㈠ 微生物发酵在工业生产中所占的重要地位
工业生产上常用的微生物有细菌、放线菌、酵母菌和霉菌,由于发酵工程本身的发展以及遗传工程的介入,藻类、病毒等也正在逐步成为工业生产的微生物。
1.细菌
工业生产中常用的细菌有:枯草芽孢杆菌、乳酸杆菌、醋酸杆菌、棒状杆菌、短杆菌、节杆菌、假单胞菌、小球菌等,用于生产乳酸、醋酸、氨基酸、核苷酸、淀粉酶、蛋白酶、脂肪酶、维生素、肌苷酸、丙酮丁醇等产品以及生物防治、细菌浸矿等。
2.放线菌
它的最大经济价值在于能产生多种抗生素。从微生物中发现的抗生素,有60%以上是放线菌产生的,如链霉素、金霉素、红霉素、庆大霉素等。常用的放线菌主要来自以下几个属:链霉菌属、小单孢菌属和诺卡氏菌属等。近年来也用放线菌生产氨基酸、核苷酸、维生素和酶制剂等。
3.酵母菌
工业上常用的酵母菌有:啤酒酵母、假丝酵母、类酵母等,用于酿酒、制造面包、制造低凝固点石油、生产酒精、脂肪酶,以及生产可食用、药用和饲用的酵母菌体蛋白等。
4.
霉菌
工业上常用的霉菌有:藻状菌纲的根霉、毛霉、犁头霉、子囊菌纲的红曲霉,半知菌类的曲霉、木霉、青霉等;它们可用于生产多种酶制剂、抗生素、有机酸、生长素及甾体激素等。
㈡ 试述微生物发酵在工业生产中所占的重要地位,并列表指出在工业生产中的重要微生物代谢产物
以基因工程为中心的时代。技术特点是定向的改变生物性状与功能,创造新物种的目的,赋予微生物细胞具有生产较高等生物细胞所产生的和化合物的能里。扩大了微生物的范围,大大丰富了发酵产业的内容,使发酵工业发生了革命性的变化。
1、微生物菌体。工业生产的微生物菌体可分为两种,一种是供制面包用的酵母,另一种是作为人类或者动物使用的微生物细胞。
2、酶制剂。微生物酶制剂可以用发酵技术来大量生产,而且提高微生物的生产能力很方便,具有动物或植物无法比拟的优点。现今酶制剂广泛用于医药,食品加工,活性饲料,纤维脱浆等许多行业。
3、代谢产物。微生物利用外界的营养无知,通过包括分解代谢和合成代谢在内的两种紧密相关的物质代谢过程,生产许多重要的代谢产物,包括初级代谢产物和刺激代谢产物。
4、生物转化。生物转化是指利用微生物细胞或者酶对化合物的某一部位进行催化修饰,使其变成结构像是淡具有更大经济价值的化合物。生物转化反应通常包括脱氢,氧化,酰化等作用。
(2)在工业中为什么微生物很重要扩展阅读:
注意事项:
1、标签格式:实验名称+实验号+时间。字体要规范整洁。如果培养对象要在湿度较大的环境中培养,标签要用油性笔写,最好能用透明胶布把标签覆盖住。
2、摇瓶或栽培瓶或试管上,不许再覆盖标签。实验结束后,或使用前要把原标签去掉。
3、刷试剂瓶,平板,污染的栽培瓶等等可能有腐蚀性或病原菌的器皿要戴手套。拿有毒或有腐蚀性药品时,也要戴手套。
4、实验观察和记录要定时且及时。
5、做实验要懂原理,注意实验细节的把控,如培养温度是否达到要求,菌丝体黑暗培养是否满足要求,超净台接种时无菌操作是否规范等等。
㈢ 微生物的重要性
微生物学家在利用有益 微生物和防治有害微生物的长期研究中积累了丰富的经验和知识。生
命活动的基本规律,大多数是在研究微生物的过程中首先被认识和阐
明的。DNA是遗传物质的论证,DNA双螺旋结构的确定,遗传密码的破
译,中心法则的建立,乳糖操纵子学说的提出,DNA重组技术的创建
等首先都是用微生物为实验材料实现的。微生物学的发展导致了生命
科学一批新兴领域的诞生。20世纪60年代,微生物学、遗传学和生物
化学的密切交叉产生了当代的生物学---分子生物学,从而将生命科
学的研究推向了一个崭新的阶段,使人类看到了可按人们的意愿改变
生物遗传性的曙光。微生物作为深入研究生命本质的主要材料,仍将
发挥难以替代的作用。微生物种类繁多,复杂的生物多样性形成了代
谢物的多样性,为人类提供了丰富的资源,是人类赖以生存和发展的
极其宝贵的物质基础。20世纪20年代和40年代的青霉素和链霉素的发
现,拯救了亿万人的生命,从而开创了工业微生物产业的先河。当今
大量生产的遗传工程产品都是在微生物中构建工程菌株,借助发酵来
实现的。微生物在新兴的生物技术产业中,已捷足先登,为人类创造
了巨大财富。随着功能基因组时代的到来,微生物仍将作为模式生物
为高等生物基因的功能研究提供帮助。微生物在农业发展、人口健康
