‘壹’ 有生命的细胞是如何产生生物电流的
科学家通过扫描电镜,看到人体细胞里的微观世界,由细胞膜、细胞质和细胞核三大部分构成的细胞,平均直径只有10~30微米,构造却极复杂。细胞膜厚75埃,有好几层复杂结构,膜上布满了小孔,通过膜上小孔,细胞与周围的液体环境直接沟通,不停地进行物质交换。凭借细胞膜的这种通透性,才能产生生物电。因为在细胞膜内外,分别带有不同的电荷,膜外带正电荷,膜内带负电荷。在正常情况下,虽说细胞内外的钾、钠、氯离子分布不均匀,但由于细胞膜忠于职守,进行严格的“海关检查”,这些带电离子不能随便出入细胞膜,都规规矩矩的,该出该入秩序井然。如果心理生理发生变化,或遇到理化等因素的刺激,便会干扰细胞膜的“海关检查”,细胞膜内外相对静止的环境受到影响。于是,这些带电的离子便乱了起来,钠离子乘机通过膜上小孔迅速进入膜内,使膜内电位急剧上升,导致局部细胞膜出现电位倒转,膜外带负电,膜内带正电。在这种带电离子分布发生变化的进出流动情况下,这一细胞膜的局部与其邻近部位之间,由于电荷的不同,出现了“电位差”,形成了生物电流。这就是细胞膜产生生物电的“膜离子学说”。
‘贰’ 细胞是这么产生电的
细胞膜上有钠-钾泵(一种蛋白质,能跨膜运输Na+、K+),它能造成细胞内K+是细胞外30倍,细胞外Na+使细胞内12倍。因为细胞膜两侧K+的浓度差,K+会外流。
当细胞膜外的正电荷大到能阻止同样带正电荷的K+出来时(同种电荷相排斥),K+就停止内流。但是因为细胞膜对Na+的通透性很小,Na+就不能进来,这样就相当于细胞膜两侧有了电位差(可以理解为电压),这就是细胞的静息电位。
细胞膜上还有钠、钾通道(也是两种蛋白质),当细胞受到刺激,Na+通道会开放,刚说到细胞外Na+是细胞内12倍,所以Na+会内流(相当于电流)。这样导致膜两侧电位差减少。当电位差降到一定程度时,Na+通道失活,K+通道开放。因为没有了正电荷抵抗K+的浓度差,K+会大量外流。之后,钠-钾泵会出来收拾残局,向膜外运输Na+,向膜内运输K+,使浓度恢复到原来水平。这就是细胞的动作电位,神经细胞的动作电位会传得很远。
是什么原因导致那种蛋白质让Na+、K+,向一个方向运输的呢?
结构是这样的:钠-钾泵由两个α亚基、两个β亚基组成,α亚基下面有3个结构域。α亚基上还有3个Na+结合位点、两个K+结合位点,β亚基不直接参与运输,只是用来帮助α亚基正确折叠。
运输开始时,α上先结合三个Na+,同时3号结构域上结合一个ATP。蛋白质就把ATP水解为ADP,同时2号结构域磷酸化。α亚基构象改变,Na+就不能结合了,就被释放到到细胞外,同时2个K+结合到α上。然后2号结构域去磷酸化,α构象再次改变,K+又不能结合了,就被释放到细胞内,就这样循环。钠-钾泵消耗一个ATP能运输3个Na+、2个K+,α的构象一秒能改变1000多次。如果钠-钾泵不运输的话,膜两侧Na+、K+的浓度会变化,就会影响其他生理功能,细胞产生动作电位后也不能恢复了。
‘叁’ 生物电是怎样形成的
生物电现象是
