导航:首页 > 生物信息 > 微生物如何制药

微生物如何制药

发布时间:2022-08-28 19:57:41

A. 细菌是怎么样制药的

也许人你会问:小小的细菌能生产药?它对人体会有害吗?人们熟知激素、淋巴因子、神经多肽、调节蛋白、酶、凝血因子等人体活性多肽以及某些疫苗对于疾病的诊断、预防和治疗有着重要的价值。但由于材料来源困难、技术难度大、造价高而不能付诸应用,往往使患者望而却步。但是日益发展的微生基因工程为人类提供了一个生产药物的强有力的技术手段。

根据目的基因导入内的受体细胞的类型,可将基因工程分为三类:微生物基因工程、植物基因工程和动物基因工程。微生物基因工程是最早出现也是研究最多的新兴技术领域。这是将目的基因(异源基因)导入微生物细胞内进行克隆,即无性繁殖。在这个过程中,异源基因会在大肠杆菌中得到表达,产生出相应的蛋白质来。最常用的微生物是大肠杆菌。它是一种寄生在人和动物肠道里的无害细菌,不仅繁殖速度极快,也比较容易接受外来的遗传物质。因此,科学家们纷纷把它作为理想的受体,把异源有用基因植入其体内,构建能生产对人类有用的物质的基因工程苗,也就是对大肠杆菌进行基因改造,使其成为有用物质的生产工厂。

首先我们来绍一个人生长激素释放抑制素的“生产”是怎样进行的。

人生长激素释放抑制素(somatoation,简称SS)是一种多肽激素,它由14个氨基酸组成,在人的肠道以及胰脏中合成。这种激素有广泛的生理功能,最主要的是参与生长的调节。它能抑制生长激素、胰岛素等其他激素的分泌,对胃炎、糖尿病、急性胰腺炎、肢端肥大症等都有治疗作用。

胰岛素是从胰脏的胰岛细胞里分泌出来的,它是治疗糖尿病的特效药。胰岛素能调节血液里的糖分的含量,保持血糖平衡。糖尿病患者由于自身不能分泌胰岛素,因糖的新陈代谢不正常而在痛苦的煎熬中度日。对这种病人的治疗,只能依靠注射胰岛素来解决,而胰岛素在过去只能依靠从猪和牛的胰脏中提取出来,数量有限,成本很高,是千百万糖尿病患者可望而不及的贵重药品。

利用“细菌制药厂”生产医用药物变为现实后,人们利用这种方法生产的药物接连不断。

人的生长激素是人体内必不可少的一种激素。缺少它,人就会导致垂体性侏儒症。这种激素只能从外伤致死者的脑下垂体来提取,产量极为有限,全世界极端短缺,售价十分昂贵。为了解决这一难题,科学家们致力于用微生物基因工程技术来制造人的生长激素。

“细菌制药厂”生产的另一重要产品的松弛素。松弛素是妇女顺产的必备药品,有了它可以大大减缓妇女在生育时的痛苦,也可以减少剖腹产的比例。人们还发现,在临床上使用松弛素时,孕妇的关节炎也往往随之消失,但产后,关节炎又会复发。那么是不是松弛素对关节炎也有疗效呢!这是个极令人感兴趣的问题,但却因用常规方法生产松弛素成本高、产量低,难以用足够松弛素去试验以最终确定其对关节炎的疗效。为了能尽快提供价廉质优数量充分的松弛素,美国基因技术公司与澳大利亚一家研究所合作,成功地用细菌产生了这种药品,它既可满足产妇的需要,也为探讨松弛素在医学上的进一步应用创造了条件。

干扰素是用基因工程技术产出的又一种重要药物。干扰素是人体或动物的细胞产生的一种蛋白质,它可以使细胞获得对病毒感染的免疫力,能够治疗由病毒引起的疑难病症。但是干扰素只能从人的血液中提取,每公斤的人血只有0.5微克,其昂贵程度就可想而知了。针对这一现状,科学家积极寻求用基因工程技术来生产干扰素。1980年,美国基国公司把人体白细胞干扰素基因转移到大肠杆菌中,使大肠杆菌成功地生产出了干扰素。经过临床试验证明,所生产的干扰素具有重要的医学价值和经济价值。

