A. 空气中的氮气是如何被植物体吸收的
多数生物没有直接吸收氮气的能力
但是少数是可以的
闪电能使空气里的氮气转化为一氧化氮,一次闪电能生成80~1500kg的一氧化氮。这也是一种自然固氮。自然固氮远远满足不了农业生产的需求。
豆科植物中寄生有根瘤菌,它含有氮酶,能使空气里的氮气转化为氨,再进一步转化为氮的化合物。固氮酶的作用可以简述如下:
除豆科植物的根瘤菌外,还有牧草和其他禾科作物根部的固氮螺旋杆菌、一些原核低等植物——固氮蓝藻、自生固氮菌体内都含有固氮酶,这些酶有固氮作用。这一类属自然固氮的生物固氮。
人工固氮长期以来,人们期望着农田中粮食作物能像豆科植物一样有固氮能力,以减少对 化肥的依赖。70年代首先实现了细菌之间的固氮 ... 目前主要在合成氨中实现人工固氮。 所有的含氮化学肥料也主要是由氨加工制成的。
B. 氮循环过程
如大气中的氮经微生物等作用而进入土壤,为动植物所利用,最终又在微生物的参与下返回大气中,如此反复循环,以至无穷。
构成陆地生态系统氮循环的主要环节是:生物体内有机氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。
相关信息:
氮对我国及世界环境造成了多方面影响,我们应采用科学的措施和政策,遏制氮对环境与生态的破坏。我国是农业大国,70%的活化氮来自于农业生产,最根本的方法是合理施肥,提高氮肥利用效率。因此,改革现有耕作制度、推广精确施肥、加强农业技术推广体系建设是关键。
在工业生产过程中,提高能源利用率或减少含氮物的生成量,也可对固定排放源采用催化还原、吸收、吸附等技术,控制、回收或利用废物中的氮氧化物,使其达到无害化排放。排放废水时,铵的浓度要进行严密的监控,应在排放前进行硝化处理。另外,监测规模化养殖场,禁止其随意向湖泊、河道中排放氮污染物等。
C. 大气中的氮气进入植物体有几种途径
氮气进入生物群落主要是经过生物体内有机氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。具体过程如下:
氮在自然界中的循环转化过程。是生物圈内基本的物质循环之一。如大气中的氮经微生物等作用而进入土壤,为动植物所利用,最终又在微生物的参与下返回大气中,如此反复循环,以至无穷。
构成陆地生态系统氮循环的主要环节是:生物体内有机氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。
植物吸收土壤中的铵盐和硝酸盐,进而将这些无机氮同化成植物体内的蛋白质等有机氮。动物直接或间接以植物为食物,将植物体内的有机氮同化成动物体内的有机氮。这一过程为生物体内有机氮的合成。动植物的遗体、排出物和残落物中的有机氮被微生物分解后形成氨,这一过程是氨化作用。在有氧的条件下,土壤中的氨或铵盐在硝化细菌的作用下最终氧化成硝酸盐,这一过程叫做硝化作用。氨化作用和硝化作用产生的无机氮,都能被植物吸收利用。在氧气不足的条件下,土壤中的硝酸盐被反硝化细菌等多种微生物还原成亚硝酸盐,并且进一步还原成分子态氮,分子态氮则返回到大气中,这一过程被称作反硝化作用。由此可见,由于微生物的活动,土壤已成为氮循环中最活跃的区域。
氮气(N2)的转化
有三种将游离态的N2(大气中的氮气)转化为化合态氮的方法:
生物固定 – 一些共生细菌(主要与豆科植物共生)和一些非共生细菌能进行固氮作用并以有机氮的形式吸收。
工业固氮 – 在哈伯-博施法中,N2与氢气被化合生成氨(NH3)肥。
化石燃料燃烧 – 主要由交通工具的引擎和热电站以NOx的形式产生。
另外,闪电亦可使N2和O2化合形成NO,是大气化学的一个重要过程,但对陆地和水域的氮含量影响不大。
D. 大气中CO2进入生物群落的途径有哪些
大气中CO2进入生物群落的途径主要有化能合成作用和植物的光合作用。
光合作用:叶绿体在阳光的作用下,把经有气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为葡萄糖,同时释放氧气:12H2O + 6CO2 + 光 → C6H12O6 (葡萄糖) + 6O2↑+ 6H2O
自然界中存在某些微生物,它们能以二氧化碳为主要碳源,以无机含氮化合物为氮源,合成细胞物质,并通过氧化外界无机物获得生长所需要的能量。这些微生物进行的营养方式称为化能合成作用。
E. 下图是氮在自然界中和生物体内转化过程的部分过程示意图,请据图回答下列问题: (1)大气中
(1)生物固氮 自生固氮微生物 (2)脱氨基 氨基转换 C (3)抗体(免疫球蛋白) 效应B细胞 |
F. 简单叙述氮元素在生态系统中是怎样循环的
氮循环 氮是生态系统中的重要元素之一,因为氨基酸、蛋白质和核酸等生命物质主要由氮所组成。大气中氮气的体积含量为78%,占所有大气成分的首位,但由于氮属于不活泼元素,气态氮并不能直接被一般的绿色植物所利用。氮只有被转变成氨离子、亚硝酸离子和硝酸离子的形式,才能被植物吸收,这种转变称为硝化作用。能够完成这一转变的是一些特殊的微生物类群如固氮菌、蓝绿藻和根瘤菌等,即生物固氮;闪电、宇宙线辐射和火山活动,也能把气态氮转变成氨,即高能固氮;此外,随着石油工业的发展,工业固氮也成为开发自然界氮素的一种重要途径。
自然界中的氮处于不断的循环过程中。首先,进入生态系统的氮以氨或氨盐的形式被固定,经过硝化作用形成亚硝酸盐或硝酸盐,被绿色植物吸收并转化成为氨基酸,合成蛋白质;然后,食草动物利用植物蛋白质合成动物蛋白质;动物的排泄物和动植物残体经细菌的分解作用形成氨、CO2和水,排放到土壤中的氨又经细菌的硝化作用形成硝酸盐,被植物再次吸收、利用合成蛋白质。这是氮在生物群落和土壤之间的循环。由硝化作用形成的硝酸盐还可以被反硝化细菌还原,经反硝化作用生成游离的氮,直接返回到大气中,这是氮在生物群落和大气之间的循环。此外,硝酸盐还可能从土壤腐殖质中被淋溶,经过河流、湖泊,进入海洋生态系统。水体中的蓝绿藻也能将氮转化成氨基酸,参与氮的循环,并为水域生态系统所利用。至于火山岩的风化和火山活动等过程产生的氨同样进入氮循环,只是其数量较小(图10-11)。