❶ 多肽合成方法有什么
现在,人们已经发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了一个空前的繁荣景象。多肽的全合成不仅具有很重要的理论意义,而且具有重要的应用价值。通过多肽全合成可以验证一个新的多肽的结构;设计新的多肽,用于研究结构域功能的关系;为多肽生物合成反应机制提供重要的信息;建立模型酶以及合成新的多肽药物等。
二、合成方法
多肽的合成主要有两种途径:化学合成和生物合成。化学合成主要通过氨基酸缩合反应来实现。为得到具有特定顺序的合成多肽,当合成原料中含有官能度大于2的氨基酸单体时,应将不需要反应的基团暂时保护起来,然后再进行连接反应,以保证合成的定向进行。多肽的化学合成有固相合成和液相合成,其主要的区别在于是否使用固相载体。多肽液相合成主要有逐步合成和片段组合两种策略,
❷ 简述天然化合物的主要生物合成途径有哪些
天然化合物的主要生物合成途径:
1.醋酸-丙二酸途径(AA-MA途径)
合成脂肪酸类、酚类、蒽醌类
2.甲戊二羟酸途径(MVA途径)
主要生成萜类、甾体类化合物
3.桂皮酸途径和莽草酸途径
形成具C6-C3骨架的化合物,如香豆素、木脂素、黄酮等.
4.氨基酸途径(Amino Acid Pathway)
合成生物碱
5.复合途径
(1)醋酸-丙二酸-莽草酸途径
(2) 醋酸-丙二酸-甲戊二羟酸途径
(3) 氨基酸-甲戊二羟酸途径
(4) 氨基酸-醋酸-丙二酸途径
(5) 氨基酸--莽草酸途径
❸ dna和rna各有几种合成方式
对于生物体内,dna合成来源主途径要有:复制和逆转录。
dna的复制方式是半保留复制,没有真核原核的差别。
在平时dna是超螺旋结构,复制时要先解开,这里起作用的是拓扑异构酶ⅰ;
复制需要解开双螺旋,起解开作用的是dna解链酶(一般是dna
b和dna
a),解开之后需要保持dna单链的稳定,这里需要的是ssb蛋白(单链结合蛋白)
两条dna键的复制过程是不一样的,但是都是需要引物来引发复制的,引物是一段rna,是由一种叫引物酶的rna聚合酶参与的。之后一条键是按5’到3’连续复制的,称前导键,只需要dna聚合酶(一般是聚合酶ⅲ)参与。另一条键的复制不是连续的,是先合成许多冈崎片段再通过连接酶连接起来的,这些片段的合成也需要引物(这里的引物叫引发体,由6种蛋白和引物酶组装),复制用的酶也是dna聚合酶ⅲ,再由rnase
h降解引物并由dna聚合酶ⅰ将缺口补齐,再由dna连接酶将相邻两个片段连接,最后形成大分子dna.
复制终止后dna拓扑异构酶ⅳ使复制叉解体,释放dna分子。
逆转录产生dna主要有两个步骤:cdna的合成和dna双链的合成,
先由逆转录酶产生互补的cdna,之后在dna聚合酶作用下合成另一条dna链,
rna的来源主要还是从dna转录,rna病毒的自主复制是少量的,
根据产物的差别、处理的不同,转录是个复杂的过程,大体需要的酶有拓扑异构酶ⅰ、dna解链酶、rna聚合酶、核心酶,而且真核原核还有差异,真核生物还存在rna编辑和修饰的过程,经过这些过程才能形成成熟的rna,
❹ 蔗糖的生物合成有几种途径
蔗糖的生物合成-----有三条途径:
1、蔗糖磷酸化酶途径(微生物) 1-P葡萄糖+果糖 蔗糖磷酸化酶 蔗糖+Pi
2、蔗糖合成酶(植物) UDPG+果糖 蔗糖合成酶 UDP+蔗糖 ?也可利用ADPG,GDPG,TDPG,CDPG作为葡萄糖基供体。
3、磷酸蔗糖合成酶途径(植物光合组织) UDPG+6-P果糖 磷酸蔗糖合成酶 磷酸蔗糖+UDP 磷酸蔗糖 蔗糖+Pi 一般认为,此途径是植物合成蔗糖的主要途径。
❺ 多肽合成方法有哪些
多肽合成方法:
酰基叠氮物法
早在1902年,TheodorCurtius就将酰基叠氮物法引入到肽化学中,因此它是最古老的缩合方法之一。在碱性水溶液中,除了与酰基叠氨缩合的游离氨基酸和肽以外,氨基酸酯可用于有机溶剂中。与其他许多缩合方法不同的是,它不需要增加辅助碱或另一等当量的氨基组分来捕获腙酸。
