;制酱,醋
4000年前埃及人已学会烘制面包和酿制果酒;
2500年前发明酿酱、醋,用曲治消化道疾病;
公元六世纪(北魏时期)贾思勰的巨着“齐民要术”;
公元2世纪,张仲景:禁食病死兽类的肉和不清洁食物;
公元前112年-212年间,华佗:“割腐肉以防传染”;
公元九世纪痘浆法、痘衣法预防天花;
1346年,克里米亚半岛上的法卡城之战(靼坦人-罗马人);
16世纪,古罗巴医生G.Fracastoro:疾病是由肉眼看不见的生物(living creatures)引起的;
1641年,明末医生吴又可也提出“戾气”学说
显微镜的发明:列文虎克(荷兰):1664年,英国人虎克(Robert Hooke)曾用原始的显微镜对生长在皮革表面及蔷薇枯叶上的霉菌进行观察,
首次看见并描述微生物:1676年,微生物学的先驱荷兰人列文虎克(Antony van leeuwenhoek)首次观察到了细菌。他没有上过大学,是一个只会荷兰语的小商人,但却在1680年被选为英国皇家学会的会员。列文虎克利用业余时间制造过400多架单式显微镜和放大镜,放大率一般为50~200倍。
(二)微生物学的建立和发展

2、微生物学的奠基
法国人巴斯德(Louis Pasteur)(1822~1895)
(1) 发现并证实发酵是由微生物引起的;
(2) 彻底否定了“自然发生”学说;
着名的曲颈瓶试验无可辩驳地证实,空气内确实含有微生物,是它们引起有机质的腐败。
(3) 免疫学——预防接种
首次制成狂犬疫苗
(4)其他贡献
巴斯德消毒法:60~65℃作短时间加热处理,杀死有害微生物

德国人柯赫(Robert Koch)(1843~1910)
(1)微生物学基本操作技术方面的贡献
a)细菌纯培养方法的建立
薯仔切面 → 营养明胶 → 营养琼脂(平皿)
b)设计了各种培养基,实现了在实验室内对各种微生物的培养
c)流动蒸汽灭菌
(2)对病原细菌的研究作出了突出的贡献:
a)具体证实了炭疽杆菌是炭疽病的病原菌
b)发现了肺结核病的病原菌;(1905年获诺贝尔奖)
c)证明某种微生物是否为某种疾病病原体的基本原则
——着名的柯赫原则

3、微生物学发展过程中的重大事件
1890 Von Behring��制备抗毒素治疗白喉和破伤风
1892 Ivanovsky 提供烟草花叶病毒是由病毒引起的证据;
1928 Griffith发现细菌转化;
对其机理的研究导致DNA是遗传物质的确证;外源遗传物质导入各种细胞的基因重组技术的建立;
1929 Fleming 发现青霉素;
1944 Avery等证实转化过程中DNA是遗传信息的载体;
1953 Watson和Crick��提出DNA双螺旋结构;
1970~1972 Arber、Smith和Nathans发现并提纯了DNA限制性内切酶
1977 Woese提出古生菌是不同于细菌和真核生物的特殊类群 Sanger首次对f×174噬菌体DNA进行了全序列分析;
1982~1983 �Prusiner�发现朊病毒(prion);
1983~1984 �Mullis 建立PCR技术;
1995 第一个独立生活的细菌(流感嗜血杆菌)全基团组序列测定完成;
1996 第一个自养生活的古生菌基因组测定完成
1997 第一个真核生物(啤酒酵母)基因组测序完成
4、20世纪的微生物学
十九世纪末到二十世纪中期:
微生物学:鉴定病原菌、研究免疫学及其在预防疾病中的作用、寻找化学治疗药物、分析微生物的化学活性。
普通生物学:细胞的构造及其在繁殖和发展中的作用、植物和动物的遗传和进化的机制。
20世纪40年代后,微生物自身的特点使其成为生物学研究的“明星”,微生物学很快与生物学主流汇合,并被推到了整个生命科学发展的前沿,获得了迅速的发展,在生命科学的发展中作出了巨大的贡献。
微生物学与生物学发展的主流汇合、交叉,获得了全面、深入的发展
5、21世纪微生物学展望
与其他学科实现更广泛的交叉,获得新的发展学科交叉永远是科学创新的源泉!
微生物基因组的序列测定和分析;
微生物的快速检定;
微量热技术对生命过程的研究
计算机技术与微生物学的结合。
三、 微生物学对生命科学的促进
1. 多学科交叉促进微生物学的全面发展
2. 促进重大理论问题的突破
3. 对生命科学研究技术的贡献
4. 微生物与人类基因组计划

四、我国微生物学界面临的机遇和挑战

思 考 题:
• 试根据微生物的特点,谈谈为什么说微生物既是人类的敌人,更是人类的朋友。
• 为什么说巴斯德和柯赫是微生物学的真正奠基人?