B. 微生物制药的简介

本书是一本全面论述微生物药物研究、开发、生产的技术图书。详细介绍了从药物产生菌的分离、筛选,菌种改良、保藏,到微生物药物的筛选、生物合成、发酵工艺、费力鉴别各个环节,内容丰富完整,强调生物技术与药物的结合;理论基础与技术要点互相补充,既提供了基本的知识系统,又具有较强的可操作性;同时介绍了微生物产生的活性物质的结构和生活活性,其内容丰富、紧跟技术进展,对微生物新药的研发极具参考价值。本书由具有丰富科研经验的资深研究人员和开发人员编写,收集了国内外微生物药物研究的进展,并结合我国的研究经验和成果,是一本理论与技术兼备的使用技术专着。可供从事微生物药物、其他生物技术药物研究和生产的相关技术和管理人员,以及生物技术相关学科的科技人员、大专院校师生使用和参考。

C. 典型生物药物的一般制造流程是什么

一般生物制药的主要流程如下:1. 上游阶段
1.1 目的基因的制备
目的工程的主要目的是使优良性状相关的基因聚集在同一生物体中,创造出具有高度应用价值的新物种. 为此必须从现有生物群体中,根据需要分离出用于克隆的次类基因,这样的基因称之为目的基因. 基因工程中获得的目的基因主要用于: (1).研究该基因,分析其结构,功能和表达的调空机制 (2).和正常基因比较,找出基因的异常点,探索疾病发生的分子生物学基础. (3).研究生物种系的进化 (4).建立基因疗法,将正常基因引入病人体内,治疗遗传性疾病(5).大量表达某种基因,生产出需要的蛋白和多肽 (6).对某些基因进行改选,改良动植物品种.
不同基因组类型的基因组大小不同,基因组和基因排列也各不相同,因此,分离目的基因应采用不同的途径和方法
1.1.1 构建cDNA基因文库分离法
cDNA文库是以真核细胞中分离纯化出所有的mRNA,在以mRNA为模板合成cDNA与适当的载体重组转入宿主细胞,这样建立起来的cDNA重组分子集合体称为cDNA文库.而cDNA文库中插入片段的总和可代表某一种生物全部的mRNA序列.
1.1.1.1 cDNA文库的构建
构建cDNA文库主要包括以下步骤: (1).细胞总RNA的制备及mRNA的分离 (2).以mRNA为模板,合成cDNA第一条链 (3).双链cDNA的合成,而将mRNA—DNA杂交分子转变为双链cDNA分子 (4). CDNA与载体的连接和噬菌体颗粒的包装及传染或质粒的转化等
1.1.1.2 cDNA克隆的优越性
自20世纪70年代初说创cDNA克隆问世以来,以采用构建和筛选cDNA文库的方法克隆了许多目的基因的cDN**段.在基因工程操作中,也长以cDNA为探针从基因文库中分离相应的基因克隆.因此, cDNA克隆常常以基因分离和结构分析的着手点,在分子生物学研究和基因工程应用等方面具有十分重要的意义.
1.1.2 构建基因组文库分离法
1.1.2.1 基因组文库的概念
将某种生物的基因组DNA切割成一定大小的片段,分别与适合的载体重组后导入宿主细胞,这些重组分子中插入片段的总和可代表该生物全部基因组序列.这种通过重组,克隆方法保存在宿主细胞中的各种DNA重组分子的集合体称为基因组文库.
1.1.2.2 基因组文库的大小
克隆片段的平均大小/bp 基因组的大小/bp
2×10^6(细菌) 2×10^7(真菌) 3×10^9(动物)
LN SJ LN SJ LN SJ
5×10^3 400 1831 4000 18418 600000 2736110
10×10^3 200 919 2000 9208 300000 1381550
20×10^3 100 458 1000 4603 150000 690774
40×10^3 50 278 500 2300 75000 345386
一个理想的基因组文库因该是在克隆群体中包含完整基因组的所有DNA序列.这就要求在打断基因组DNA时尽可能做到随机切割,实际上,无论采用什么方法的不能达到理论上的切割.应此构建的基因组文库应包含的克隆子数理论值和经验值之间相差比较大.几类基因组文库的大小见下表: “2”
1.1.2.3 构建基因组文库的类型
通过克隆,重组方法构建的基因组文库主要有:
(1)构建λ噬菌体基因组文库;(2)构建考斯质粒基因组文库
(3) 构建YAC基因组文库
1.1.3 直接分离法
1.1.3.1 限制性核酸内切酶酶切分离法
限制性核酸内切酶酶切分离法适于简单基因组中分离目的基因。质粒和病毒等DNA分子小的只有几千碱基,大的也不超过几万碱基,编码的基因较少,获得的目的基因方法比较简单。
