A. 高中生物新陈代谢知识点梳理
机体与外界环境之间的物质和能量交换以及生物体内物质和能量的自我更新过程叫做新陈代谢,它也是生物体内全部有序化学变化的总称。下面是我为大家整理的高中生物新陈代谢知识点,希望对大家有所帮助!
高中生物新陈代谢知识点梳理:第一节 新陈代谢与酶
名词:
1、酶:是活细胞(来源)所产生的具有催化作用(功能)的一类有机物。大多数酶的化学本质是蛋白质(合成酶的场所主要是核糖体,水解酶的酶是蛋白酶),也有的是RNA。
2、酶促反应:酶所催化的反应。
3、底物:酶催化作用中的反应物叫做底物。
语句:
1、酶的发现:①、1783年,意大利科学家斯巴兰让尼用实验证明:胃具有化学性消化的作用;②、1836年,德国科学家施旺从胃液中提取了胃蛋白酶;③、1926年,美国科学家萨姆纳通过化学实验证明脲酶是一种蛋白质;④20世纪80年代,美国科学家切赫和奥特曼发现少数RNA也具有生物催化作用。
2、酶的特点:在一定条件下,能使生物体内复杂的化学反应迅速地进行,而反应前后酶的性质和质量并不发生变化。
3、酶的特性:①高效性:催化效率比无机催化剂高许多。②专一性:每种酶只能催化一种或一类化合物的化学反应。③酶需要适宜的温度和pH值等条件:在最适宜的温度和pH下,酶的活性最高。温度和pH偏高和偏低,酶的活性都会明显降低。原因是过酸、过碱和高温,都能使酶分子结构遭到破坏而失去活性。
4、酶是活细胞产生的,在细胞内外都起作用,如消化酶就是在细胞外消化道内起作用的;酶对生物体内的化学反应起催化作用与调节人体新陈代谢的激素不同;虽然酶的催化效率很高,但它并不被消耗;酶大多数是蛋白质,它的合成受到遗传物质的控制,所以酶的决定因素是核酸。
5、既要除去细胞壁的同时不损伤细胞内部结构,正确的思路是:细胞壁的主要成分是纤维素、酶具有专一性,去除细胞壁选用纤维素酶使其分解。血液凝固是一系列酶促反应过程,温度、酸碱度都能影响酶的催化效率,对于动物体内酶催化的最适温度是动物的体温,动物的体温大 都在35℃左右。
6、通常酶的化学本质是蛋白质,主要在适宜条件下才有活性。胃蛋白酶是在胃中对蛋白质的水解起催化作用的。胃蛋白酶只有在酸性环境(最适PH=2左右)才有催化作用,随pH升高,其活性下降。当溶液中pH上升到6以上时,胃蛋白酶会失活,这种活性的破坏是不可逆转的。
高中生物新陈代谢知识点梳理:第二节 新陈代谢与ATP
语句:
1、ATP的结构简式:ATP是三磷酸腺苷的英文缩写,结构简式:A-P~P~P,其中:A代表腺苷,P代表磷酸基,~代表高能磷酸键,-代表普通化学键。注意:ATP的分子中的高能磷酸键中储存着大量的能量,所以ATP被称为高能化合物。这种高能化合物在水解时,由于高能磷酸键的断裂,必然释放出大量的能量。这种高能化合物形成时,即高能磷酸键形成时,必然吸收大量的能量。
2、ATP与ADP的相互转化:在酶的作用下,ATP中远离A的高能磷酸键水解,释放出其中的能量,同时生成ADP和Pi;在另一种酶的作用下,ADP接受能量与一个Pi结合转化成ATP。ATP与ADP相互转变的反应是不可逆的,反应式中物质可逆,能量不可逆。ADP和Pi可以循环利用,所以物质可逆;但是形成ATP时所需能量绝不是ATP水解所释放的能量,所以能量不可逆。(具体因为:(1)从反应条件看,ATP的分解是水解反应,催化反应的是水解酶;而ATP是合成反应,催化该反应的是合成酶。酶具有专一性,因此,反应条件不同。(2)从能量看,ATP水解释放的能量是储存在高能磷酸键内的化学能;而合成ATP的能量主要有太阳能和化学能。因此,能量的来源是不同的。(3)从合成与分解场所的场所来看:ATP合成的场所是细胞质基质、线粒体(呼吸作用)和叶绿体(光合作用);而ATP分解的场所较多。因此,合成与分解的场所不尽相同。)
3、ATP的形成途径 : 对于动物和人来说,ADP转化成ATP时所需要的能量,来自细胞内呼吸作用中分解有机物释放出的能量。对于绿色植物来说,ADP转化成ATP时所需要的能量,除了来自呼吸作用中分解有机物释放出的能量外,还来自光合作用。
4、ATP分解时的能量利用:细胞分裂、根吸收矿质元素、肌肉收缩等生命活动。
5、ATP是新陈代谢所需能量的直接来源。
高中生物新陈代谢知识点梳理:第三节 光合作用
名词:
1、光合作用:发生范围(绿色植物)、场所(叶绿体)、能量来源(光能)、原料(二氧化碳和水)、产物(储存能量的有机物和氧气)。
语句:
1、光合作用的发现:①1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:植物可以更新空气。②1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。证明:绿色叶片在光合作用中产生了淀粉。③1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。④20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2 O和C18O,释放的是O2。光合作用释放的氧全部来自来水。
2、叶绿体的色素:①分布:基粒片层结构的薄膜上。②色素的种类:高等植物叶绿体含有以下四种色素。A、叶绿素主要吸收红光和蓝紫光,包括叶绿素a(蓝绿色)和叶绿素b( ;B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素 和叶 素
3、叶绿体的酶:分布在叶绿体基粒片层膜上(光反应阶段的酶)和叶绿体的基质中(暗反应阶段的酶)。
4、光合作用的过程:①光反应阶段a、水的光解:2H2O→4[H]+O2(为暗反应提供氢)b、ATP的形成:ADP+Pi+光能—→ATP(为暗反应提供能量)②暗反应阶段: a、CO2的固定:CO2+C5→2C3 b、C3化合物的还原:2C3+[H]+ATP→(CH2O)+C5
5、光反应与暗反应的区别与联系:①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。②条件:光反应需要光、叶绿素等色素、酶,暗反应需要许多有关的酶。③物质变化:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。④能量变化:光反应中光能→ATP中活跃的化学能,在暗反应中ATP中活跃的化学能→CH2O中稳定的化学能。⑤联系:光反应产物[H]是暗反应中CO2的还原剂,ATP为暗反应的进行提供了能量,暗反应产生的ADP和Pi为光反应形成ATP提供了原料。