长期以来,一直认为叠氮物法是唯一不发生消旋的缩合方法,随着可选择性裂解的氨基酸保护基引入,该方法经历了一次大规模的复兴。该方法的起始原料分别是晶体状的氨基酸酰肼或肽酰肼64,通过肼解相应的酯很容易得到。在-10℃的盐酸中,用等当量的亚硝酸钠使酰肼发生亚硝化而转化为叠氮化物65,依次洗涤、干燥,然后与相应的氨基组分反应。有些叠氮化物可用冰水稀释而沉淀出来。 二苯磷酰基叠氮化物(DPPA)也可以用于酰基叠氮化物的合成。Honzl-Rudinger方法采用亚硝酸叔丁作为亚硝化试剂,并且使叠氮缩合反应可在有机溶剂中进行。因酰基叠氮化物的热不稳定性,缩合反应需在低温下进行。当温度较高时,Curtius重排,即酰基叠氮转化为异氰酸酯的反应成为一个主要的副反应,最终导致生成副产物脲。由于反应温度低(如4℃)而导致反应速率相当慢,使得肽缩合反应通常需要几天才能完全。 对于较长的N端保护的肽链,酯基的肼解一般比较困难,因此,使用正交的N保护肼衍生物是一种选择。在肼基的选择性脱除后,按倒接(backing-off)策略组合的肽片段可以用于叠氮缩合。
如前所述,虽然叠氮法一直被认为是消旋化倾向最小的缩合方法,但在反应中,过量的碱会诱发相当大的消旋。因此,在缩合反应期间要避免与碱接触,例如,氨基组分的铵盐应采用N,N-二异丙胺或N-烷基吗啉代替三乙胺来中和。
虽然有上述局限性,但该方法仍很重要,尤其对于片段缩合而言,因为该方法具有较低的异构化倾向,适用于羟基未保护丝氨酸或苏氨酸组分时,Nˊ保护的本行酰肼还具有多种用途。
酸酐法
在多肽合成中,最初考虑应用酸酐要追溯到1881年TheodorCurtius对苯甲酰基氨基乙酸合成的早期研究。从氨基乙酸银与苯甲酰氯的反应中,除获得苯甲酰氨基乙酸外,还得到了BZ-Glyn-OH(n=2-6)。早期曾认为,当用苯甲酰氯处理时,N-苯甲酰基氨基酸或N-苯甲酰基肽与苯甲酸形成了活性中间体不对称酸酐。 大约在70年后,TheodorWieland利用这些发现将混合酸酐法用于现代多肽合成。目前,除该方法外,对称酸酐以及由氨基酸的羧基和氨基甲酸在分子内形成的N-羧基内酸酐(NCA,Leuchsanhydrides)也用肽缩合。最后应该提到,不对称酸酐常常参与生化反应中的酰化反应。
混合酸酐法
有机羧酸和无机酸皆可用于混合酸酐的形成。然而,仅有几个得到了广泛的实际应用,多数情况下,采用氯甲酸烷基酯。过去频繁使用的氯甲酸乙酯,目前主要被氯甲酸异丁酯所替代。
由羧基组分和氯甲酸酯起始形成的混合酸酐,其氨解反应的区域选择性依赖依赖于两个互相竞争的羰基的亲电性和(或)空间位阻。在由N保护的氨基酸羧酸盐(羧基组分)和氯甲酸烷基酯(活化组分,例如源于氯甲酸烷基酯)形成混合酸酐时,亲核试剂胺主要进攻氨基酸组分的羧基,形成预期的肽衍生物,并且释放出游离酸形式的活性成分。当应用氯甲酸烷基酯(R1=异丁基、乙基等)时,游离的单烷基碳酸不稳定,立即分解为二氧化碳和相应的醇。然而,对于亲核进攻的区域选择性,也有一些相反的报道,产物为氨基甲酸酯和原来的N保护氨基酸组分。 为了形成混合酸酐,将N保护的氨基酸或肽分别溶于二氯甲烷、四氢呋喃、二氧六环、乙腈、乙酸乙酯或DMF中,用等当量的三级碱(N-甲基哌啶、N-甲基吗啉、N-乙基吗啉等)处理。然后,在-15℃--5℃,剧烈搅拌的同时加入氯甲酸烷基酯以形成不对称酸酐(活化)。经短时间活化后,加入亲核性氨基酸组分。如果作为铵盐使用(需要更多的碱),必须避免碱的过量使用。如果严格按照以上的反应条件,混合酸酐法很容易进行,是最有效的缩合方法之一。
对称酸酐法
Nα-酰基氨基酸的对称酸酐是用于肽键形成的高活性中间体。与混合酸酐法相反,它与胺亲核试剂的反应没有模棱两可的区域选择性。但肽缩合产率最高,为50%(以羧基组分计)。