1.1.3.2 基因分离的物理化学
这是基因工程在发展初期所用的方法,某些生物的rDNA基因最早都是利用该法分离获得的,但目前很少采用。次方法主要有:密度梯度离心法、单链酶解法和分子杂交法等。1.1.3.3 双抗体免疫法分离编码蛋白的基因
双抗体免疫法分离编码蛋白的基因适于某一真核细胞的蛋白质已被分离纯化,且足以产生抗体。
1.1.3.4 利用酶促反转录发直接从特定mRNA分离基因
酶促反转录主要用于合成分子质量较大,转录产物mRNA易分离目的基因。
目的基因的mRNA为模板 逆转录酶 cDNA DNA聚合酶双链 双链cDN**段
与合适载体重组并转入受体菌 cDNA克隆
1.2 目的基因的分离
通过适当的方法构建上一个完整的基因组DNA文库或CDNA文库,意味着包含目的基因在内的所有基因都得以克隆,但并不等于完成了目的基因的分离。因为在基因文库中,不论是CDNA文库还是基因组文库,含目的基因的克隆子都只是数以万计的克隆子中的一个,其中究竟哪个克隆子含有我们所需要的目的基因序列还不清楚。因此,还需要下一个步骤要进行的就是目的基因的分离,主要方法有:
(1)目的基因的功能克隆 (2)序列克隆法
(3)利用差示分析法分离目的基因克隆 (4)功能结合法筛选目的基因
(5)DNA插入诱变法分离目的基因(6)应用基因定位克隆技术分离筛选目的基因
(7)基因的定位侯选克隆法(8)染色体显微切割与微克隆法
(9)根据生物大分子内的相互作用分离目的的CDNA克隆
(10)筛选目的基因片段的差别杂交及减法杂交技术
1.3 基因克隆载体
载体是携带目的基因的DN**段进入受体细胞进行扩增和表达的工具。常用的载体是经过改造的细菌质粒,噬菌体,黏粒和病毒
1.3.1 质粒克隆载体
质粒是细菌染色体外的双链环状的能自我复制的小分子DNA,其对细胞本身的生长繁殖不是必需的,但可以赋予细菌一定的类型,如耐热型等。
与构建克隆载体相关的质粒性质有:
(1) 粒的复(2) 制型(2)质粒的不(3) 相容性
(3)质粒的接合性
(4)质粒作为基因工程载体需要具备的条件:作为基因工程载体的质粒都是经过人工改造过的质粒,具备以下特点:
a, 相对分子质量小3—10kb b, 是松弛型复制质粒
c, 是非接合型质粒 c, 质粒上有多个限制酶的单一切点
d, 带有双选择标记
1.3.2 病毒(噬菌体)克隆载体
病毒主要由DNA(或RNA)和外壳蛋白组成,经包装后成为病毒颗粒。通过感染,病毒颗粒进入宿主细胞,利用宿主细胞的合成系统进行DNA(或RNA)复制的壳蛋白质的合成,实现病毒颗粒的增殖。人们利用这些性质构建了一小列分别适用于不同生物的病毒克隆载体。通过此种方法构建成的基因克隆载体主要有:
(1) 噬菌体克隆载体cosmid克隆技术(黏粒)(2)Μ13噬菌体克隆载体
(2) aMV克隆载体(4)烟草花叶病毒( TMV)载体克隆
(5)SVCO克隆载体(6)反转录病毒克隆载体
(7)腺病毒克隆载体(8)痘苗病毒克隆载体
(9)杆状病毒表达克隆载体
1.3.3 其他类型的克隆载体
(1)染色体定位整合克隆载体(2)人工染色体克隆载体
(3) 特殊用途克隆载体:如启动子探针型,(4) 诱导型,(5) 反义表达组织特异表达,(6) 分泌型表达,(7) 双启动子,(8) 串族启动子和含增强子表达克隆载体等等
1.4 目的基因和载体的连接(重组)
目的基因和载体连接前要先用同一种限制酶将目的基因和载体切割成黏性端或平端,也可以用物理方法切割后再用酶补成平端
体外连接是基因工程的重要环节,体外连接要减少载体的自身环化,提高重但子阳性率。主要的连接方法有:黏性末端连接、平端连接、定向插入和同源多聚尾。
1.5 重组体导入受体细胞
外源目的基因与载体在体外连接重组后形成重组的DNA分子。该重组DNA分子必须导入适宜的受体细胞在中才能使外源目的基因得以大量扩增或表达。随着基因工程的发展,从低等的原核细胞,到简单的真核细胞,进一步达到结构复杂的高等动,植物细胞都可以作为基因工程的受体细胞。选择适宜的受体细胞已经成为重组基因高效克隆或表达的基本前提之一
1.5.1 受体细胞的选择要求
目的基因获得后,必须在合适的宿主细胞中才能进行表达,才能获得目的产物.应此,宿主细胞必须满足:容易获得较高浓度的细胞;能利用易得廉价的材料;不致病、不产生内毒素;发热量低,需氧低,适当的发酵温度和细胞形态;容易进行代谢调控;容易进行DNA重组技术操作技术;产物的产量、产率高,产物容易提取纯化.