6、光合作用的意义:①提供了物质来源和能量来源。②维持大气中氧和二氧化碳含量的相对稳定。③对生物的进化具有重要作用。总之,光合作用是生物界最基本的物质代谢和能量代谢。
7、影响光合作用的因素:有光照(包括光照的强度、光照的时间长短)、二氧化碳浓度、温度(主要影响酶的作用)和水等。这些因素中任何一种的改变都将影响光合作用过程。如:在大棚蔬菜等植物栽种过程中,可采用白天适当提高温度、夜间适当降低温度(减少呼吸作用消耗有机物)的 方法 ,来提高作物的产量。再如,二氧化碳是光合作用不可缺少的原料,在一定范围内提高二氧化碳浓度,有利于增加光合作用的产物。当低温时暗反应中(CH2O)的产量会减少,主要由于低温会抑制酶的活性;适当提高温度能提高暗反应中(CH2O)的产量,主要由于提高了暗反应中酶的活性。
8、光合作用过程可以分为两个阶段,即光反应和暗反应。前者的进行必须在光下才能进行,并随着光照强度的增加而增强,后者有光、无光都可以进行。暗反应需要光反应提供能量和[H],在较弱光照下生长的植物,其光反应进行较慢,故当提高二氧化碳浓度时,光合作用速率并没有随之增加。光照增强,蒸腾作用随之增加,从而避免叶片的灼伤,但炎热夏天的中午光照过强时,为了防止植物体内水分过度散失,通过植物进行适应性的调节,气孔关闭。虽然光反应产生了足够的ATP和〔H〕,但是气孔关闭,CO2进入叶肉细胞叶绿体中的分子数减少,影响了暗反应中葡萄糖的产生。
9、在光合作用中:a、由强光变成弱光时,[产生的H]、ATP数量减少,此时C3还原过程减弱,而CO2仍在短时间内被一定程度的固定,因而C3含量上升,C5含量下降,(CH2O)的合成率也降低。b、CO2浓度降低时,CO2固定减弱,因而产生的C3数量减少,C5的消耗量降低,而细胞的C3仍被还原,同时再生,因而此时,C3含量降低,C5含量上升。
高中生物新陈代谢知识点梳理:第四节 植物对水分的吸收和利用
名词:
1、水分代谢:指绿色植物对水分的吸收、运输、利用和散失。
2、半透膜:指某些物质可以透过,而另一些物质不能透过的多孔性薄膜。
3、选择透过性膜:由于膜上具有一些运载物质的载体,因为不同细胞膜上含有的载体的种类和数量不同,即使同一细胞膜上含有的运载不同物质的载体的数量也不同,因而表现出细胞膜对物质透过的高度选择性。当细胞死亡,膜便失去选择透过性成为全透性。
4、吸胀吸水:是未形成大液泡的细胞吸水方式。如:根尖分生区的细胞和干燥的种子。
5、渗透作用:水分子(或其他溶剂分子)通过半透膜的扩散,叫做~。
6、渗透吸水:靠渗透作用吸收水分的过程,叫做~。
7、原生质:是细胞内的生命物质,可分化为细胞膜、细胞质和细胞核等部分,细胞壁不属于原生质。一个动物细胞可以看成是一团原生质。
8、原生质层:成熟植物细胞的细胞膜、液泡膜以及两层膜之间的细胞质称为原生质层,可看作一层选择透过性膜。
9、质壁分离:原生质层与细胞壁分离的现象,叫做~。
10、蒸腾作用:植物体内的水分,主要是以水蒸气的形式通过叶的气孔散失到大气中。
11、合理灌溉:是指根据植物的需水规律适时、适量地灌溉以便使植物体茁壮生长,并且用最少的水获取最大效益。
语句:
1、绿色植物吸收水分的主要器官是根;绿色植物吸收水分的主要部位是根尖成熟区表皮细胞。
2、渗透作用的产生必须具备以下两个条件:a.具有半透膜。 b、半透膜两侧的溶液具有浓度差。
3、植物吸水的方式:①吸胀吸水: a、细胞结构特点:细胞质内没有形成大的液泡。b、原理:是指细胞在形成大液泡之前的主要吸水方式,植物的细胞壁和细胞质中有大量的亲水性物质——纤维素、淀粉、蛋白质等,这些物质能够从外界大量地吸收水分。c、举例:根尖分生区的细胞和干燥的种子。②渗透吸水:a、细胞结构特点:细胞质内有一个大液泡,细胞壁--全透性,原生质层--选择透过性,细胞液具有一定的浓度。b、原理:内因:细胞壁的伸缩性比原生质层的伸缩性小。外因(两侧具浓度差):外界溶液浓度<细胞液浓度→细胞吸水,外界溶液浓度>细胞液浓度→细胞失水;c、验证:质壁分离及质壁分离复原;d、举例:成熟区的表皮细胞等。
4、水分流动的趋势:水往高(溶液浓度高的地方)处走。水密度小,水势低(溶液浓度大);水密度大,水势高(溶液浓度低)。
5.水分进入根尖内部的途径:(1)成熟区的表皮细胞→内部层层细胞→导管(2)成熟区表皮细胞→内部各层细胞的细胞壁和细胞间隙→导管
6、水分的利用和散失:a、利用:1%~5%的水分参与光合作用和呼吸作用等生命活动。b、散失: 95%~ 99%的水用于蒸腾作用。植物通过蒸腾作用散失水分的意义是植物吸收水分和促使水分在体内运输的主要动力。
7、能发生质壁分离的细胞应该是一个渗透系统,是具有大型液泡的活的植物细胞(成熟植物细胞)在处于高浓度的外界溶液中才会有的现象。(人体的细胞,它没有细胞壁,也就不会有质壁分离。玉米根尖细胞没有形成大型液泡,玉米根尖分生区的细胞和伸长区的细胞,形成层细胞和干种子细胞都无大型液泡,主要靠吸胀作用吸水,不会发生质壁分离。洋葱表皮细胞和根毛细胞两种成熟的植物细。)
高中生物新陈代谢知识点梳理:第五节 植物的矿质营养
名词:
1、植物的矿质营养:是指植物对矿质元素的吸收、运输和利用。
2、矿质元素:一般指除了C、H、O以外,主要由根系从土壤中吸收的元素。植物必需的矿质元素有13种.其中大量元素7种N、S、P、Ca、Mg、 K(Mg是合成叶绿素所必需的一种矿质元素)巧记:丹留人盖美家。Fe、 Mn、B、 Zn 、Cu 、Mo 、 Cl属于微量元素,巧记:铁门碰醒铜母(驴)。
3、交换吸附:根部细胞表面吸附的阳离子、阴离子与土壤溶液中阳离子、阴离子发生交换的过程就叫交换吸附。
4、选择吸收:指植物对外界环境中各种离子的吸收所具有的选择性。它表现为植物吸收的离子与溶液中的离子数量不成比例。5、合理施肥:根据植物的需肥规律,适时地施肥,适量地施肥。
语句:
1、根对矿质元素的吸收①吸收的状态:离子状态②吸收的部位:根尖成熟区表皮细胞。③、细胞吸收矿质元素离子可以分为两个过程:一是根细胞表面的阴、阳离子与土壤溶液中的离子进行交换吸附;二是离子被主动运输进入根细胞内部,根进行离子的交换需要的HCO-和H+是根细胞呼吸作用产生的CO2与水结合后理解成的,根细胞主动运输吸收离子要消耗能量。④影响根对矿质元素吸收的因素:a、呼吸作用:为交换吸附提供HCO-和H+,为主动运输供能,因此生产上需要疏松土壤;b、载体的种类是决定是否吸收某种离子,载体的数量是决定吸收某种离子的多少,因此,根对吸收离子有选择性。氧气和温度(影响酶的活性)都能影响呼吸作用。