指生物机体在进行生理活动时所显示出的电现象,这种现象是普遍存在的.细胞膜内外都存在着电位差,当某些细胞(如神经细胞、肌肉细胞)兴奋时,可以产生动作电位,并沿细胞膜传播出去。而另一些细胞(如腺细胞、巨噬细胞、纤毛细胞)的电位变化对于细胞完成种种功能也起着重要作用。随着科学技术的日益进展,生物电的研究取得了很大的进步。在理论上,单细胞电活动的特点,神经传导功能,生物电产生原理,特别是膜离子流理论的建立都取得了一系列的突破。在医学应用上,利用器官生物电的综合测定来判断器官的功能,给某些疾病的诊断和治疗提供了科学依据。我们的临床工作中经常遇到兴奋性、兴奋与兴奋传导这些概念,堵隔壁生物电有关。了解了生物电的现代基本理论,对于正确理解这些概念以及心电、脑电、肌电等的基本原理都有重要意义。细胞生物电现象有以下几种1、静息电位组织细胞安静状态下存在于膜两侧的电位差,称为静息电位,或称为膜电位。细胞在安静状态时,正电荷位于膜外一侧(膜外电位为正),负电荷位于膜内一侧(膜内电位为负,)这种状态称为极化。如果膜内外电位差增大,即静息电位的数值向膜内负值加大的方向变化时,称为超极化。相反地,如果膜内外电位差减小,即膜内电位向负值减小的方向变化,则称为去极化或极化。一般神经纤维的静息电位如以膜外电位为零,膜内电位为-70~-90m2、动作电位当细胞受刺激时,在静息电位的基础上可发生电位变化,这种电位变化称为动作电位。动作电位的波形可因记录方法不同而有所差异以微电极置于细胞内,记录到快速、可逆的变化,表现为锋电位;锋电位代睛细胞兴奋过程,是兴奋产生和传导的标志。锋电位在示波器上显示为灰锐的波形,它可分为上升支和一个下降支。上升支先是膜内的负电位迅速降低到零的过程,称为膜的去极化(除极),接着膜内电位继续上升超过膜外电位,出现膜外电位变负而膜内电位变正的状态,称为反极化。下降支是膜内电位恢复到原来的静息电位水平的过程,称为复极化。锋电位之后到完全恢复到静息电位水平之前,还有微小的连续缓慢的电变化,称为后电位。心肌细胞的生物电现象和神经纤维、骨骼肌等细胞一样,包括安静时的静息电位和兴奋时的动作电位,但有其特点。心肌细胞安静时,膜内电位约为-90mv。心肌细胞静息电位形成的原理基本上和神经纤维相同。主要是由于安静时细胞内高农度的K+向膜外扩散而造成的。当心肌细胞接受刺激由静息状态转入兴奋时,即产生动作电位。其波形与神经纤维有较大的不同,主要特征是复极过程复杂,持续时间长。心肌细胞的某一点受刺激除极后,立即向四周扩散,直至整个心肌完全除极为止。已除极处的细胞膜外正电荷消失,未除极处的细胞膜仍带正电而形成电位差。除极与未除极部位之间的电位差,引起局部电流,由正极流向负极。复极时,最先除极的地方首先开始复极,膜外又带正电,再次形成复极处与未复极处细胞膜的电位差,又产生电流。如此依次复极,直至整个心肌细胞的同时除极也可以看成许多电偶同时在移动,不论它们的强度和方向是否相同,这个代表各部心肌除极总效果的电偶称为等效电偶。心脏的结构是一个立体,它除极时电偶的方向时刻在变化,表现在心电图上,是影响各波向上或向下的主要原因。由于各部心肌的大小、厚薄不同,心脏除极又循一定顺序,所以心脏除极中,等效电偶的强度时刻都在变化。它主要影响心电图上各波的幅度。人体是一个容积导体,心脏居人体之中,心脏产生的等效电偶,在人体各部均有它的电位分布。在心动周期中,心脏等效电偶的电力强度和方向在不断地变化着。身体各种的电位也会随之而不断变动,从身体任意两点,通过仪器(心电图机)就可以把它描记成曲线,这就是心电图.
