导航:首页 > 生物信息 > 分子生物学什么是蛋白质组学

分子生物学什么是蛋白质组学

发布时间:2022-09-20 08:19:20

⑴ 继续一篇关于蛋白质组学的论文

字数可能有点超,你自己截取吧~~

分子生物学(molecular biology)
在分子水平上研究生命现象的科学。研究生物大分子(核酸、蛋白质)的结 构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程如光合作用、发育的分子机制、神经活动的机理、癌的发生等。
从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系 (中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。
生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理学理论、技术和方法的应用推动了生物大分子结构功能的研究,从而出现了近30年来分子生物学的蓬勃发展。分子生物学和生物化学及生物物理学关系十分密切,它们之间的主要区别在于:①生物化学和生物物理学是用化学的和物理学的方法研究在分子水平,细胞水平,整体水平乃至群体水平等不同层次上的生物学问题。而分子生物学则着重在分子(包括多分子体系)水平上研究生命活动的普遍规律;②在分子水平上,分子生物学着重研究的是大分子,主要是蛋白质,核酸,脂质体系以及部分多糖及其复合体系。而一些小分子物质在生物体内的转化则属生物化学的范围;③分子生物学研究的主要目的是在分子水平上阐明整个生物界所共同具有的基本特征,即生命现象的本质;而研究某一特定生物体或某一种生物体内的某一特定器官的物理、化学现象或变化,则属于生物物理学或生物化学的范畴。
发展简史 结构分析和遗传物质的研究在分子生物学的发展中作出了重要的贡献。结构分析的中心内容是通过阐明生物分子的三维结构来解释细胞的生理功能。1912年英国 W.H.布喇格和W.L.布喇格建立了X射线晶体学,成功地测定了一些相当复杂的分子以及蛋白质的结构。以后布喇格的学生W.T.阿斯特伯里和J.D.贝尔纳又分别对毛发、肌肉等纤维蛋白以及胃蛋白酶、烟草花叶病毒等进行了初步的结构分析。他们的工作为后来生物大分子结晶学的形成和发展奠定了基础。50年代是分子生物学作为一门独立的分支学科脱颖而出并迅速发展的年代。首先是在蛋白质结构分析方面,1951年L.C.波林等提出了 α-螺旋结构,描述了蛋白质分子中肽链的一种构象。1955年F.桑格完成了胰岛素的氨基酸序列的测定。接着 J.C.肯德鲁和M.F.佩鲁茨在X射线分析中应用重原子同晶置换技术和计算机技术分别于1957和1959年阐明了鲸肌红蛋白和马血红蛋白的立体结构。1965年中国科学家合成了有生物活性的胰岛素,首先实现了蛋白质的人工合成。
另一方面,M.德尔布吕克小组从1938年起选择噬菌体为对象开始探索基因之谜。噬菌体感染寄主后半小时内就复制出几百个同样的子代噬菌体颗粒,因此是研究生物体自我复制的理想材料。1940年G.W.比德尔和E.L.塔特姆提出了“一个基因,一个酶”的假设,即基因的功能在于决定酶的结构,且一个基因仅决定一个酶的结构。但在当时基因的本质并不清楚。1944年O.T.埃弗里等研究细菌中的转化现象,证明了DNA是遗传物质。1953年J.D.沃森和F.H.C.克里克提出了DNA的双螺旋结构,开创了分子生物学的新纪元。在此基础上提出的中心法则,描述了遗传信息从基因到蛋白质结构的流动。遗传密码的阐明则揭示了生物体内遗传信息的贮存方式。1961年F.雅各布和J.莫诺提出了操纵子的概念,解释了原核基因表达的调控。到20世纪60年代中期,关于DNA自我复制和转录生成RNA的一般性质已基本清楚,基因的奥秘也随之而开始解开了。
仅仅30年左右的时间,分子生物学经历了从大胆的科学假说,到经过大量的实验研究,从而建立了本学科的理论基础。进入70年代,由于重组DNA研究的突破,基因工程已经在实际应用中开花结果,根据人的意愿改造蛋白质结构的蛋白质工程也已经成为现实。
基本内容 蛋白质体系 蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。
蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。
蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。
随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。
发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。
蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。
遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。
基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。
蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。
1972年提出的流动镶嵌模型概括了生物膜的基本特征:其基本骨架是脂双层结构。膜蛋白分为表在蛋白质和嵌入蛋白质。膜脂和膜蛋白均处于不停的运动状态。
生物膜在结构与功能上都具有两侧不对称性。以物质传送为例,某些物质能以很高速度通过膜,另一些则不能。象海带能从海水中把碘浓缩 3万倍。生物膜的选择性通透使细胞内pH和离子组成相对稳定,保持了产生神经、肌肉兴奋所必需的离子梯度,保证了细胞浓缩营养物和排除废物的功能。
生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。对于这两种能量转换的机制,P.米切尔提出的化学渗透学说得到了越来越多的证据。生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟将会对人类更有效地利用能量作出贡献。
生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。
对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。
理论意义和应用 分子生物学的成就说明:生命活动的根本规律在形形色色的生物体中都是统一的。例如,不论在何种生物体中,都由同样的氨基酸和核苷酸分别组成其蛋白质和核酸。遗传物质,除某些病毒外,都是DNA,并且在所有的细胞中都以同样的生化机制进行复制。分子遗传学的中心法则和遗传密码,除个别例外,在绝大多数情况下也都是通用的。
物理学的成就证明,一切物质的原子都由为数不多的基本粒子根据相同的规律所组成,说明了物质世界结构上的高度一致,揭示了物质世界的本质,从而带动了整个物理学科的发展。分子生物学则在分子水平上揭示了生命世界的基本结构和生命活动的根本规律的高度一致,揭示了生命现象的本质。和过去基本粒子的研究带动物理学的发展一样,分子生物学的概念和观点也已经渗入到基础和应用生物学的每一个分支领域,带动了整个生物学的发展,使之提高到一个崭新的水平。
过去生物进化的研究,主要依靠对不同种属间形态和解剖方面的比较来决定亲缘关系。随着蛋白质和核酸结构测定方法的进展,比较不同种属的蛋白质或核酸的化学结构,即可根据差异的程度,来断定它们的亲缘关系。由此得出的系统进化树,与用经典方法得到的是基本符合的。采用分子生物学的方法研究分类与进化有特别的优越性。首先,构成生物体的基本生物大分子的结构反映了生命活动中更为本质的方面。其次,根据结构上的差异程度可以对亲缘关系给出一个定量的,因而也是更准确的概念。第三,对于形态结构非常简单的微生物的进化,则只有用这种方法才能得到可靠结果。
高等动物的高级神经活动是极其复杂的生命现象,过去多是在细胞乃至整体水平上研究,近年来深入到分子水平研究的结果充分说明高级神经活动也同样是以生物大分子的活动为基础的。例如,在高等动物学习与记忆的过程中,大脑中RNA和蛋白质的组成发生明显的变化,并且一些影响生物体合成蛋白质的药物也显着地影响学习与记忆的能力。又如,“生物钟”是一种熟知的生物现象。用鸡进行的实验发现,有一种重要的神经传递介质(5-羟色胺)和一种激素(褪黑激素)以及控制它们变化的一种酶,在鸡脑中的含量呈24小时的周期性变化。正是这种变化构成了鸡的“生物钟”的物质基础。
在应用方面,生物膜能量转换原理的阐明,将有助于解决全球性的能源问题。了解酶的催化原理就能更有针对性地进行酶的人工模拟,设计出化学工业上广泛使用的新催化剂,从而给化学工业带来一场革命。
分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肽激素和疫苗等。基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。
从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。
[编辑本段]分子生物学的应用
1,亲子鉴定
近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。
参考资料:http://ke..com/view/2461.htm