2、植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。①吸收部位:都为成熟区表皮细胞。②吸收方式:根对水分的吸收---渗透吸水,根对矿质元素的吸收----主动运输。③、所需条件:根对水分的吸收----半透膜和半透膜两侧的浓度差,根对矿质元素的吸收----能量和载体。④联系:矿质离子在土壤中溶于水,进入植物体后,随水运到各个器官,植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。
3、矿质元素的运输和利用:①运输:随水分的运输到达植物体的各部分。②利用形式:矿质运输的利用,取决于各种元素在植物体内的存在形式。K在植物体内以离子状态的形式存在,很容易转移,能反复利用,如果植物体缺乏这类元素,首先在老的部位出现病态;N、P、Mg在植物体内以不稳定化合物的形式存在,能转移,能多次利用,如果植物体缺乏这类元素,首先在老的部位出现病态;Ca、Fe在植物体内以稳定化合物的形式存在,不能转移,不能再利用,一旦缺乏时,幼嫩的部分首先呈现病态。
4、合理灌溉的依据:不同植物对各种必需的矿质元素的需要量不同;同一 种植 物在不同的生长发育时期,对各种必需的矿质元素的需要量也不同。5、根细胞吸收矿质元素离子与呼吸作用相关,在一定的氧气范围内,呼吸作用越强,根吸收的矿质元素离子就越多,达到一定程度后,由于细胞膜上的载体的数量有限,根吸收矿质元素离子就不再随氧气的增加而增加。
高中生物新陈代谢知识点梳理:第六节 人和动物体内三大营养物质的代谢
名词:
1、食物的消化:一般都是结构复杂、不溶于水的大分子有机物,经过消化,变成为结构简单、溶于水的小分子有机物。
2、营养物质的吸收:是指包括水分、无机盐等在内的各种营养物质通过消化道的上皮细胞进入血液和淋巴的过程。
3、血糖:血液中的葡萄糖。
4、氨基转换作用:氨基酸的氨基转给其他化合物(如:丙酮酸),形成的新的氨基酸(是非必需氨基酸)。
5、脱氨基作用:氨基酸通过脱氨基作用被分解成为含氮部分(即氨基)和不含氮部分:氨基可以转变成为尿素而排出体外;不含氮部分可以氧化分解成为二氧化碳和水,也可以合成为糖类、脂肪。
6、非必需氨基酸:在人和动物体内能够合成的氨基酸。
7、必需氨基酸:不能在人和动物体内能够合成的氨基酸,通过食物获得的氨基酸。它们是甲硫氨酸、缬氨酸、亮氨酸、异亮氨酸、赖氨酸、苏氨酸、色氨酸、苯丙氨酸等8种。
8、糖尿病:当血糖含量高于160 mg/dL会得糖尿病,胰岛素分泌不足造成的疾病由于糖的利用发生障碍,病人消瘦、虚弱无力,有多尿、多饮、多食的“三多一少”(体重减轻)症状。
9、低血糖病:长期饥饿血糖含量降低到50~80mg/dL,会出现头昏、心慌、出冷汗、面色苍白、四肢无力等低血糖早期症状,喝一杯浓糖水;低于45mg/dL时出现惊厥、昏迷等晚期症状,因为脑组织供能不足必须静脉输入葡萄糖溶液。
语句:
1、糖类代谢、蛋白质代谢、脂类代谢的图解参见课本。
2、糖类、脂类和蛋白质之间是可以转化的,并且是有条件的、互相制约着的。三类营养物质之间相互转化的程度不完全相同,一是转化的数量不同,如糖类可大量转化成脂肪,而脂肪却不能大量转化成糖类;二是转化的成分是有限制的,如糖类不能转化成必需氨基酸;脂类不能转变为氨基酸。
3、正常人血糖含量一般维持在80-100mg/dL范围内;血糖含量高于160mg/dL,就会产生糖尿;血糖降低(50-60mg/dL),出现低血糖症状,低于45mg/dL,出现低血糖晚期症状;多食少动使摄入的物质(如糖类)过多会导致肥胖。
4、消化:淀粉经消化后分解成葡萄糖,脂肪消化成甘油和脂肪酸,蛋白质在消化道内被分解成氨基酸。
5、吸收及运输:葡萄糖被小肠上皮细胞吸收(主动运输),经血液循环运输到全身各处。以甘油和脂肪酸和形式被吸收,大部分再度合成为脂肪,随血液循环运输到全身各组织器官中。以氨基酸的形式吸收,随血液循环运输到全身各处。
6、糖类没有N元素要转变成氨基酸,进而形成蛋白质,必须获得N元素,就可以通过氨基转换作用形成。蛋白质要转化成糖类、脂类就要去掉N元素,通过脱氨基作用。
7、唾液含唾液淀粉酶消化淀粉;胃液含胃蛋白酶消化蛋白质;胰液含胰淀粉酶、胰麦芽糖酶、胰脂肪酶、胃蛋白酶(消化淀粉、麦芽糖、脂肪、蛋白质);肠液含肠淀粉酶、肠麦芽糖、肠脂肪酶(消化淀粉、麦芽糖、脂肪、蛋白质)。
8、胃吸收:少量水和无机盐;大肠吸收:少量水和无机盐和部分维生素;小肠吸收:以上所有加上葡萄糖、氨基酸、脂肪酸、甘油;胃和大肠都能吸收的是:水和无机盐;小肠上皮细胞突起形成小肠绒毛,小肠绒毛朝向肠腔一侧的细胞膜有许多小突起称微绒毛微绒毛扩大了吸收面积,有利于营养物质的吸收。
高中生物新陈代谢知识点梳理:第七节 生物的呼吸作用
名词:
1、呼吸作用(不是呼吸):指生物体的有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳或 其它 产物,并且释放出能量的过程。
2、有氧呼吸:指细胞在有氧的参与下,把糖类等有机物彻底氧化分解,产生二氧化碳和水,同时释放出大量能量的过程。
3、无氧呼吸:一般是指细胞在无氧的条件下,通过酶的催化作用,把等有机物分解为不彻底的氧化产物,同时释放出少量能量的过程。
4、发酵:微生物的无氧呼吸。
语句:
1、有氧呼吸:①场所:先在细胞质的基质,后在线粒体。②过程:第一阶段、 (葡萄糖)C6H12O6→2C3H4O3(丙酮酸)+4[H]+少量能量(细胞质的基质); 第二阶段、2C3H4O3(丙酮酸)→6CO2+20[H]+少量能量(线粒体);第三阶段、24[H]+O2→12H2O+大量能量(线粒体)。
2、无氧呼吸(有氧呼吸是由无氧呼吸进化而来):①场所:始终在细胞质基质②过程:第一阶段、和有氧呼吸的相同;第二阶段、2C3H4O3(丙酮酸)→C2H5OH(酒精)+CO2(或C3H6O3乳酸) ②高等植物被淹产生酒精(如水稻), (苹果、梨可以通过无氧呼吸产生酒精);高等植物某些器官(如马铃薯块茎、甜菜块根)产生乳酸,高等动物和人无氧呼吸的产物是乳酸。