⑦ 微生物学的发展前景

在人们发现感染有李斯特氏菌种(Listeria,致死性菌)的科罗拉多甜瓜之后,到Steven Soderbergh的《全境扩散(Contagion)》——一部讲述某种病毒带来的世界性灾难的电影——上映,微生物经历了一个在“公共关系”上的困难时期。
ReliaPrep™FFPE Miniprep Systems 短时间内获得高质量核酸,点击索取免费试用装

在人们发现感染有李斯特氏菌种(Listeria,致死性菌)的科罗拉多甜瓜之后,到Steven Soderbergh的《全境扩散(Contagion)》——一部讲述某种病毒带来的世界性灾难的电影——上映,微生物经历了一个在“公共关系”上的困难时期。面对它们潜在的致死性,你自然会有种要树立“防火墙”的急切需求:别再握手,别再共用手机,还有——虽然上帝不允许——别再性交了。 但将你生命中的微生物全部净化掉是不可能的。微生物——细菌、真菌、及其它微观组织——是地球上为数最多的生命。实际上,在相当程度上,你也是微生物。“你”体内大约90%的细胞和99%的遗传物质属于病毒,而并不属于你。由于病毒细胞较人类细胞个头小,它们只占你体重的10%,但你随身携带的这些细胞几乎都有它们自己的小九九。 问题是,我们只能在最模糊的层面上了解它们的如意算盘。它们的普遍性造成了研究上的困难。对研究来说,它们太小了。传统的解决方案是在实验室中将一个单独菌种隔离并培养。但微生物与其他生命形式一样,都是群居动物。正如动物园里的大猩猩与面对无花果树、美洲豹、或另一只同类的野生猩猩不同,在皮氏培养皿(Petri dish)中单独培养的微生物并不会展现它在自然环境中所表现出的许多行为。对任何生物体的研究而言,最有意思的要数它对其它生物体的反应——它会吃掉它们、逃离、还是与它们社交? 快速 准确 向猜测说再见,最新Tali™ 成像型多色细胞分析仪,详情请咨询Invitrogen>> >>然而,微生物“社区”太复杂了——你的肠子里、或者任意一立方英尺的土壤中就生活着逾千种微生物——实在是无法知道谁在对谁做什么。到底是附近的99种微生物中的哪一种导致了抗生素的产生?是什么让这个休眠期的病毒开始疯狂的繁殖? 为了对微生物相互作用有所了解,我们需要研究简化但仍然真实的微生物种群。这曾经是哈佛大学微生物学家Rachel Dutton所面临的挑战。她希望寻找到一个足够又不过度复杂、本身就已经被隔离的种群进行研究。有一天,她意识到她自出生以来就在食用她的理想研究对象:奶酪。 吃奶酪其实是在吃微生物 手工奶酪与其说是用牛奶制作的,不如说是用细菌、真菌、以及它们的副产物制作而成的——牛奶仅仅是这些微生物的养料。每一块奶酪就如同一个微小的、资源丰沛的孤岛,在此同时放逐着一批微生物种群,“生还者”模式。Dutton现在正处在哈佛大学系统生物学中心一个五年期项目的第一年,她将与博士后研究员Benjamin Wolfe合作,在实验室中重现这些孤岛社区,然后了解谁将兴旺,谁将被出卖,还有谁会被驱赶出孤岛。为完成这一任务,他们需要从一块特定的奶酪中分离出所有的微生物,在实验室中进行培养,在一系列有着细微变化的不同环境中将它们重新混合,然后观察会发生什么。 “最终我们希望能理解使得这些微生物体共生的基因和路径。”Dutton说道。 这将对我们的健康有重要影响,并帮助我们更全面地了解微生物是如何相互作用的。比如说,研究微生物群落最初是怎样形成的,能帮助我们理解感染是如何发生的,为什么特定的病原体突然大量繁殖,以及我们怎样才能使之停止。这样的研究同样能帮助我们用更适合的方法建立体内微生物群落,而不只是通过如今风靡的大量饮用酸奶法。 Dutton和Wolfe在位于佛蒙特州的Jasper Hill农场启动了他们的项目,该农场以其全美最多样的奶酪地窖、以及从其奶酪外表皮产生的擦奶酪闻名。他们已经在Winnimere——一种以其丰富口感、强烈气味而着称的洗浸奶酪(washed-rind cheese)——上发现了15种不同的微生物。