蛋白质质谱分析研究进展

摘 要: 随着科学的不断发展,运用质谱法进行蛋白质的分析日益增多,本文简要综述了肽和蛋白质等生物大分子质谱分析的特点、方法及蛋白质质谱分析的原理、方式和应用,并对其发展前景作出展望。

关键词: 蛋白质,质谱分析,应用

前言:
蛋白质是生物体中含量最高,功能最重要的生物大分子,存在于所有生物细胞,约占细胞干质量的50%以上, 作为生命的物质基础之一,蛋白质在催化生命体内各种反应进行、调节代谢、抵御外来物质入侵及控制遗传信息等方面都起着至关重要的作用,因此蛋白质也是生命科学中极为重要的研究对象。关于蛋白质的分析研究,一直是化学家及生物学家极为关注的问题,其研究的内容主要包括分子量测定,氨基酸鉴定,蛋白质序列分析及立体化学分析等。随着生命科学的发展,仪器分析手段的更新,尤其是质谱分析技术的不断成熟,使这一领域的研究发展迅速。
自约翰.芬恩(JohnB.Fenn)和田中耕一(Koichi.Tanaka)发明了对生物大分子进行确认和结构分析的方法及发明了对生物大分子的质谱分析法以来,随着生命科学及生物技术的迅速发展,生物质谱目前已成为有机质谱中最活跃、最富生命力的前沿研究领域之一[1]。它的发展强有力地推动了人类基因组计划及其后基因组计划的提前完成和有力实施。质谱法已成为研究生物大分子特别是蛋白质研究的主要支撑技术之一,在对蛋白质结构分析的研究中占据了重要地位[2]。
1.质谱分析的特点
质谱分析用于蛋白质等生物活性分子的研究具有如下优点:很高的灵敏度能为亚微克级试样提供信息,能最有效地与色谱联用,适用于复杂体系中痕量物质的鉴定或结构测定,同时具有准确性、易操作性、快速性及很好的普适性。
2.质谱分析的方法
近年来涌现出较成功地用于生物大分子质谱分析的软电离技术主要有下列几种:1)电喷雾电离质谱;2)基质辅助激光解吸电离质谱;3)快原子轰击质谱;4)离子喷雾电离质谱;5)大气压电离质谱。在这些软电离技术中,以前面三种近年来研究得最多,应用得也最广泛[3]。
3.蛋白质的质谱分析
蛋自质是一条或多条肽链以特殊方式组合的生物大分子,复杂结构主要包括以肽链为基础的肽链线型序列[称为一级结构]及由肽链卷曲折叠而形成三维[称为二级,三级或四级]结构。目前质谱主要测定蛋自质一级结构包括分子量、肽链氨基酸排序及多肽或二硫键数目和位置。
3.1蛋白质的质谱分析原理
以往质谱(MS)仅用于小分子挥发物质的分析,由于新的离子化技术的出现,如介质辅助的激光解析/离子化、电喷雾离子化,各种新的质谱技术开始用于生物大分子的分析。其原理是:通过电离源将蛋白质分子转化为气相离子,然后利用质谱分析仪的电场、磁场将具有特定质量与电荷比值(M/Z值)的蛋白质离子分离开来,经过离子检测器收集分离的离子,确定离子的M/Z值,分析鉴定未知蛋白质。
3.2蛋白质和肽的序列分析
现代研究结果发现越来越多的小肽同蛋白质一样具有生物功能,建立具有特殊、高效的生物功能肽的肽库是现在的研究热点之一。因此需要高效率、高灵敏度的肽和蛋白质序列测定方法支持这些研究的进行。现有的肽和蛋白质测序方法包括N末端序列测定的化学方法Edman法、C末端酶解方法、C末端化学降解法等,这些方法都存在一些缺陷。例如作为肽和蛋白质序列测定标准方法的N末端氨基酸苯异硫氰酸酯(phenylisothiocyanate)PITC分析法(即Edman法,又称PTH法),测序速度较慢(50个氨基酸残基/天);样品用量较大(nmol级或几十pmol级);对样品纯度要求很高;对于修饰氨基酸残基往往会错误识别,而对N末端保护的肽链则无法测序[4]。C末端化学降解测序法则由于无法找到PITC这样理想的化学探针,其发展仍面临着很大的困难。在这种背景下,质谱由于很高的灵敏度、准确性、易操作性、快速性及很好的普适性而倍受科学家的广泛注意。在质谱测序中,灵敏度及准确性随分子量增大有明显降低,所以肽的序列分析比蛋白容易许多,许多研究也都是以肽作为分析对象进行的。近年来随着电喷雾电离质谱(electrospray ionisation,ESI)及基质辅助激光解吸质谱(matrix assisted laser desorption/ionization,MALDI)等质谱软电离技术的发展与完善,极性肽分子的分析成为可能,检测限下降到fmol级别,可测定分子量范围则高达100000Da,目前基质辅助的激光解吸电离飞行时间质谱法(MALDI TOF MS)已成为测定生物大分子尤其是蛋白质、多肽分子量和一级结构的有效工具,也是当今生命科学领域中重大课题——蛋白质组研究所必不可缺的关键技术之一 [5] 。目前在欧洲分子生物实验室(EMBL)及美国、瑞士等国的一些高校已建立了MALDI TOF MS蛋白质一级结构(序列)谱库,能为解析FAST谱图提供极大的帮助,并为确证分析结果提供可靠的依据[6]。
蛋白质质谱分析研究进展 来自: 免费论文网www.shu1000.com
3.3蛋白质的质谱分析方式
质谱用于肽和蛋白质的序列测定主要可以分为三种方法:一种方法叫蛋白图谱(proteinmapping),即用特异性的酶解或化学水解的方法将蛋白切成小的片段,然后用质谱检测各产物肽分子量,将所得到的肽谱数据输入数据库,搜索与之相对应的已知蛋白,从而获取待测蛋白序列。将蛋白质绘制“肽图”是一重要测列方法。第二种方法是利用待测分子在电离及飞行过程中产生的亚稳离子,通过分析相邻同组类型峰的质量差,识别相应的氨基酸残基,其中亚稳离子碎裂包括“自身”碎裂及外界作用诱导碎裂.第三种方法与Edman法有相似之处,即用化学探针或酶解使蛋白或肽从N端或C端逐一降解下氨基酸残基,形成相互间差一个氨基酸残基的系列肽,名为梯状测序(laddersequencing),经质谱检测,由相邻峰的质量差知道相应氨基酸残基。