3、有氧呼吸与无氧呼吸的区别和联系①场所:有氧呼吸第一阶段在细胞质的基质中,第二、三阶段在线粒体② O2和酶:有氧呼吸第一、二阶段不需O2,;第三阶段:需O2,第一、二、三阶段需不同酶;无氧呼吸--不需O2,需不同酶。③氧化分解: 有氧呼吸--彻底,无氧呼吸--不彻底。④能量释放:有氧呼吸(释放大量能量38ATP )---1mol葡萄糖彻底氧化分解,共释放出2870kJ的能量,其中有1161kJ左右的能量储存在ATP中;无氧呼吸(释放少量能量2ATP)-- 1mol葡萄糖分解成乳酸共放出196.65kJ能量,其中61.08kJ储存在ATP中。⑤有氧呼吸和无氧呼吸的第一阶段相同。
4、呼吸作用的意义:为生物的生命活动提供能量。为其它化合物合成提供原料 。
5、关于呼吸作用的计算规律是: ①消耗等量的葡萄糖时, 无氧呼吸与有氧呼吸产生的二氧化碳物质的量之比为1:3 ②产生同样数量的ATP时无氧呼吸与有氧呼吸的葡萄糖物质的量之比为19:1。如果某生物产生二氧化碳和消耗的氧气量相等,则该生物只进行有氧呼吸;如果某生物不消耗氧气,只产生二氧化碳,则只进行无氧呼吸;如果某生物释放的二氧化碳量比吸收的氧气量多,则两种呼吸都进行。
6、产生ATP的生理过程例如:有氧呼吸、光反应、无氧呼吸(暗反应不能产生)。在绿色植物的叶肉细胞内,形成ATP的场所是: 细胞质基质(无氧呼吸)、叶绿体基粒(光反应)、线粒体(有氧呼吸的主要场所)
高中生物新陈代谢知识点梳理:第八节 新陈代谢的基本类型
名词:
1、同化作用(合成代谢):在新陈代谢过程中,生物体把从外界环境中摄取的营养物质转变成自身的组成物质,并储存能量,这叫做~。
2、异化作用(分解代谢):同时,生物体又把组成自身的一部分物质加以分解,释放出其中的能量,并把代谢的最终产物排出体外,这叫做~。
3、自养型:生物体在同化作用的过程中,能够直接把从外界环境摄取的无机物转变成为自身的组成物质,并储存了能量,这种新陈代谢类型叫做~。
4、异氧型:生物体在同化作用的过程中,不能直接利用无机物制成有机物,只能把从外界摄取的现成的有机物转变成自身的组成物质,并储存了能量,这种新陈代谢类型叫做~。
5、需氧型:生物体在异化作用的过程中,必须不断从外界环境中摄取氧来氧化分解自身的组成物质,以释放能量,并排出二氧化碳,这种新陈代谢类型叫做~。
6、厌氧型:生物体在异化作用的过程中,在缺氧的条件下,依靠酶的作用使有机物分解,来获得进行生命活动所需的能量,这种新陈代谢类型叫做~。
7、酵母菌:属兼性厌氧菌,在正常情况下进行有氧呼吸,在缺氧条件下,酵母菌将糖分解成酒精和二氧化碳。
8、化能合成作用:不能利用光能而是利用化学能来合成有机物的方式(如硝化细菌能将土壤中的NH3与O2反应转化成HNO2,HNO2再与O2反应转化成HN03,利用这两步氧化过程释放的化学能,可将无机物(CO2和H2O合成有机物(葡萄糖)。
语句:
1、光合作用和化能合成作用的异同点:①相同点都是将无机物转变成自身组成物质。 ②不同点:光合作用,利用光能;化能合成作用,利用无机物氧化产生的化学能。
2、同化类型包括自养型和异养型,其中自养型分光能自养--绿色植物,化能自养:硝化细菌;其余的生物一般是异养型(如:动物,营腐生、寄生生活的真菌,大多数细菌);异化类型包括厌氧型和需氧型,其中寄生虫、乳酸菌是厌氧型;其余的生物一般是厌氧型(多数动物和人等)。酵母菌为兼性厌氧型。
B. 什么叫高能化合物举出常见高能化合物的类型
高能化合物指体内氧化分解中,一些化合物通过能量转移得到了部分能量,把这类储存了较高能量的化合物,如三磷酸腺苷(ATP),称为高能化合物·它们是生物释放,储存和利用能量的媒介,是生物界直接的供能物质。
例如磷酸烯醇式丙酮酸,胺甲酰磷酸,乙酰辅酶A,1,3-二磷酸甘油酸,磷酸肌酸,乙酰磷酸,焦磷酸(PPi——2Pi),磷酸精氨酸,ATP,ADP等。
C. 高中生物必修一知识点总结归纳2020
成功呈概率分布,关键是你能不能坚持到成功开始呈现的那一刻。下面给大家分享一些关于高中生物必修一知识点 总结 归纳2020,希望对大家有所帮助。
高中生物必修一知识点总结归纳1
第四章 细胞的物质输入和输出
01物质跨膜运输的实例
一、渗透作用:水分子(溶剂分子)通过半透膜的扩散作用。
二、原生质层:细胞膜和液泡膜以及两层膜之间的细胞质。
三、发生渗透作用的条件:
1、具有半透膜
2、膜两侧有浓度差
四、细胞的吸水和失水:
外界溶液浓度>细胞内溶液浓度→细胞失水
外界溶液浓度<细胞内溶液浓度→细胞吸水
02生物膜的流动镶嵌模型
一、细胞膜结构:磷脂 蛋白质 糖类
二、结构特点:具有一定的流动性;功能特点:选择透过性
03物质跨膜运输的方式
一、相关概念
1、自由扩散:物质通过简单的扩散作用进出细胞。
2、协助扩散:进出细胞的物质要借助载体蛋白的扩散。
3、主动运输:物质从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量。
二、 自由扩散、协助扩散和主动运输的比较
三、离子和小分子物质主要以被动运输(自由扩散、协助扩散)和主动运输的方式进出细胞;大分子和颗粒物质进出细胞的主要方式是胞吞作用和胞吐作用。
高中生物必修一知识点总结归纳2
第五章 细胞的能量供应和利用
01降低化学反应活化能的酶
一、相关概念
1、新陈代谢:是活细胞中全部化学反应的总称,是生物与非生物最根本的区别,是生物体进行一切生命活动的基础。
2、细胞代谢:细胞中每时每刻都进行着的许多化学反应。
3、酶:是活细胞(来源)所产生的具有催化作用(功能:降低化学反应活化能,提高化学反应速率)的一类有机物。
4、活化能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量。
二、酶的发现
- 1783年,意大利科学家斯巴兰让尼用实验证明:胃具有化学性消化的作用;
- 1836年,德国科学家施旺从胃液中提取了胃蛋白酶;
- 1926年,美国科学家萨姆纳通过化学实验证明脲酶是一种蛋白质;
- 20世纪80年代,美国科学家切赫和奥特曼发现少数RNA也具有生物催化作用。
三、酶的本质
大多数酶的化学本质是蛋白质(合成酶的场所主要是核糖体,水解酶的酶是蛋白酶),也有少数是RNA。
四、酶的特性
1、高效性:催化效率比无机催化剂高许多;
2、专一性:每种酶只能催化一种或一类化合物的化学反应;
3、酶需要较温和的作用条件:在最适宜的温度和pH下,酶的活性最高。温度和pH偏高和偏低,酶的活性都会明显降低。