1.5.2 受体细胞的类型
人们通过研究,根据需要获得了一定的目的产物,而目的基因能否的到有效的表达,关键在与受体细胞的选择.
1.5.2.1 原核生物细胞
由于原核生物作为基因工程受体具有其他生物所没有的优点,而且人们对其遗传背景清楚,所以早期开展的基因工程操作,都是以原核生物为受体细胞.目前研究比较多的有:大肠杆菌、枯草芽孢杆菌、链霉菌等.
1.5.2.2 真核生物细胞
由于真核生物的细胞结构、基因组成和基因表达较为复杂,适用于原核生物的转基因方法大多数难以有效地用于真核生物.近年来经过探索,发现它可以对表达的蛋白质进行翻译后加工过程,有利于保持天然结构和生物活性.并用这些方法有效的获得了转基因真核生物.研究较多的有:酵母菌、哺乳动物细胞、昆虫细胞、植物细胞等等.
1.5.3 重组子的筛选
在重组DNA分子的转化、转染和转导过程中,并非所有的的受体细胞 都能被导入重组DNA分子.一般仅有少数重组DNA分子能进入受体细胞,同时也只有极少数的受体细胞在吸纳重组DNA分子之后能良好增殖.因此,如何将被转化细胞从大量受体菌细胞中初步筛选出来,然后进一步检测到含有期待重组DNA分子的克隆子将直接关系到基因克隆和工程操作红极为重要的环节.
重组子的筛选可以根据载体的类型、受体细胞种类以及外源DNA分子导入受体细胞的手段等采用不同的方法,一般包括以方面:
(1).遗传直接筛选法; (2),核算分子杂交检测法; (3)依赖于重组子结构特征分析的筛选法;
(4)免疫化学检测法; (5)转译筛选法; (6)亚克隆法; (7)插入失活法;
(8)电子显微镜作图检测法; (9)基因表达产物分析法; (10)DNA序列分析法.
1.6、外源基因的表达
基因工程技术的核心是基因表达技术。迄今为止,已构建了多种基因表达系统,包括原核生物和真核生物基因表达系统,不同的表达系统具有各自的特点。
1.6.1 基因表达的机制(过程)
1.6.1.1 外源基因的起始转录
外源基因在宿主细胞中的有效表达是基因工程的核心问题,而外源基因的起始转录又是基因表达的关键。
1.6.1.2 mRNA的延伸与稳定性
外源基因起始转录后,保持mRNA的有效延伸、终止及稳定存在是外源基因有效表达的关键。
mRNA的稳定性直接导致决定翻译产物的多少,对原核细胞来说,最佳的方法是选择一个RNase缺失受体前。对真核细胞来说则需考虑增加mRNA的正确加工,提高成熟mRNA的稳定性。
1.6.1.3 外源基因mRNA的有效翻译
翻译是mRNA指导多肽链生成的过程,翻译的起始是多种因子协同作用的过程,其中包括mRNA,16SrRNA,fMet-tRNA之间的碱基配对,还有mRNA序列上的终止密码对正确翻译的效率有很大影响。
1.6.1.4 表达蛋白在细胞中的稳定性
外源基因的表达产物能否在宿主细胞中稳定积累而不被内源蛋白水解酶所水解是基因有效表达的一个重要因素,因此,为了避免此现象的发生可从以下几个方面考虑:
(一)构建融合蛋白表达系统; (二)构建分子体蛋白表达系统;
(三)构建包涵体表达系统; (四)选择蛋白水解酶基因缺陷型的受体系统.
1.6.1.5 目的基因沉默
基因沉默是导致外源基因不能正常表达的重要因素。它的作用机制主要有三种:位置效应的基因沉默、转录水平的基因沉默和转录后水平的基因沉默。基因沉默现象主要表现在转基因动物和植物中。
目的基因沉默是在核酸水平上DNA与DNA,DNA与RNA,RNA与RNA相互作用的结果。由于重复序列或同源系列是基因沉默的普通原因之一,因而在构建表达载体时,应尽可能避免与内源序列具有较高的同源性。此外,可以通过选择甲几基化酶活性较弱的受体细胞或以化学物质处理受体细胞抑制甲基化作用。
1.6.2 基因表达的调控元件
通过研究发现主要的基因表达调控元件有:启动子、增强子、终止子、衰减子、绝缘子和反义子
1.6.3 外源基因表达系统
外源基因表达系统泛指目的基因与表达载体重组后,导入合适的受体细胞,并能在其中有效的表达,产生目的基因产物(目的蛋白)。由此可知,外源基因表达系统由基因表达载体和相应的受体细胞两部分组成。基因表达系统有原核生物表达系统和真核生物表达系统。目前,利用较多的是原核生物表达系统,因其遗传背景清楚,繁殖快,表达率高等特点。近年来,真核生物基因表达系统发展很快,因其可以对表达的蛋白质进行翻译后加工过程,有利于保持天然结构和生物活性等优点。目前主要应用的表达系统有:大肠杆菌基因表达系统、芽孢杆菌表达系统、链霉菌表达系统、蓝藻表达系统、酵母表达系统、哺乳动物细胞基因表达系统、植物细胞基因表达系统;还有最新研究的两个新的表达系统[3]:巴斯德毕赤酵母表达系统和动物乳腺生物反应器——全新的生产模式。