和环境保护方面将发挥重要作用,这将是未来微生物学研究的重要内
容。从事微生物学研究的同仁们任重道远,要携起手来,为微生物学
的发展作出更大的贡献,再创新的辉煌。
㈣ 工业微生物学的意义
工业微生物学为人类科学地利用工业微生物提供了理论基础。发酵工业产品在世界经济中占有相当重要的地位。由于控制有害微生物每年可避免成百亿元的损失。当前的主要问题是尽快采用先进的生物工程技术改造微生物,生产出更多的新产品;把传统的发酵工业和近代的新技术紧密结合起来,使传统产品的生产现代化。
㈤ 微生物代谢调节在发酵工业中的重要性
微生物代谢调节是指对微生物自身各种代谢途径方向的控制和代谢反应速度的调节。
代谢反应方向的控制是控制代谢走何种途径,即解决代谢何种产物的问题。
代谢反应速度的调节是控制代谢反应快慢,即解决代谢多少产物的问题。
微生物的代谢过程中会产生很多代谢产物。有些是我们需要的,有些是我们不需要的。有些需要的多有些需要的少,因此要通过,分子手段能方式通过调节酶的合成,酶的活性,分支生物合成途径,能荷等调节初级代谢。或通过其他方法调控次级代谢产物。进而获得我们理想的代谢产物
㈥ 微生物在重工业领域有哪些作用
微生物将被广泛地用来提炼贵重金属,使煤炭脱去因燃烧而污染大气的硫化物、提高石油的开采效率;在环境保护领域,许多有害工业废物将由微生物来去毒,以至于化害为利,将废物转变成有用产品,甚至,还可以用微生物代替化学药剂用于人工降雨或制造人造雪。公安部门已经利用细菌来防盗和破案。
㈦ 微生物代谢调节在发酵工业中有何重要性
学习代谢控制发酵理论具有怎样的重要意义
微生物代谢控制育种是指以生物化学和遗传学为基础,研究代谢产物的生物合成途径和代谢调节的机制,选择巧妙的技术路线,通过遗传育种技术获得解除或绕过了微生物正常代谢途径的突变株,从而人为地使用有用产物选择性地大量合成积累。代谢控制发酵的关键,取决于微生物代谢调控机制是否被解除,能否打破微生物正常的代谢调节,人为地控制微生物的代谢。代谢控制育种和发酵过程的代谢控制培养是实现这一目标的两的手段,而代谢控制育种则为主要支柱技术。微生物代谢控制育种是集生物化学、微生物学、遗传学、发酵工程、生理学、分子生物学、化学等学科交叉产生的一门工程技术,该技术的广泛应用,导致了氨基酸、核苷酸以及某些次级代谢产物的高产微生物菌株大批的推向生产,大大促进了发酵工业的发展。
微生物代谢控制育种主要是通过控制酶的作用来实现的,因为任何代谢途径都是一系列酶促反应构成的。微生物细胞的代谢调节主要有两种类型,一类是酶活性调节,调节的是已有酶分子的活性,是在酶化学水平上发生的;另一类是酶合成的调节,调节的是酶分子的合成量,这是在遗传学水平上发生的[。利用发酵过程的一些限制因素来促进或控制酶产生的速率及其活性,可以控制发酵过程中不同阶段的反应处于平衡状态,同时也可以使微生物对外界环境的变化作出相应的反应。在细胞内这两种方式单独或协调进行选育,获得突变株,达到改变代谢通路、降低支路代谢终产物的产生或切断支路代谢途径及提高细胞膜的透性,使代谢流向目的产物积累方向进行。代谢控制育种的调节体系主要包括诱导、分解阻遏、分解抑制、反馈阻遏、反馈抑制、细胞膜透性调节等。
㈧ 工业微生物有哪些优越性
这里说的工业微生物,是指在工业生产中作为生产者的微生物。这类工业微生物种类相当多,形成一支不可多得的生力军。例如,放线菌、细菌、真菌等能生产5500多种抗生素,其中有4000多种是由放线菌产生的。可见,工业微生物是一支庞大的队伍了。
为什么科学家对微生物在工业上的应用这么感兴趣呢?不论是微生物学家,还是化工专家,他们看中的是应用工业微生物进行生产有许多优越性。这些优越性主要表现在:
首先,微生物能在常温常压下进行各种生物化学反应。即使在发酵罐中,也不会出现爆炸。这就大大避免了在生产过程中的事故。
其次,以微生物为对象进行的物质转化,不完全利用地球上的有限资源(如石油),而着眼于再生资源(如纤维素、木质素、淀粉等)的利用。因此,原料来源丰富,不会因原料少而停止生产。
第三,用微生物生产复杂的有机化合物(有机酸、核酸、糖等),可以让几十步化学反应像一步反应那样在反应器中进行,实现连续性大规模生产,这既缩短周期,又降低成本。
第四,微生物生产安全、干净,不会产生有害物质,不会污染环境。