随着分子生物学和膜的超微结构研究的进展,人们更试图从膜结构中某些特殊蛋白和其他物质的分子构型的改变,来理解膜的通透性能的改变和生物电的产生,这将把生物电现象的研究推进到一个新阶段。
‘肆’ 生物:细胞的电现象是如何形成的电压一般是多少
细胞的生物电现象
(1)静息电位及其产生机制:静息电位是指细胞在未受刺激时存在于细胞膜内、外两侧的电位差,绝大多数细胞的静息电位是稳定的负电位。机制:①钠泵主动转运造成的细胞膜内、外Na+和K+ 的不均匀分布是形成生物电的基础。②静息状态下细胞膜主要是K+通道开放,K+受浓度差的驱动向膜外扩散,膜内带负电荷的大分子蛋白质与K+隔膜相吸,形成膜外为正,膜内为负的跨膜电位差,当达到平衡状态时,此时的跨膜电位称为K+平衡电位。安静状态下的膜只对K+有通透性,因此静息电位就相当于K+平衡电位。
(2)动作电位及其产生机制:在静息电位的基础上,兴奋细胞膜受到一个适当的刺激,膜电位发生迅速的一过性的波动,这种膜电位的波动称为动作电位。它由上升支和下降支组成,两者形成尖峰状的电位变化称为锋电位。上升支指膜内电位从静息电位的-90mV到+30mV,其中从-90mV上升到0mV,称为去极化;从0mV到+30mV,即膜电位变成了内正外负,称为反极化。动作电位在零以上的电位值称为超射。下降支指膜内电位从+30mV逐渐下降至静息电位水平,称为复极化。锋电位后出现膜电位的低幅、缓慢的波动,称为后电位。其产生机制:
①上升支的形成:当细胞受到阈刺激时,引起Na+内流,去极化达阈电位水平时,Na+通道大量开放,Na+迅速内流的再生性循环,造成膜的快速去极化,使膜内正电位迅速升高,形成上升支。主要是Na+的平衡电位。
②下降支的形成:钠通道为快反应通道,激活后很快失活,随后膜上的电压门控K+通道开放,K+顺梯度快速外流,使膜内电位由正变负,迅速恢复到刺激前的静息电位水平,形成动作电位下降支(复极相)。
‘伍’ 生物电是如何产生的
细胞是由细胞膜将外界隔开,保持细胞内环境的稳定。细胞膜是选择性半透膜,细胞内外的物质交换要得到这层膜的允许。
实验发现,人体中的细胞内液和细胞外液含有多种离子,包括阴离子和阳离子,其中钠和钾是比较重要的阳离子。细胞内的钾离子浓度较细胞外高,细胞外的钠离子则高于细胞内。在细胞膜上存在一种蛋白,称为钠钾通道或钠钾泵,细胞内外钠钾交换是通过钠钾泵来完成的。通常状态下钠钾泵关闭,细胞外钠离子浓度虽然很高,但无法穿过细胞膜进入细胞内。而钾离子则稍有不同,允许一小部分钾离子穿过钠钾泵从细胞内流到细胞外。因为钾离子带有正电荷,所以流失后,细胞内呈现负电状态。这时如果将细胞内插入一个微电极,得到一个负电势(生理学上将电压称为电势)数值,称为静息电位。
当细胞受到刺激时,细胞膜上的钠钾泵迅速开放,根据物质都有从高浓度向低浓度运动的扩散原理,细胞外钠离子大量涌进细胞内,而细胞内的钾离子虽然有一部分事先运动到细胞外,但细胞内的浓度还是高于细胞外,于是钾离子也由细胞内流到细胞外。值得注意的是,钠离子进入细胞内的速度要大于钾离子出胞的速度,一般来说,三个钠离子进入换出两个钾离子流出。
总的结果就是大量的阳离子由细胞外进入细胞内,是原本是负电势的细胞转换成正电位,通过微电极的检测发现,这时的细胞形成一个峰电位,称为动作电位。细胞在形成动作电位后,产生一个运动,如肌细胞的收缩或腺体细胞的分泌等。而后细胞内外的钠钾离子再从新分布,细胞内的钠离子被移除到细胞外,细胞外的钾离子被移进细胞内,细胞重新恢复静息电位的状态,等待下一个刺激引起的动作电位。
‘陆’ 生物电是如何产生的例如:蓄电池是化学反应产生电;发电机是磨擦产生电,那么生物是如何产生电的呢
生物的每个细胞都有完整的细胞膜,细胞膜有两层脂肪分子,细胞内带电离子必须通过离子通道才能穿过细胞膜.在平时,细胞内钾离子多,细胞外溶液中钠离子多,细胞内外产生电势差,这就是膜电位.一旦细胞膜通道打开,细胞外高浓度溶液流向细胞内,就产生动作电位.一个个肌肉细胞排列整齐,上面布满神经,这就像把一个个小电池串联起来那样,虽然每个电池只有0.1伏特,如果有亿万个这样小电池的话,那么它的电压就不小了.这就是有些生物的生物电有那么高电压的原因.