2、下游阶段
基因工程只要的过程关键在于上游阶段,因它可以获得有效的工程菌,但下游纯化阶段也必不可少。因此为了获得合格的目的产物,必须建立相应的医药生物技术产品的分离纯化工艺。
2.1、基因工程菌发酵:
良好的发酵工艺对表达外源蛋白至关重要,直接影响下游纯化工艺,形象到产品的质量和生产成本,决定产品在市场上的竞争力。目前,基因工程菌培养常用方法有:补料分批培养、连续培养、透析培养、固定培养。近年来,生物药品已进入生物技术时代,对基因工程菌的培养设备要求十分严格,主要采用新型自动化发酵罐。
2.2、分离纯化的基本过程:
分离纯化是基因工程药物生产中极其重要的
一环,这是由于工程菌经过大规模培养后,产生的
有效成分含量低,杂质含量高;另外由于基因工
程药物是从转化细胞,而不是从正常细胞生产的,
所以对产品的纯度要求也高于传统产品,主要的
步骤如右表:[4]
2.2.1、建立分离纯化工艺根据
主要根据:(1)含目的产物的起始物料特点;
(2)物料中杂志的种类和性质;
(3)目的产物特性;
(4)产品质量的要求.
2.2.2、选择分离纯化方法的依据:
主要依据:
(1) 根据产物表达形式来选择;
(2) 根据分离单元之间的衔接选择;
(3) 根据分离纯化工艺的要求来选择.
2.2.3、常用的分离纯化方法(见下表)[5]
方法 目的
离心/过滤 去除细胞、细胞碎片、颗粒性杂质(如病毒)
阴离子交换层析 去除杂质蛋白、脂质、DNA和病毒等
阳离子交换层析 去除牛血清蛋白或转铁蛋白等
超滤 去除沉淀物及病毒
疏水层析 去除残余的杂蛋白
凝胶过滤 与多聚体分离
0.22μm微孔滤膜过滤 除菌
3、基因工程药物:
自20世纪80年代初第一种基因工程产品——人胰岛素投放市场以来,以基因工程药物为主导的基因工程应用已成为全球发展最快的产业之一。随着生物技术的快速发展,基因工程药物将拥有越来越广阔的发展前景。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核苷酸药物等,它对预防和治疗人类的肿瘤、心血管疾病、遗传病、各种传染病、糖尿病、类风湿疾病等有重要作用。
3.1、基因工程激素类药物
激素是一类由生物体内分泌腺或特异性细胞产生的微量有机物,通过体液或细胞外液运送到特定的作用部位,能引起特殊的生理效应。基因工程的激素类主要指通过基因工程方法合成的蛋白多肽类激素。目前被批准上市的激素类药物有胰岛素、人生长激素、人促卵泡激素等。
3.2、基因工程细胞因子类药物
细胞因子是由细胞分泌的能够调节生物有机体生理功能,参与细胞的增殖,分化和凋亡的小分子多肽类物质。目前被批准上市的产品有十多种。主要有:干扰素(IFN)、集落刺激因子(CSF)、白细胞介素(IL)、肿瘤坏死因子(TNF),趋化因子和生长因子(GF)等。它们的生物学功能主要表现为:调节免疫应答、抗病毒、抗肿瘤、调节机体造血功能和促进炎症反应等。
3.3、基因工程疫苗:
直接利用微生物制备疫苗来治疗疾病取得了巨大的成就,但由于各种传染病在世界范围内广泛存在,并不断有新的致病微生物被发现,它们对人类的健康造成巨大威胁。利用基因工程方法制备疫苗对控制传染病的复发和治疗新的传染病有重要意义。目前研究的基因工程疫苗包括:痢疾菌苗、霍乱菌苗、结核菌苗、流感菌苗、狂犬病疫苗、疟疾疫苗、口蹄疫疫苗。
3.4 特殊基因工程药物—防御素
防御素是一类在生物界广泛存在的、富含半胱氨酸,具有微生物和一些恶性细胞抗性的小分子短肽.它的抗性谱十分广泛,目前以发现它不但对细菌、真菌和被膜病毒(如爱滋病病毒)有广泛的毒杀效应,对某些恶性肿瘤细胞也有毒杀作用.最近,对一些长期存活的爱滋病感染者的研究发现,他们体内的爱滋病抑制因子就是一类防御素.这一研究发现给人们战胜爱滋病带来希望.
4. 基因工程研究发展前景
基因工程问世以来短短的二十几年,显示出了巨大的活力,使传统的生产方式和产业结构发生了变化.特别是在医药行业,利用人工的方法合成了许多有用的药物及人体器官等,取得了很大的经济效益.今后,基因工程将重点开展基因组学、基因工程药物、动植物生物反应器和环保等方面的研究.通过这方面的研究、开发,对人类的生活、生存环境从根本上优化做出巨大的贡献.因此,我们相信基因工程的前景将是更加灿烂辉煌.