02细胞的能量“通货”——ATP
一、ATP的结构简式
ATP是三磷酸腺苷的英文缩写,结构简式:A-P~P~P,其中:A代表腺苷,P代表磷酸基团,~代表高能磷酸键,-代表普通化学键。
◆ 注意:ATP的分子中的高能磷酸键中储存着大量的能量,所以ATP被称为高能化合物。这种高能化合物化学性质不稳定,在水解时,由于高能磷酸键的断裂,释放出大量的能量。
二、ATP与ADP的转化
03ATP的主要来源——细胞呼吸
一、相关概念
1、呼吸作用(也叫细胞呼吸):指有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳或 其它 产物,释放出能量并生成ATP的过程。根据是否有氧参与,分为:有氧呼吸和无氧呼吸。
2、有氧呼吸:指细胞在有氧的参与下,通过多种酶的催化作用下,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放出大量能量,生成ATP的过程。
3、无氧呼吸:一般是指细胞在无氧的条件下,通过酶的催化作用,把葡萄糖等有机物分解为不彻底的氧化产物(酒精、CO2或乳酸),同时释放出少量能量的过程。
4、发酵:微生物(如:酵母菌、乳酸菌)的无氧呼吸。
二、有氧呼吸的总反应式
C6H12O6 + 6O2——>6CO2 + 6H2O +能量
三、无氧呼吸的总反应式
C6H12O6——>2C2H5OH(酒精)+ 2CO2+少量能量
或
C6H12O6——>2C3H6O3(乳酸)+少量能量
四、有氧呼吸过程(主要在线粒体中进行)
五、有氧呼吸与无氧呼吸的比较
六、影响呼吸速率的外界因素
1、温度:温度通过影响细胞内与呼吸作用有关的酶的活性来影响细胞的呼吸作用。
温度过低或过高都会影响细胞正常的呼吸作用。在一定温度范围内,温度越低,细胞呼吸越弱;温度越高,细胞呼吸越强。
2、氧气:氧气充足,则无氧呼吸将受抑制;氧气不足,则有氧呼吸将会减弱或受抑制。
3、水分:一般来说,细胞水分充足,呼吸作用将增强.但陆生植物根部如长时间受水浸没,根部缺氧,进行无氧呼吸,产生过多酒精,可使根部细胞坏死。
4、CO2:环境CO2浓度提高,将抑制细胞呼吸,可用此原理来贮藏水果和蔬菜。
七、呼吸作用在生产上的应用
1、作物栽培时,要有适当 措施 保证根的正常呼吸,如疏松土壤等。
2、粮油种子贮藏时,要风干、降温,降低氧气含量,则能抑制呼吸作用,减少有机物消耗。
3、水果、蔬菜保鲜时,要低温或降低氧气含量及增加二氧化碳浓度,抑制呼吸作用。
04能量之源——光与光合作用
一、相关概念
光合作用:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧气的过程。
二、光合色素(在类囊体的薄膜上)
三、光合作用的探究历程
- 1648年海尔蒙脱(比利时),把一棵2.3kg的柳树苗 种植 在一桶90.8kg的土壤中,然后只用 雨水 浇灌而不供给任何其他物质,5年后柳树增重到76.7kg,而土壤只减轻了57g。指出:植物的物质积累来自水。
- 1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭。将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:植物可以更新空气。
- 1785年,由于空气组成的发现,人们明确了绿叶在光下放出的气体是氧气,吸收的是二氧化碳。1845年,德国科学家梅耶指出,植物进行光合作用时,把光能转换成化学能储存起来。
- 1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。证明:绿色叶片在光合作用中产生了淀粉。
- 1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。
- 20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2O和C18O,释放的是O2。光合作用释放的氧全部来自来水。
四、叶绿体的功能
叶绿体是进行光合作用的场所。在类囊体的薄膜上分布着具有吸收光能的光合色素,在类囊体的薄膜上和叶绿体的基质中含有许多光合作用所必需的酶。
五、影响光合作用的外界因素
1、光照强度:在一定范围内,光合速率随光照强度的增强而加快,超过光饱合点,光合速率反而会下降。
2、温度:温度可影响酶的活性。
3、二氧化碳浓度:在一定范围内,光合速率随二氧化碳浓度的增加而加快,达到一定程度后,光合速率维持在一定的水平,不再增加。
4、水:光合作用的原料之一,缺少时光合速率下降。
六、光合作用的应用
- 适当提高光照强度;
- 延长光合作用的时间;
- 增加光合作用的面积——合理密植,间作套种;
- 温室大棚用无色透明玻璃;
- 温室栽培植物时,白天适当提高温度,晚上适当降温;
- 温室栽培多施有机肥或放置干冰,提高二氧化碳浓度;
七、光合作用的过程
高中生物必修一知识点总结归纳3
第6章 细胞的生命历程
01细胞的增殖
一、植物细胞有丝分裂各期的主要特点
1、分裂间期
特点:完成DNA的复制和有关蛋白质的合成;
结果:每个染色体都形成两个姐妹染色单体,呈染色质形态。
2、前期
特点:①出现染色体、出现纺锤体②核膜、核仁消失;
染色体特点:①染色体散乱地分布在细胞中心附近②每个染色体都有两条姐妹染色单体。
3、中期
特点:①所有染色体的着丝点都排列在赤道板上 ②染色体的形态和数目最清晰;
染色体特点:染色体的形态比较固定,数目比较清晰。故中期是进行染色体观察及计数的最佳时机。
4、后期
特点:①着丝点一分为二,姐妹染色单体分开,成为两条子染色体,并分别向两极移动。②纺锤丝牵引着子染色体分别向细胞的两极移动,这时细胞核内的全部染色体就平均分配到了细胞两极
染色体特点:染色单体消失,染色体数目加倍。
5、末期
特点:①染色体变成染色质,纺锤体消失。②核膜、核仁重现。③在赤道板位置出现细胞板,并扩展成分隔两个子细胞的细胞壁。前期:膜仁消失显两体;中期:形定数晰赤道齐;
后期:点裂数加均两极;末期:膜仁重现失两体。
二、植物与动物细胞的有丝分裂的比较
- 相同点:1、都有间期和分裂期。分裂期都有前、中、后、末四个阶段。
2、分裂产生的两个子细胞的染色体数目和组成完全相同且与母细胞完全相同。染色体在各期的变化也完全相同。
3、有丝分裂过程中染色体、DNA分子数目的变化规律,动物细胞和植物细胞完全相同。- 不同点:
1、植物细胞:前期纺锤体的来源,由两极发出的纺锤丝直接产生,由中心体周围产生的星射线形成。2、动物细胞:末期细胞质的分裂,细胞中部出现细胞板形成新细胞壁将细胞隔开。细胞中部的细胞膜向内凹陷使细胞缢裂。
三、有丝分裂的意义
将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去,从而保持生物的亲代和子代之间的遗传性状的稳定性。
四、无丝分裂
特点:在分裂过程中没有出现纺锤丝和染色体的变化。
02细胞的分化
一、细胞的分化
1、概念:在个体发育中,相同细胞的后代,在形态、结构和生理功能上发生稳定性差异的过程。
2、过程:受精卵,增殖为多细胞,分化为组织、器官、系统发育为生物体。
3、特点:持久性、稳定不可逆转性
二、细胞全能性
1、体细胞具有全能性的原因
由于体细胞一般是通过有丝分裂增殖而来的,一般已分化的细胞都有一整套和受精卵相同的DNA分子,因此分化的细胞具有发育成完整新个体的潜能。
2、植物细胞全能性
高度分化的植物细胞仍然具有全能性。
例如:胡萝卜跟根组织的细胞可以发育成完整的新植株
3、动物细胞全能性
高度特化的动物细胞,从整个细胞来说,全能性受到限制。但是,细胞核仍然保持着全能性。例如:克隆羊多莉
4、全能性大小:受精卵>生殖细胞>体细胞
03细胞的衰老和凋亡
一、细胞的衰老
- 个体衰老与细胞衰老的关系
①单细胞生物体,细胞的衰老或死亡就是个体的衰老或死亡,
②多细胞生物体,个体衰老的过程就是组成个体的细胞普遍衰老的过程。
- 衰老细胞的主要特征:
①在衰老的细胞内水分;
②衰老的细胞内有些酶的活性;
③细胞内的会随着细胞的衰老而逐渐积累;
④衰老的细胞内速度减慢;细胞核体积增大、固缩、染色加深;
⑤ 通透性功能改变,使物质运输功能降。
- 细胞衰老的原因:
①自由基学说②端粒学说
二、细胞的凋亡
1、概念:由基因所决定的细胞自动结束生命的过程。
由于细胞凋亡受到严格的由遗传机制决定的程序性调控,所以也常常被称为细胞编程性死亡。
2、意义:完成正常发育,维持内部环境的稳,抵御外界各种因素的干扰。
3、与细胞坏死的区别:细胞坏死是在种.种不利因素影响下,由于细胞正常代谢活动受损或中断引起的细胞损伤和死亡。细胞凋亡是一种正常的自然现象。
高中生物必修一知识点总结归纳相关 文章 :
★ 高中生物必修一知识点总结
★ 高中生物知识点总结:高一生物必修一第一章知识点
★ 高中生物必修一知识点整理
★ 高中生物必修一考点知识总结
★ 高中生物知识点汇总(必修一) 期中总结必备
★ 高一生物必修一知识点总结(人教版)第六章
★ 高中生物必修一细胞的增殖知识点
★ 高中生物必修一知识点
★ 2020高中生物知识点总结归纳
★ 高一生物必修一第四章知识点归纳
D. 高中生物ATP 的功能
ATP,腺嘌呤核苷三磷酸(简称三磷酸腺苷),是一种不稳定的高能化合物,由1分子腺嘌呤,1分子核糖和3分子磷酸基团组成。
ATP水解时释放出能量较多,是生物体内最直接的能量来源。在细胞中,它能与ADP的相互转化实现贮能和放能,从而保证了细胞各项生命活动的能量供应。生成ATP的途径主要有两条:一条是植物体内含有叶绿体的细胞,在光合作用的光反应阶段生成ATP;另一条是所有活细胞都能通过细胞呼吸生成ATP。
E. 高一生物中的ATP是什么
腺嘌呤核苷三磷酸是一种不稳定的高能化合物,由1分子腺嘌呤,1分子核糖和3分子磷酸组成,简称ATP
ATP是一种高能磷酸化合物,在细胞中,它与ADP的相互转化实现贮能和放能,从而保证细胞各项生命活动的能量供应。生成ATP的途径主要有两条:一条是植物体内含有叶绿体的细胞,在光合作用的光反应阶段生成ATP;另一条是所有活细胞都能通过细胞呼吸生成ATP,是直接能源物质
F. 高中生物必修1第四、五、六章详细总结
第四章 细胞的物质输入和输出
第一节 物质跨膜运输的实例
一、渗透作用:水分子(溶剂分子)通过半透膜的扩散作用。
二、原生质层:细胞膜和液泡膜以及两层膜之间的细胞质。
三、发生渗透作用的条件:
1、具有半透膜
2、膜两侧有浓度差
四、细胞的吸水和失水:
外界溶液浓度>细胞内溶液浓度→细胞失水
外界溶液浓度<细胞内溶液浓度→细胞吸水
第二节 生物膜的流动镶嵌模型
一、细胞膜结构: 磷脂 蛋白质 糖类
↓ ↓ ↓
磷脂双分子层 “镶嵌蛋白” 糖被(与细胞识别有关)
(膜基本支架)
二、
结构特点:具有一定的流动性
细胞膜
(生物膜) 功能特点:选择透过性
第三节 物质跨膜运输的方式
一、相关概念:
自由扩散:物质通过简单的扩散作用进出细胞。
协助扩散:进出细胞的物质要借助载体蛋白的扩散。
主动运输:物质从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量。
二、 自由扩散、协助扩散和主动运输的比较:
比较项目 运输方向 是否要载体 是否消耗能量 代表例子
自由扩散 高浓度→低浓度 不需要 不消耗 O2、CO2、H2O、乙醇、甘油等
协助扩散 高浓度→低浓度 需要 不消耗 葡萄糖进入红细胞等
主动运输 低浓度→高浓度 需要 消耗 氨基酸、各种离子等
三、离子和小分子物质主要以被动运输(自由扩散、协助扩散)和主动运输的方式进出细胞;大分子和颗粒物质进出细胞的主要方式是胞吞作用和胞吐作用。
第五章 细胞的能量供应和利用
第一节 降低化学反应活化能的酶
一、相关概念:
新陈代谢:是活细胞中全部化学反应的总称,是生物与非生物最根本的区别,是生物体进行一切生命活动的基础。
细胞代谢:细胞中每时每刻都进行着的许多化学反应。
酶:是活细胞(来源)所产生的具有催化作用(功能:降低化学反应活化能,提高化学反应速率)的一类有机物。
活 化 能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量。
二、酶的发现:
①、1783年,意大利科学家斯巴兰让尼用实验证明:胃具有化学性消化的作用;
②、1836年,德国科学家施旺从胃液中提取了胃蛋白酶;
③、1926年,美国科学家萨姆纳通过化学实验证明脲酶是一种蛋白质;
④、20世纪80年代,美国科学家切赫和奥特曼发现少数RNA也具有生物催化作用。
三、酶的本质:大多数酶的化学本质是蛋白质(合成酶的场所主要是核糖体,水解酶的酶是蛋白酶),也有少数是RNA。
四、酶的特性:
①、高效性:催化效率比无机催化剂高许多。