‘柒’ 生物电是什么它是怎么产生的在人体起着什么样的…
生物电现象是 指生物机体在进行生理活动时所显示出的电现象,这种现象是普遍存在的.细胞膜内外都存在着电位差,当某些细胞(如神经细胞、肌肉细胞)兴奋时,可以产生动作电位,并沿细胞膜传播出去。而另一些细胞(如腺细胞、巨噬细胞、纤毛细胞)的电位变化对于细胞完成种种功能也起着重要作用。随着科学技术的日益进展,生物电的研究取得了很大的进步。在理论上,单细胞电活动的特点,神经传导功能,生物电产生原理,特别是膜离子流理论的建立都取得了一系列的突破。在医学应用上,利用器官生物电的综合测定来判断器官的功能,给某些疾病的诊断和治疗提供了科学依据。我们的临床工作中经常遇到兴奋性、兴奋与兴奋传导这些概念,堵隔壁生物电有关。了解了生物电的现代基本理论,对于正确理解这些概念以及心电、脑电、肌电等的基本原理都有重要意义。细胞生物电现象有以下几种1、静息电位组织细胞安静状态下存在于膜两侧的电位差,称为静息电位,或称为膜电位。细胞在安静状态时,正电荷位于膜外一侧(膜外电位为正),负电荷位于膜内一侧(膜内电位为负,)这种状态称为极化。如果膜内外电位差增大,即静息电位的数值向膜内负值加大的方向变化时,称为超极化。相反地,如果膜内外电位差减小,即膜内电位向负值减小的方向变化,则称为去极化或极化。一般神经纤维的静息电位如以膜外电位为零,膜内电位为-70~-90m2、动作电位当细胞受刺激时,在静息电位的基础上可发生电位变化,这种电位变化称为动作电位。动作电位的波形可因记录方法不同而有所差异以微电极置于细胞内,记录到快速、可逆的变化,表现为锋电位;锋电位代睛细胞兴奋过程,是兴奋产生和传导的标志。锋电位在示波器上显示为灰锐的波形,它可分为上升支和一个下降支。上升支先是膜内的负电位迅速降低到零的过程,称为膜的去极化(除极),接着膜内电位继续上升超过膜外电位,出现膜外电位变负而膜内电位变正的状态,称为反极化。下降支是膜内电位恢复到原来的静息电位水平的过程,称为复极化。锋电位之后到完全恢复到静息电位水平之前,还有微小的连续缓慢的电变化,称为后电位。心肌细胞的生物电现象和神经纤维、骨骼肌等细胞一样,包括安静时的静息电位和兴奋时的动作电位,但有其特点。心肌细胞安静时,膜内电位约为-90mv。心肌细胞静息电位形成的原理基本上和神经纤维相同。主要是由于安静时细胞内高农度的K+向膜外扩散而造成的。当心肌细胞接受刺激由静息状态转入兴奋时,即产生动作电位。其波形与神经纤维有较大的不同,主要特征是复极过程复杂,持续时间长。心肌细胞的某一点受刺激除极后,立即向四周扩散,直至整个心肌完全除极为止。已除极处的细胞膜外正电荷消失,未除极处的细胞膜仍带正电而形成电位差。除极与未除极部位之间的电位差,引起局部电流,由正极流向负极。复极时,最先除极的地方首先开始复极,膜外又带正电,再次形成复极处与未复极处细胞膜的电位差,又产生电流。如此依次复极,直至整个心肌细胞的同时除极也可以看成许多电偶同时在移动,不论它们的强度和方向是否相同,这个代表各部心肌除极总效果的电偶称为等效电偶。心脏的结构是一个立体,它除极时电偶的方向时刻在变化,表现在心电图上,是影响各波向上或向下的主要原因。