D. 在微生物发酵制药过程中涉及哪些灭菌和消毒技术

发酵过程中采用的灭菌方法、原理和条件
采用强烈的理化因素使任何物体内外部的一切微生物永远丧失其生长繁殖能力的措施,成为灭菌。灭菌常用的方法有化学试剂灭菌、射线灭菌、干热灭菌、湿热灭菌和过滤除菌等。可根据不同的需求,采用不同的方法,如培养基灭菌一般采用湿热灭菌,空气则采用过滤除菌 。

灭菌的彻底程度受灭菌时间与灭菌剂强度的制约。微生物对灭菌剂的抵抗力取决于原始存在的群体密度、菌种或环境赋予菌种的抵抗力。灭菌是获得纯培养的必要条件,也是食品工业和医药领域中必需的技术。
方法概述灭菌常用的方法有化学试剂灭菌、射线灭菌、干热灭菌、湿热灭菌和过滤除菌等。可根据不同的需求,采用不同的方法,如培养基灭菌一般采用湿热灭菌,空气则采用过滤除菌。

热灭菌法

热灭菌法利用高温使微生物细胞内的一切蛋白质变性,酶活性消失,致使细胞死亡。通常有干热、湿热和间歇加热灭菌等法。

干热灭菌

火焰灼烧法或烘箱内热空气灭菌法称为干热灭菌法(dryheatsterilization)。

把金属器械或洗净的玻璃器皿放入电热烘箱内,在150~170℃下维持1~2小时后,可达到彻底灭菌(包括细菌的芽孢)的目的。灼烧(incineration或combustion)是一种最彻底的干热灭菌法,应用范围仅限于接种环、接种针的灭菌或带病原菌的材料、动物尸体的烧毁等。

湿热灭菌

以沸水、蒸气和蒸气加压灭菌。

巴氏消毒法:因最早由法国微生物学家巴斯德用于果酒消毒,故名。这是一种专用于牛奶、啤酒、果酒或酱油等不宜进行高温灭菌的液态风味食品或调料的低温消毒方法[1]


巴氏灭菌法就是湿热灭菌,此法有两种方式[1]
,①经典的低温维持法(lowtemperatureholdingmethod,LTH):在61.7~62.8℃下处理30分钟;②较现代的高温瞬时法(hightemperatureshorttime或flushpoint,HTST):在71.6℃或略高温度下处理15分钟。在上述诸法中,以蒸气加压灭菌效果最好,可用常压蒸气灭菌,也可在高压蒸气锅中(一般使用1千克/厘米2)灭菌,其蒸气温度可达121℃,能将耐热的芽孢在30分钟内全部杀死。但对某些易被高压破坏的物质,如某些糖或有机含氮化合物,宜在0.6千克/厘米2压力下(110℃)灭菌15~30分钟。

煮沸消毒法:采用在100℃下煮沸数分钟的方法,一般用于饮用水的消毒[1] 。

间歇灭菌

间歇灭菌连续3天,每天进行一次蒸气灭菌的方法。此法适用于不能耐 100℃以上温度的物质和一些糖类或蛋白质类物质。一般是在正常大气压下用蒸气灭菌
1小时。灭菌温度不超过100℃,不致造成糖类等物质的破坏,而可将间歇培养期间萌发的孢子杀死,从而达到彻底灭菌的目的。