生物有雌雄的区别。决定性别的是生物的性染色体。
以家兔为例,它共有22条染色体,其中1对为性染色体。如果兔细胞内的一对性染色体相同,即都为XX染色体,则为雌兔;一对性染色体不同,即为XY染色体,则为雄兔。因此,雌兔只形成一种卵子——X卵子;雄兔形成两种精子——X精子和Y精子。
为了多繁殖小兔,人们自然喜欢多养雌兔,尽量少养雄兔。只要进行以下实验,就可达到多养雌兔的目的;取出雄兔的精液倒入一U形管中;往U形管两端各插入一个电极,一为正极,一为负极;通电。于是,带X染色体的精子(带负电)大多数移向正极,带Y染色体的精子(带正电)大多移向负极。用人工授精方法,把正极附近的精液注射到雌兔阴道里,结果雌兔怀孕后生下的小兔,大多数是雌兔。类似的实验,在其他家畜的繁殖上也取得了成功。
人的男女性别也是由一对性染色体决定的。性染色体全是XX时,便是女性;为XY时,便是男性。这就是说明,人与其他生物在很多方面是相同的,人是由生物进化来的;性别并不由母亲决定,而是由父亲决定的。
家禽(如鸡)的性别也是由一对性染色体决定的。不过,它正好与家兔和人的情况相反;性染色体为ZZ的是雄禽;为ZW的是雌禽。
道尔顿是18世纪英国的大科学家,近代原子理论的奠基人。他是第一个发现红绿色盲的人,也是第一个被发现患红绿色盲的人,所以红绿色盲又称“道尔顿病”。
在一个圣诞节,青年道尔顿给母亲买了一双长袜,作为节日礼物。母亲收到这份礼品,非常高兴,但美中不足的是颜色实在太鲜艳,与自己的年龄不相称。道尔顿吃惊地问:“深蓝色怎么不相称?”母亲感到意外:“什么?这袜子像樱桃一般红呀!”
从此,道尔顿才知道自己的色觉和别人的不同,他没有区分红色和绿色的能力,即红绿色盲。后来,他研究了这种病因,还写了一本书——《论色觉》。
红绿色盲属于性染色体隐性遗传。基因一般随所在的染色体连在一起或锁在一起同时传递到下代,这叫连锁。X染色体上的基因随X染色体一起传递,叫X连锁或性连锁。红绿色盲基因不但存在于X染色体(性染色体)中,而且为隐性,所以性连锁隐性基因的遗传,随不同性别的情况而不同。在女性中,X成双存在,必须两条都具隐性致病基因才能患病;男性的X染色体是成单的,所以只要X染色体带有致病基因就会发病。但是,两条带病基因的X染色体组合在一起(XX)的机会很小,所以患X连锁隐性遗传病的男性要比女性多得多。红绿色盲,男性远多于女性,我国男性色盲发病率为7%,女性0?5%
道尔顿的红绿色盲基因是由母亲传给他的,他的母亲是红绿色盲基因的携带者。
1866年,达温医生首先提出一种临床疾病:患者智力极低,顶多会说“爸”“妈”等单音节语言,根本没有抽象思维能力,坐立行都很晚。外形也很特别:眼裂小,眼间距很宽,鼻根低平,颌小,口常半开,舌吐出口外。手指特短,小指内弯,拇趾与第二趾之间相距很大。
经过染色体检查,发现患者体细胞中有47条染色体,多了一条21号染色体。其他染色体都是成双结对,只有21号染色体是三个凑在一起。这属于常染色体数目的变异。
还有一种遗传病叫猫叫综合症,显着特点是患儿的哭声音调特高,声音较低,很像猫叫的声音,因此而得名。患者女性多,头小,脸很圆,眼间距宽,容貌古怪,身体发育迟滞,智力严重减退。常在婴儿期或幼儿期夭折。
染色体检查发现,患者体细胞第5号染色体的短臂丢失了大约二分之一。这属于常染色体结构的变异。
染色体数目和结构的变异都是不治之症。最好进行产前检查,做染色体分析。如发现是先天愚型或猫叫综合症,即做人工流产,不让患儿出生。
㈨ 如何理解微生物学的重要性
1.微生物在自然界物质循环中起巨大作用,微生物可分解有机物。 2.在农业生产中,微生物是土壤肥力的重要因素,可分解有机残体,促进难溶性矿物转化,固定空气中氮素,增加土壤有效养分,促进土壤团粒结构的形成。 还可利用其进行沼气发酵。产生多种抗生素,能防治作物病害和杂草 3.工业生产中有的是直接利用其菌体,有的是利用其代谢产物或代谢活动。 4.环境保护方面,利用其处理污水,污物,毒物,消除污染,保护环境。 5.微生物与人类及畜禽的健康关系密切,如有些生活在动物肠道内,可合成维生素,氨基酸等,为宿主提供营养。其产生的抗生素可治疗人类及畜禽的传染性病害。 6.微生物对人类也存在有害的一面,有些微生物能引起人及动植物的病害,称为病原微生物,在历史上曾给人类造成重大的灾难。