②、专一性:每种酶只能催化一种或一类化合物的化学反应。
③、酶需要较温和的作用条件:在最适宜的温度和pH下,酶的活性最高。温度和pH偏高和偏低,酶的活性都会明显降低。
第二节 细胞的能量“通货”-----ATP
一、ATP的结构简式:ATP是三磷酸腺苷的英文缩写,结构简式:A-P~P~P,其中:A代表腺苷,P代表磷酸基团,~代表高能磷酸键,-代表普通化学键。
注意:ATP的分子中的高能磷酸键中储存着大量的能量,所以ATP被称为高能化合物。这种高能化合物化学性质不稳定,在水解时,由于高能磷酸键的断裂,释放出大量的能量。
二、ATP与ADP的转化:
酶
第三节ATP的主要来源------细胞呼吸
一、相关概念:
1、呼吸作用(也叫细胞呼吸):指有机物在细胞内经过一系列的氧化分解,最终生成 二氧化碳或其它产物,释放出能量并生成ATP的过程。根据是否有氧参与,分为:有氧呼吸和无氧呼吸
2、有氧呼吸:指细胞在有氧的参与下,通过多种酶的催化作用下,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放出大量能量,生成ATP的过程。
3、无氧呼吸:一般是指细胞在无氧的条件下,通过酶的催化作用,把葡萄糖等有机物分解为不彻底的氧化产物(酒精、CO2或乳酸),同时释放出少量能量的过程。
4、发酵:微生物(如:酵母菌、乳酸菌)的无氧呼吸。
二、有氧呼吸的总反应式:
C6H12O6 + 6O2 6CO2 + 6H2O + 能量
三、无氧呼吸的总反应式:
C6H12O6 2C2H5OH(酒精)+ 2CO2 + 少量能量
或
C6H12O6 2C3H6O3(乳酸)+ 少量能量
四、有氧呼吸过程(主要在线粒体中进行):
场所 发生反应 产物
第一阶段 细胞质
基质
丙酮酸、[H]、释放少量能量,形成少量ATP
第二阶段 线粒体
基质
CO2、[H]、释放少量能量,形成少量ATP
第三阶段 线粒体
内膜
生成H2O、释放大量能量,形成大量ATP
五、有氧呼吸与无氧呼吸的比较:
呼吸方式 有氧呼吸 无氧呼吸
不
同
点 场所 细胞质基质,线粒体基质、内膜 细胞质基质
条件 氧气、多种酶 无氧气参与、多种酶
物质变化 葡萄糖彻底分解,产生
CO2和H2O 葡萄糖分解不彻底,生成乳酸或酒精等
能量变化 释放大量能量(1161kJ被利用,其余以热能散失),形成大量ATP 释放少量能量,形成少量ATP
六、影响呼吸速率的外界因素:
1、温度:温度通过影响细胞内与呼吸作用有关的酶的活性来影响细胞的呼吸作用。
温度过低或过高都会影响细胞正常的呼吸作用。在一定温度范围内,温度越低,,细胞呼吸越弱;温度越高,细胞呼吸越强。
2、氧气:氧气充足,则无氧呼吸将受抑制;氧气不足,则有氧呼吸将会减弱或受抑制。
3、水分:一般来说,细胞水分充足,呼吸作用将增强。但陆生植物根部如长时间受水浸没,根部缺氧,进行无氧呼吸,产生过多酒精,可使根部细胞坏死。
4、CO2:环境CO2浓度提高,将抑制细胞呼吸,可用此原理来贮藏水果和蔬菜。
七、呼吸作用在生产上的应用:
1、作物栽培时,要有适当措施保证根的正常呼吸,如疏松土壤等。
2、粮油种子贮藏时,要风干、降温,降低氧气含量,则能抑制呼吸作用,减少有机物消耗。
3、水果、蔬菜保鲜时,要低温或降低氧气含量及增加二氧化碳浓度,抑制呼吸作用。
第四节 能量之源----光与光合作用
一、相关概念:
1、光合作用:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧气的过程
二、光合色素(在类囊体的薄膜上):
叶绿素a (蓝绿色)
叶绿素 主要吸收红光和蓝紫光
叶绿素b (黄绿色)
色素
胡萝卜素 (橙黄色)
类胡萝卜素 主要吸收蓝紫光
叶黄素 (黄色)
三、光合作用的探究历程:
①、1648年海尔蒙脱(比利时),把一棵2.3kg的柳树苗种植在一桶90.8kg的土壤中,然后只用雨水浇灌而不供给任何其他物质,5年后柳树增重到76.7kg,而土壤只减轻了57g。指出:植物的物质积累来自水
②、1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:植物可以更新空气。
③、1785年,由于空气组成的发现,人们明确了绿叶在光下放出的气体是氧气,吸收的是二氧化碳。
• 1845年,德国科学家梅耶指出,植物进行光合作用时,把光能转换成化学能储存 起来。
④、1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。证明:绿色叶片在光合作用中产生了淀粉。
⑤、1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。
⑥、20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2 O和C18O,释放的是O2。光合作用释放的氧全部来自来水。
四、叶绿体的功能:
叶绿体是进行光合作用的场所。在类囊体的薄膜上分布着具有吸收光能的光合色素,在类囊体的薄膜上和叶绿体的基质中含有许多光合作用所必需的酶。
五、影响光合作用的外界因素主要有:
1、光照强度:在一定范围内,光合速率随光照强度的增强而加快,超过光饱合点,光合速率反而会下降。
2、温度:温度可影响酶的活性。
3、二氧化碳浓度:在一定范围内,光合速率随二氧化碳浓度的增加而加快,达到一定程度后,光合速率维持在一定的水平,不再增加。
4、水:光合作用的原料之一,缺少时光合速率下降。
六、光合作用的应用:
1、适当提高光照强度。
2、延长光合作用的时间。
3、增加光合作用的面积------合理密植,间作套种。
4、温室大棚用无色透明玻璃。
5、温室栽培植物时,白天适当提高温度,晚上适当降温。
6、温室栽培多施有机肥或放置干冰,提高二氧化碳浓度。
七、光合作用的过程:
光
反
应
阶
段 条件 光、色素、酶
场所 在类囊体的薄膜上
物质变化
水的分解:H2O → [H] + O2↑ ATP的生成:ADP + Pi → ATP
能量变化 光能→ATP中的活跃化学能
暗
反
应
阶
段 条件 酶、ATP、[H]
场所 叶绿体基质
物质变化 CO2的固定:CO2 + C5 → 2C3
C3的还原: C3 + [H] → (CH2O)
能量变化 ATP中的活跃化学能→(CH2O)中的稳定化学能
总反应式
CO2 + H2O O2 + (CH2O)
好不容易找到的!