其中不乏预料之中的种类,如早先已在欧洲最美味的洗浸奶酪上发现的一种细菌。此外亦有一些新发现,包括几种先前仅在极端环境如北冰洋和挪威海峡中发现的细菌。这些微生物中,有些一直生存下来,在奶酪表皮上开出绚烂之花;而另一些则被新物种取代,如同草退林丰。 Dutton表示奶酪的根本在于微生物群落。“我们闻到的士微生物的味道,而不是奶酪的。而我们品尝的亦是微生物。”(其实当我们食用Gorgonzola奶酪的蓝纹、Brie奶酪的绒毛、或是Limburger奶酪的橘色糊糊,我们正吞下数百万活着的微生物。)“当我们将这些生物体在实验室中(与奶酪)隔离,它们闻起来与奶酪几乎一样。我们常常闻着它们说,‘嗯,这就是Winnimere!’”事实上他们的冰箱已经变成周围实验室的痛处。“冷却器周围可不好闻,”Wolfe承认。 而这样的味道在美国的奶酪商闻起来却带有成功的清香,他们长期寻找能够复制传统欧洲奶酪风味的方法。在我们对微生物有所了解的多个世纪前,人们就已经发明了这些传统奶酪;奶酪商仅仅知道特定工序能够制造出特定风味的奶酪。比如说,意大利干酪的生产商了解到(如果要制作干酪他们就要)在每天用于制造奶酪的牛奶中混合前一天的乳清。而最棒的奶酪得益于地理学上幸运的意外。将羊奶凝乳放在法国小镇罗克福尔(Roquefort-sur-Soulzon)附近的岩洞内,几个月后当你回到这里,你就能收获一块蓝纹杰作;当然我们现在知道这得归功于岩洞内的罗克福尔青霉菌(Penicillium)。在此之后,我们可以通过这些着名的奶酪培养(微生物群)从而在世界各地复制出它们的风味。 微生物是奶酪成功的功臣 虽然微生物(在奶酪产生中)扮演的角色被渐渐发掘,奶酪商却只能够识别他们奶酪中最为明显的微生物,因此源于实验室的奶酪无法完全还原传统奶酪的丰富风味,后者是由在真实而古老的欧洲奶酪岩洞内的微生物群落产生的。这是几乎没有任何美国奶酪能够达到优质欧洲奶酪的强烈风味与复杂度的原因之一。欧洲人将其归功于“地域”,即产地半神秘的独特性,但当地的微生物可能是真正的功臣。 Dutton和Wolfe现在开始同时研究美国奶酪和传统欧洲奶酪,如Valençay、St. Nectaire、以及Stilton,他们的目标是识别出上述各种奶酪上所有的微生物。“我们希望了解不同种类奶酪商独特的微生物群落特征,”Wolfe说。如果他们能够将特定的微生物与特定的风味和纹理联系起来,Dutton和Wolfe或许能为美国的奶酪商带来福音,将欧洲神灵不为外人道的宝贵学问传授给这些美国奶酪商。“我们能够告诉奶酪商,如果加入这种白地霉(Geotrichum)菌种,你将得到更多的物种X,”Wolfe预测到,“而我们知道物种X产生花香味。你将很可能会有一个做预测的根据。在奶酪界没人能深入了解到基因层面。人们期望种瓜得瓜,但(事实上)是在碰运气,因为他们只是把原料置于一个未知的环境中。”

阅读全文

与什么是预测性微生物学相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:744
乙酸乙酯化学式怎么算 浏览:1409
沈阳初中的数学是什么版本的 浏览:1360
华为手机家人共享如何查看地理位置 浏览:1051
一氧化碳还原氧化铝化学方程式怎么配平 浏览:891
数学c什么意思是什么意思是什么 浏览:1418
中考初中地理如何补 浏览:1309
360浏览器历史在哪里下载迅雷下载 浏览:707
数学奥数卡怎么办 浏览:1398
如何回答地理是什么 浏览:1032
win7如何删除电脑文件浏览历史 浏览:1061
大学物理实验干什么用的到 浏览:1491
二年级上册数学框框怎么填 浏览:1710
西安瑞禧生物科技有限公司怎么样 浏览:991
武大的分析化学怎么样 浏览:1253
ige电化学发光偏高怎么办 浏览:1342
学而思初中英语和语文怎么样 浏览:1662
下列哪个水飞蓟素化学结构 浏览:1428
化学理学哪些专业好 浏览:1491
数学中的棱的意思是什么 浏览:1068