3.3.1蛋白消化
蛋白的基团越大,质谱检测的准确率越低。因此,在质谱检测之前,须将蛋白消化成小分子的多肽,以提高质谱检测的准确率。一般而言,6-20个氨基酸的多肽最适合质谱仪的检测。现今最常用的酶为胰蛋白酶(trypsin),它于蛋白的赖氨酸(lysine)和精氨酸(arginine)处将其切断。因此,同一蛋白经胰蛋白酶消化后,会产生相同的多肽。
3.3.2基质辅助激光解吸电离/飞行时间质谱测量法(MALDI-TOF MS) [7]
简而言之,基质辅助激光解吸电离/飞行时间质谱测量仪是将多肽成分转换成离子信号,并依据质量/电荷之比(mass/charge,m/z)来对该多肽进行分析,以判断该多肽源自哪一个蛋白。待检样品与含有在特定波长下吸光的发光团的化学基质(matrix)混合,此样品混合物随即滴于一平板或载玻片上进行挥发,样品混合物残余水份和溶剂的挥发使样品整合于格状晶体中,样品然后置于激光离子发生器(lasersource)。激光作用于样品混合物,使化学基质吸收光子而被激活。此激活产生的能量作用于多肽,使之由固态样品混合物变成气态。由于多肽分子倾向于吸收单一光子,故多肽离子带单一电荷.这些形成的多肽离子直接进入飞行时间质量分析仪(TOFmassanalyzer)。飞行时间质量分析仪用于测量多肽离子由分析仪的一端飞抵另一端探测器所需要的时间。而此飞行时间同多肽离子的质量/电荷的比值成反比,即质量/电荷之比越高,飞行时间越短。最后,由电脑软件将探测器录得的多肽质量/电荷比值同数据库中不同蛋白经蛋白酶消化后所形成的特定多肽的质量/电荷比值进行比较,以鉴定该多肽源自何种蛋白.此法称为多肽质量指纹分析(peptidemassfin-gerprinting)。基质辅助激光解吸电离/飞行时间质谱测量法操作简便,敏感度高,同许多蛋白分离方法相匹配,而且,现有数据库中有充足的关于多肽质量/电荷比值的数据,因此成为许多实验室的首选蛋白质谱鉴定方法。
3.3.3电子喷雾电离质谱测量法(electrosprayion-izationmassspectrometry,ESI-MS)[8 ]
同基质辅助激光解吸电离/飞行时间质谱测量法在固态下完成不同,电子喷雾电离质谱测量法是在液态下完成,而且多肽离子带有多个电荷,由高效液相层析等方法分离的液体多肽混合物,在高压下经过一细针孔。当样本由针孔射出时,喷射成雾状的细小液滴,这些细小液滴包含多肽离子及水份等其他杂质成分。去除这些杂质成分后,多肽离子进入连续质量分析仪(tan- demmassanalyzer),连续质量分析仪选取某一特定质量/电荷比值的多肽离子,并以碰撞解离的方式将多肽离子碎裂成不同电离或非电离片段。随后,依质量/电荷比值对电离片段进行分析并汇集成离子谱(ionspectrum),通过数据库检索,由这些离子谱得到该多肽的氨基酸序列。依据氨基酸序列进行的蛋白鉴定较依据多肽质量指纹进行的蛋白鉴定更准确、可靠。而且,氨基酸序列信息即可通过蛋白氨基酸序列数据库检索,也可通过核糖核酸数据库检索来进行蛋白鉴定。
蛋白质质谱分析研究进展 来自: 免费论文网www.shu1000.com
4.蛋白质质谱分析的应用
1981年首先采用FAB双聚焦质谱测定肽分子量,分析十一肽(Mr=1318),质谱中出现准分子离子[M+1]+=1319强峰。分子量小于6kDa肽或小蛋白质合适用FAB质谱分析,更大分子量的多肽和蛋自质可用MALDI质谱或ESI质谱分析。用MALDI-TOF质谱分析蛋自质最早一例是Hillen Kramp等[9]于1988年提出用紫外激光以烟酸为基质在TOF谱仪上测出质量数高达60kDa蛋白质,精确度开始只有0.5%,后改进到0.1-0.2%。质谱技术主要用于检测双向凝胶电泳或“双向”高效柱层析分离所得的蛋白质及酶解所得的多肽的质量,也可用于蛋白质高级结构及蛋白质间相互作用等方面的研究[10,11],三条肽段的精确质量数便可鉴定蛋白质。近年来,串联质谱分析仪发展迅猛,其数据采集方面的自动化程度、检测的敏感性及效率都大大提高,大规模数据库和一些分析软件(如:SEQUEST)的应用使得串联质谱分析仪可以进行更大规模的测序工作。目前,利用2D电泳及MS技术对整个酵母细胞裂解产物进行分析,已经鉴定出1484种蛋白质,包括完整的膜蛋白和低丰度的蛋白质[12];分析肝细胞癌患者血清蛋白质组成分[13],并利用质谱进行鉴定磷酸化蛋白研究工作[14]及采用质谱技术研究许旺细胞源神经营养蛋白(SDNP)的分子结构[15]等。
结束语:
在蛋白质的质谱分析中,质谱的准确性(accuracy)对测定结果有很大影响,因此质谱测序现在仍很难被应用于未知蛋白的序列测定。肽和蛋白的质谱序列测定方法具有快速、用量少、易操作等优点,这些都非常适合于现在科学研究的需要。我们相信,随着各种衍生化方法和酶解方法的不断改进,蛋白双向电泳的应用[16]以及质谱技术的不断完善,质谱将会成为多肽和蛋白质分析最有威力的工具之一。