G. 什么是高能化合物
指体内氧化分解中,一些化合物通过能量转移得到了部分能量,把这类储存了较高能量的化合物,如三磷酸腺苷(ATP),磷酸肌酸,称为高能化合物.它们是生物释放,储存和利用能量的媒介,是生物界直接的供能物质.生物体内,键水解时能释放21kJ/mol以上键能的化合物称为高能化合物
H. 生命体中最重要的高能化合物
最重要的是ATP 三磷酸腺苷。
重要的有ATP 三磷酸腺苷和磷酸肌酸。
磷酸肌酸主要存在于动物和人体细胞中,特别是骨骼肌细胞中。
磷酸肌酸是能量的一种储存形式,但是不能直接被利用。对于动物和人来说,它在能量的释放、转移和利用之间起着缓冲作用,使细胞内ATP的含量保持相对的稳定。
ATP在一切生物的生命活动中都起着重要作用,在细胞的细胞核、细胞质和线粒体中都有ATP存在。生命体内的能量存储在化学键中,如糖类、脂肪和蛋白质中,但在生命活动过程中直接使用的能量是ATP,它通过磷酸化作用将储存在高能磷酸键中的能量释放出来,驱动相应的化学反应,产生各种生命活动,如肌肉的收缩,DNA的复制等。ATP的产生在细胞内主要通过细胞呼吸实现。
I. 高中生物必考327个知识点有哪些
具体如下:
1.应激性、细胞、自由水、结合水、肽键、多肽、真核细胞、原核细胞、自由扩散、协助扩散、主动运输、细胞的分化、细胞的癌变、细胞的衰老、致癌因子、有丝分裂、细胞周期、无丝分裂。
2.酶、ATP、高能磷酸化合物、高能磷酸键、渗透作用、原生质、原生质层、质壁分离、质壁分离复原、选择性吸收、光反应、暗反应、光合作用效率、有氧呼吸、无氧呼吸、内环境、稳态、脱氨基作用、氨基转换作用、化能合成作用。
3.向性运动、神经调节、体液调节、激素调节、顶端优势、反馈调节、协同作用、拮抗作用、反射、反射弧、非条件反射、条件反射、突触、高级神经中枢、先天性行为、后天性行为。
4.有性生殖、无性生殖、营养生殖、双受精、受精作用、减数分裂、性原细胞、初级性母细胞、次级性母细胞、染色体、染色单体、同源染色体、非同源染色体、四分体、染色体组、性染色体、常染色体、个体发育、胚的发育、胚乳的发育、顶细胞、基细胞、胚胎发育、胚后发育、卵裂、囊胚期、原肠胚、动物极、植物极。
5.DNA、RNA、碱基互补配对、半保留复制、基因、转录、翻译、显性性状、隐性性状、相对形状、基因型、表现型、等位基因、基因的分离定律、基因的自由组合定律、正交、反交、伴性遗传、交叉遗传、基因突变、基因重组、染色体变异、杂交育种、人工诱变育种、单倍体育种、多倍体育种、花药离体培养、单基因遗传病、多基因遗传病、染色体异常遗传病、优生学。
6.自然选择学说、基因库、基因频率、隔离、地理隔离、生殖隔离。
7.生物圈、生态学、生态因素、互利共生、寄生、竞争、捕食、种群、种群密度、种群数量增长曲线、生物群落、生态系统(森林、海洋、草原、农业、湿地、城市)、食物链、食物网、营养级、物质循环、能量流动、生态系统稳定性、生物多样性、生物圈的稳态、碳循环、氮循环、硫循环、生态农业。
8.人体的稳态、人体的平衡及调节、糖尿病、营养物质、营养、特异性免疫、免疫系统、抗原、抗体、抗原决定簇、体液免疫、细胞免疫、过敏反应、自身免疫病、免疫缺陷病。
9.生物固氮、共生固氮微生物、自生固氮微生物。
10.细胞核遗传、细胞质遗传、母系遗传、编码区、非编码区、RNA聚合酶结合位点、外显子、内含子、人类基因组计划、基因工程、质粒。
J. 高能化合物的概述
一些磷酸化合物在水解时释放大量能量(图1、表1),称为高能磷酸键,这主要见于磷酸酐键(一些多磷酸核苷类化合物,如ATP、ADP)、混合酐键(由磷酸与羧酸脱水后形成的酐键,如1,3-二磷酸甘油酸)、烯醇磷酸键(如磷酸烯醇式丙酮酸)、磷酸胍键(如磷酸肌酸)等 。
磷酸化合物中的磷酸基团一般由氧原子以酐键或酯键形式相连接,只有形成共轭的酐键才是高能磷酸键,而酯键则不是高能磷酸键,譬如水解磷酸烯醇式丙酮酸中的磷酸键释放的能量是水解6—磷酸—葡萄糖中磷酸键释放能量的4倍!ATP的磷酸酐键虽不是最高效,但它确实生物体内最通常的能量流通货币,其重要性无与伦比。
ATP是生物细胞中最重要的高能磷酸脂类化合物。除了ATP外,生物细胞中还存在多种其他的高能化合物。这些化合物在复杂的细胞活动中,作为ATP的补充,也起着自由能供体的重要作用。一般将水解时能释放25 kJ/mol 以上自由能的键视为高能键,用符号“~”表示,含有高能键的化合物称为高能化合物。
表1 一些主要磷酸酯和磷酸酐水解所释放的自由能 化合物 释放的自由能(△G kJ/mol) 高能 磷酸烯醇式丙酮酸 -51.6 1,3-二磷酸甘油酸 -52.0 乙酰磷酸 -44.8 ATP -31.8 ADP -31.8 低能 AMP -14.2 6—磷酸葡萄糖 -13.8 (引自马迪根等2001 )