由于各部心肌的大小、厚薄不同,心脏除极又循一定顺序,所以心脏除极中,等效电偶的强度时刻都在变化。它主要影响心电图上各波的幅度。人体是一个容积导体,心脏居人体之中,心脏产生的等效电偶,在人体各部均有它的电位分布。在心动周期中,心脏等效电偶的电力强度和方向在不断地变化着。身体各种的电位也会随之而不断变动,从身体任意两点,通过仪器(心电图机)就可以把它描记成曲线,这就是心电图. 随着分子生物学和膜的超微结构研究的进展,人们更试图从膜结构中某些特殊蛋白和其他物质的分子构型的改变,来理解膜的通透性能的改变和生物电的产生,这将把生物电现象的研究推进到一个新阶段。
‘捌’ 生物电如何产生的
生物电,为生物体内广泛、繁杂的电现象,是正常生理活动的反映。企图用一种学说,去解释各种生物体中所出现的各种不同的电现象是不可能的。
生物有机体是一个导电性的容积导体。当一些细胞或组织上发生电变化时,将在这容积导体内产生电场。因此在电场的不同部位中可引导出电场的电位变化,而且其大小与波形各不相同。
例如,有些植物受刺激后,会产生运动反应。这时,往往出现可传导的电位变化。比如,含羞草受刺激时,叶片发生的闭合运动反应,就能传布相当的距离。在这一过程中,由刺激点发生的负电位变化,可以每秒2~10毫米的速度向外扩布。电位变化在1~2秒内达到最大值,其幅值可达50~100毫伏。但恢复时间长,需几十分钟才能回到原来的极性状态,这一段负电位变化时期就是它的不应期。
‘玖’ 生物电是怎样产生的谢谢
19世纪,内科学用电位器测得神经细胞膜突然受到刺激产生0.1伏特电。至此,人们再不怀疑生物电的存在,而且确认任何生物体中,都有生物电。20世纪50年代后,人们才揭开了其中奥秘。原来,生物的每个细胞都有完整的细胞膜,细胞膜有两层脂肪分子,细胞内带电离子必须通过离子通道才能穿过细胞膜。在平时,细胞内钾离子多,细胞外溶液中钠离子多,细胞内外产生电势差,这就是膜电位。一旦细胞膜通道打开,细胞外高浓度溶液流向细胞内,就产生动作电位。一个个肌肉细胞排列整齐,上面布满神经,这就像把一个个小电池串联起来那样,虽然每个电池只有0.1伏特,如果有亿万个这样小电池的话,那么它的电压就不小了。这就是有些生物的生物电有那么高电压的原因。
了解生物电的来龙去脉后,人们就用它来为人类造福。首先,生物电在医学上已广为应用,拯救成千上万的人的生命。大家知到,医学常用测心电图的办法判别心脏病,用脑电图来诊断脑疾病。因为,正常人心脏和脑细胞显示正常的生物电图案,相反,异常或老化的心脏和脑细胞则出现反常的图像。医生可根据异常程度来判断病情。生物电也用于断肢再生,1958年美国纽约州贝克医师发现生物有损伤电流,它就是生物电。贝克医师将一只蝾螈的腿切去,发现伤口颤抖,用电流计一测,竟有十亿分之三安培电流,于是他模拟各种生物损伤电流来使生物受伤加快愈合。目前,这种损伤电流已应用人体再植上。
再次,生物电对揭开神经传导的奥秘也作出了积极的贡献。神经传导之快,选择性之高,都令人咋舌。现在探明许多神经功能与生物电的传递反应有关。人们可以预言,生物电在21世纪——生物学世纪中,将发挥更大的作用在一次自动控制技术的会议上,当一个没有手的15岁男孩,用假手在黑板上用粉笔写起“向会议的参加者致敬”的时候,大厅里顿时响起了雷鸣般的掌声。人们赞叹不绝,不断地向这种新颖控制技术的创造者表示热烈的祝贺。