辐射灭菌

辐射灭菌在一定条件下利用射线进行灭菌的方法。较常用的有紫外线,其他还有电离辐射(射线加快中子等)。波长在25000~80000纳米之间的激光也有强烈的杀菌能力,以波长26500纳米最有效。辐射灭菌法仅限于某一定材料,因所需设备复杂,难于广泛使用。

渗透压灭菌

渗透压灭菌利用高渗透压溶液进行灭菌的方法。在高浓度的食盐或糖溶液中细胞因脱水而发生质壁分离,不能进行正常的新陈代谢,结果导致微生物的死亡。

化学试剂灭菌

大多数化学药剂在低浓度下起抑菌作用,高浓度下起杀菌作用。常用5%石炭酸、70%乙醇和乙二醇等。化学灭菌剂必须有挥发性,以便清除灭菌后材料上残余的药物。

化学灭菌常用的试剂有表面消毒剂、抗代谢药物(磺胺类等)、抗生素、生物药物素抗生素是一类有微生物或其他生物生命活动过程中的合成的次生代谢产物或人工衍生物,他们在很低浓度时就能抑制或感染它种生物(包括病原菌,病毒,癌细胞等)的生命活动,因而可用作优良的化学治疗剂。

E. 简述微生物发酵制药的基本流程

保藏菌种→活化→摇瓶培养→一级种子→二级种子→发酵→提取→精制→成品。

F. 简述微生物在制药,食品行业中的作用

微生物来源的药物通称为生物药物,是微生物在其生命活动过程中产生的,能以极低浓度抑制或影响其他生物机能的低分子量代谢物。包括抗生素和具有其他药理作用的微生物次级代谢产物,以及以微生物次级代谢为先导化合物、通过生物或化学方法制得的衍生物。20世纪40年代青霉素问世,开创了微生物药物的新时代。抗生素在世界范围内广泛使用,使人类许多传染性疾病得到控制;随着微生物制药的发展,它们在肿瘤化疗、器官移植以及高胆固醇血症治疗等方面也发挥重要作用,成为不可缺少的药物。

我们日常食用的很多食品都是通过微生物的作用生产的。如食醋是用粮食等淀粉质为原料,经微生物制曲、糖化、酒精发酵、醋酸发酵等阶段酿制而成;酒类:包括果酒、啤酒、白酒及其他酒均是利用酿酒酵母,在厌氧条件下进行发酵,将葡萄糖转化为酒精生产的;啤酒是以优质大麦芽为主要原料,大米、酒花等为辅料,经过制麦、糖化、啤酒酵母发酵等工序酿制而成的一种含有二氧化碳、低酒精度和多种营养成分的饮料酒;酱油:微生物在生长过程中会产生大量的蛋白酶,将培养基中的蛋白质水解成小分子的肽和氨基酸,然后淋洗、调制成酱油产品。发酵乳制品是用良好的原料乳经过杀菌作用接种特定的微生物进行发酵作用,产生具有特殊风味的食品;酸奶:牛奶在厌氧条件下,由乳酸菌发酵,将乳糖分解,并进一步发酵产生乳酸和其他有机酸,以及一些芳香物质和维生素等;同时蛋白质也部分水解。面包:现在的面包均是利用活性干酵母(面包酵母)经活化后,与面粉混合发酵,再加入各种添加剂,经烤制生产的。面粉发酵后淀粉结构发生改变,变得易于消化、营养易于吸收。像这类食品还有很多,可见微生物在食品生产中发挥了非常大的作用。

G. 微生物制药的概述

微生物制药技术是工业微生物技术的最主要组成部分。微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其衍生物。有人曾建议将动植物来源的具有同样生理活性的这类物质如鱼素、蒜素、黄连素等也归于抗生素的范畴,但多数学者认为传统概念的抗生素仍应只限于微生物的次级代谢产物。
近年来,由于基础生命科学的发展和各种新的生物技术的应用,由微生物产生的除抗感染、抗肿瘤以外的其他生物活性物质的报道日益增多,如特异性的酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性已超出了抑制某些微生物生命活动的范围。但这些物质均为微生物次级代谢产物,其在生物合成机制、筛选研究程序及生产工艺等方面都有共同的特点,但把它们通称为抗生素显然是不恰当的,于是不少学者认为,把微生物产生的这些具有生理活性(或称药理活性)的次级代谢产物统称为微生物药物。于此微生物药物应包括:具有抗微生物感染和抗肿瘤的作用的传统的抗生素以及特异性酶抑制剂、免疫调节剂、受体拮抗剂、抗氧化剂等。