虽然由对称酸酐氨解形成的游离Nα-酰基氨基酸可以和目标肽一起,通过饱和碳酸氢钠溶液萃取回收,但在最初,这种方法的实用价值极低。对称酸酐可以用Nα-保护氨基酸与光气,或方便的碳二亚胺反应制得。两当量的Nα-保护氨基酸与-当量的碳二亚胺反应有利于对称酸酐的形成,对称酸酐可以分离出来,也可不经纯化而直接用于后面的缩合反应。基于Nα-烷氧羰基氨基酸的对称酸酐对水解稳定,可采用类似上述纯化混合酸酐的方法进行纯化。
由于Boc-保护氨基酸的商品化和合理的价格,在肽链的逐步延长中,使用对称酸酐法日益受到重视。虽然可以买到晶状的对称酸酐,但原位制备仍然是一种不错的选择。
碳二亚胺法
碳二亚胺类化合物可用于氨基和羧基的缩合。在该类化合物中N,Nˊ-二环己基碳二亚胺(DCC)相对便宜,而且可溶于肽合成常用的溶剂。在肽键形成期间,碳二亚胺转变为相应的脲衍生物,N,Nˊ-二环己基脲可以从反应液中沉淀出来。显然,碳二亚胺活化后的活性中间体氨解和水解速率不同,使肽合成能在含水介质进行。经几个课题组的大量研究,确立了以碳二亚胺为缩合剂的肽缩合反应机理,羧酸根离子加成到质子化的碳二亚胺,形成高活性的O-酰基脲;虽然还没有分离出这个中间体,但通过非常类似的稳定化合物推断了它的存在。O-酰基脲与氨基组分反应,产生被保护的肽和脲衍生物。或者,与质子化形式处于处于平衡状态的O-酰基异脲,被第二个羧酸酯亲核进攻,产生对称的氨基酸酐和N,Nˊ-二取代脲。前者与氨基酸反应得到肽衍生物和游离氨基酸。在碱催化下,使用DCC的副反应使酰基从异脲氧原子向氮原子转移,产生N-酰基脲71,它不再发生进一步的氨解。不仅过量的碱可催化O-N的酰基转移,而且碱性的氨基组分或碳二亚胺也可催化该副反应。
另外,极性溶剂有利于这一反应途径。
❻ 基因合成的方法有哪些
一般来说,目前获取目的基因的方法主要有三种:反向转录法、从细胞基因组直接分离法和人工化学合成法。不过自己合成的话技术很难,也没有必要,可以选择一些单位来合作帮你实现的,像金开瑞生物,生之源在这块都挺不错的,希望能帮助到你。
❼ 生物分子是怎样合成的
生物体内有机物分子的合成主要有以下方面:
1、糖代谢
http://ke..com/view/428008.htm?fr=ala0_1_1
2、脂代谢
http://ke..com/view/3460999.htm
3、蛋白质代谢
http://ke..com/view/809177.htm
简单说就是有利用现成的物质(如食物中的营养物质糖类、脂类、氨基酸等)来合成生物自身的小分子,还有就是利用无机物(如二氧化碳、N2等)来合成的。
各种有机分子的合成有不同的途径,每个途径都很复杂,上面我给你的几个链接就是其中的一部分,你先看看能看懂不。
❽ 天然化合物的主要生物合成途径有哪些
(一)乙酸-丙二酸途径
1.脂肪酸类:①起始物质:乙酰辅酶A;②丙二酸单酰辅酶A起延伸碳链;③缩合及还原两个反应交叉。
2.酚类:乙酰辅酶A直线聚合后再进行环合医学|教育网搜集整理。
3.醌类:多酮环合生成各种醌类化合物或聚酮类。
(二)甲戊二羟酸途径
①萜类、甾类化合物均由这一途径生成;②乙酰辅酶A歧式聚合生成。
(三)莽草酸途径
①具有C6-C3及C6-C1基本结构的化合物;②苯丙素、木脂素、香豆素等;③莽草酸通过苯丙氨酸,生成桂皮酸,再由桂皮酸生成各种苯丙素类化合物的途径,现也被称为桂皮酸途径。
(四)氨基酸途径
①生物碱类;②有些氨基酸,如鸟氨酸、赖氨酸、苯丙氨酸、酪氨酸及色氨酸等,经脱羧成为胺类,再经过一系列化学反应,如甲基化、氧化、还原、重排等生成各种生物碱医学|教育网搜集整理。
(五)复合途径
①二级代谢产物;②分子中各个部分由不同的生物合成途径产生。如查耳酮类、二氢黄酮类化合物的A环和B环分别由乙酸-丙二酸途径和莽草酸途径生成。
总结:每种化合物类型的合成途径,每种合成途径的基本知识:如起始物、反应类型。
❾ DNA生物合成有几种方式
DNA的复制,和RNA的反转录,均可以合成DNA。所以有两种。