早在18世纪末叶,人们对生物机体内的生物电流,就已经有所认识。因为生物体内不同的生命活动,能产生不同形式的生物电,如人体心脏的跳动、肌肉的收缩、大脑的思维等等,所以人们就可以借助生物电来诊断各种疾病。生物电的应用十分广泛,生物电手的应用就是其中之一。我们知道,人双手的一切动作,都是大脑发出的一种指令(即电讯号)经过成千上万条神经纤维,传递给手中相应部位的肌肉引起的一种反应。如果我们把大脑指令传到肌肉中的生物电引出来,并把这个微弱的信号加以放大,那么,这种电讯事情就可以直接去操纵由机械、电气等部件组成的假手。国外一种假手,从肩膀到肘关节,使用了五只油压马达,手掌及手指的动作利用两只电动马达。手臂在发出动作之前,利用上半身的各肌肉电流来作为假手活动的指令。即在背脊及胸口安放相应的电极,用微型信号机来处理那里发生的电流信息,七只马达就能根据想要做的动作进行运转。这种假手的动作与真手臂大致相同,并且由于主要部分采用了硬铝及塑料,故其重量还不到2.63公斤。据报道,这种假手已能够做诸如转动肩膀及手臂、手掌、弯曲关节等等27种动作了。它能为由于交通及工伤事故而被齐肩截断手臂的残废者解决生活和工作上的许多不便。国内在研究生物电控制假手方面,上海假肢厂的工人和上海生理研究所的科技人员,经过共同的努力,已经制造了一种重约1.5公斤,握力达一公斤,可以提10公斤的人造假手。其工作能源是由于11节镍镉电池提供的。人造假手的出现不仅为四肢残废的人制造了运用自如的四肢,而且由于生物电经过放大之后,可以用导线或无线电波传送到非常遥远的地方。显然,这对于扩大人类的生产实践,将会产生具有影响力的改变。到那时,人们可以叫假手到万米深的海底去取宝,或到高炉里、矿井里去操作,甚至可以叫它到月亮上去开垦处女地。
生物电的研究,对于农业生产也具有很大的意义。我们常常见到的向日葵,它们的花朵能随着太阳的东升西落而运动;含羞草的叶子,经不起轻扰,一碰就会低眉垂着头害起羞来。这些植物界中的自然现象,都是因为生物电在起作用的缘故。植物中的生物电,究竟是怎样产生的呢?有人曾做过如下的实验:在空气中,将一个电基放在一株植物的叶子上,另一电基放在植物的基部;结果发现两个电极之间能产生30毫伏左右的电位差。当将同样的一株植物放在密封的真空中时,由于植物在真空中被迫停止生命活动,所以植物基部和叶片之间的电压也就消失了。空虚实验有力地证明,生物的生命活动,是产生生物电的根源。
‘拾’ 什么是细胞生物电现象
细胞生物电现象是细胞中表现出的静息电位和动作电位。
静息电位是指细胞在不动时,存在于细胞膜内外两侧的电位差,例如体内所有细胞都体现出细胞膜内侧带负电,外侧带正电的情况。而动作电位是指在神经纤维一端记录静息电位同时,在纤维另一端用电刺激,经过极短潜伏期之后,在记录静息电位的基础上有一个迅速的生物电变化。细胞生物电现象产生的原因是因为细胞膜内外离子分布不均匀,同时细胞膜对离子的选择通透性。