H. 请问生物制药技术包括哪些方法

生物技术制药概念:
采用现代生物技术,借助某些微生物、植物、动物生产医药品,叫作生物技术制药。
生物技术:基因工程、细胞工程、酶工程、发酵工程、生化工程、蛋白质工程、抗体工程等。
现代生物技术包括:
⑴重组DNA技术
⑵细胞和原生质体融合技术
⑶酶和细胞的固定化技术
⑷植物脱毒和快速繁殖技术
⑸动物和植物细胞的大量培养技术
⑹动物胚胎工程技术
⑺现代微生物发酵技术
⑻现代生物反应工程和分离工程技术
⑼蛋白质工程技术
⑽海洋生物技术
生物制药新试剂新技术:
细胞移植用于:骨髓移植治疗白血病、免疫缺陷、再障性贫血等。
基因治疗有:致死性遗传疾病、癌症、爱滋病、心脏病等。
生物试剂开发单克隆抗体:用于诊断和治疗,荧光抗体法、DNA探针、PCR等检测技术的建立
新型生物反应器有:气升式生物反应器、流化床式生物反应器、固定床式生物反应器、袋式或膜式生物反应器、中空纤维生物反应器等。
我国生物制药
已上市的基因工程药物和疫苗——-
1995年 白细胞介素-2
1996年 α1b-干扰素α2a-干扰素 α2b-干扰素
1997年 粒细胞集落因子 红细胞生成素
1992年 乙型肝炎疫苗
医药生物技术发展展望:
21世纪是医药生物技术快速发展的时期, 生物制药、化学药物、中药形成三足鼎立,有效的为人类健康服务。1.利用新发现的人类基因开发新型药物。 2.新型疫苗的研制艾滋病疫苗和基因型癌疫苗等。
3.基因工程活性肽的生产基因药物:淋巴因子、生长因子、 激素和酶
4.其它医药业将得到不断改造和发展,早期诊断技术 转基因药材

I. 在微生物发酵制药工艺中,如何确定最适发酵条件

1、如果是得到微生物细胞:尽量延长对数生长期以获得最大量细胞。因此培养基的碳氮比低,即氮源多;补充新鲜培养基;回调pH值,维持最佳pH;适时降温;较高的通气量,维持高氧耗。等等。

2、如果是得到微生物代谢产物如抗生素:尽量延长稳定期。培养基前期碳氮比低,后期碳氮比高。补充新鲜培养基,碳氮比低;回调pH值,维持最佳pH;适时降温;较高的通气量,维持高氧耗。等等
微生物发酵分为 细胞培养和 细菌发酵
细胞培养来说 最适宜的条件无非是PH DO 温度 搅拌速度 通气量大小以及通气方式 通气气泡大小等一些硬件措施,除此之外要重视培养基的营养成分和细胞所需要的营养成分是否匹配,培养过程中要定时取样观察细胞状态,看细胞处于生长的什么时期,分析细胞分裂周期,研究分裂周期内什么时候所需要的营养成分多,需要哪种营养成分,比如谷氨酰胺的补加时间和补加量以及补加方式都是需要小试实验才能确定的,同时也要重视细胞种类以及细胞特点进行合理的工艺优化
细菌发酵来讲也是同样的 但不管是细胞也好 细菌也好 首先还是要保证不污染其他微生物,才能保证工艺的摸索以及生产的顺利进行

J. 微生物制药的介绍

微生物在其生命活动过程中产生的,能以极低浓度抑制或影响其他生物机能的低分子量代谢物。微生物制药利用微生物技术,通过高度工程化的新型综合技术,以利用微生物反应过程为基础,依赖于微生物机体在反应器内的生长繁殖及代谢过程来合成一定产物,通过分离纯化技术进行提取精制,并最终制剂成型来实现药物产品的生产。

阅读全文

与微生物如何制药相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:744
乙酸乙酯化学式怎么算 浏览:1409
沈阳初中的数学是什么版本的 浏览:1359
华为手机家人共享如何查看地理位置 浏览:1050
一氧化碳还原氧化铝化学方程式怎么配平 浏览:891
数学c什么意思是什么意思是什么 浏览:1417
中考初中地理如何补 浏览:1308
360浏览器历史在哪里下载迅雷下载 浏览:707
数学奥数卡怎么办 浏览:1397
如何回答地理是什么 浏览:1031
win7如何删除电脑文件浏览历史 浏览:1061
大学物理实验干什么用的到 浏览:1491
二年级上册数学框框怎么填 浏览:1709
西安瑞禧生物科技有限公司怎么样 浏览:991
武大的分析化学怎么样 浏览:1253
ige电化学发光偏高怎么办 浏览:1342
学而思初中英语和语文怎么样 浏览:1661
下列哪个水飞蓟素化学结构 浏览:1428
化学理学哪些专业好 浏览:1491
数学中的棱的意思是什么 浏览:1067