⑵ 蛋白质组学计划是什么

大家都知道,蛋白质是生物功能的主要承担者。随着人类基因组计划的实施和完成,虽然对基因的识别将导致对其编码的蛋白质产物序列的了解,但还远远不足以全面认识蛋白质的生物功能。事实上,我们对相当多的通过基因序列所认识的蛋白质产物很不了解。一个典型的例子是关于酵母菌的基因组研究。1996年科学家们将啤酒酵母的基因组全部测序完毕,人们通过全序列分析在酵母菌中发现了2964个新基因,但其中约有2300个基因和已知的基因没有明显的同源性,至于这些基因有什么功能人们更是一无所知。即使那些跟已知基因有一定同源性的新基因,对它们承担的功能,科学家们也是不甚了解。大量涌现出的新基因数据迫使科学家们不得不面对这样一个问题:这些基因编码的蛋白质的功能是什么?不仅如此,在细胞内合成蛋白质之后,这些蛋白质往往还要经历翻译后的加工修饰。因为最初翻译出来的蛋白质是没有生物活性的,它叫初生多肽,只有在修饰加工以后,才变成具有生物活性的成熟蛋白质。这样一个复杂过程说明,一个基因对应的不仅是一种蛋白质,而可能是几种甚至数十种蛋白质。那么,包容了成千上万种蛋白质的细胞是如何活动的呢?或者说这些蛋白质在细胞内是怎样工作、如何相互作用、相互协调的呢?这些问题只靠基因组织研究是不能回答的。也就是说,蛋白质本身有其独特的活动规律,正是在这种背景下,蛋白质组学应运而生。

“蛋白质组”这一名词是英国科学家威尔金斯1994年最先提出来的。它是指一个生物体的全部蛋白质组成,具体来说可以指一个细胞或一个组织的基因组所表达的全部蛋白质。“蛋白质组学”则是专门研究细胞内总体蛋白质(蛋白质组)的表达和运转等一切功能活动规律的新学科。蛋白质组学是从蛋白质整体水平上,在一个更深入、更贴近生命本质的层次上去探索生命活动的规律,以及重要的生理和病理现象的本质等。

蛋白质组具有多样性和可变性。蛋白质的种类和数量在同一个生物体的不同细胞中各不相同,在同一种细胞的不同时期或不同条件下,其蛋白质组也在不断的变化之中。此外,在病理或治疗过程中,细胞中的蛋白质的组成及其变化,与正常生理过程也不相同。随着人类基因组计划的开展和基因组学与蛋白质组学的诞生,生命科学迎来了又一次飞跃,使我们有可能从生物大分子整体活动的角度去认识生命,不再是只以个别基因或个别蛋白质为研究对象,因而能够在分子水平上以动态的、整体的角度对生命现象的本质及其活动规律和重大疾病的发生机理进行研究。

蛋白质组的研究包括对蛋白质的表达模式和蛋白质的功能模式的研究两个方面。蛋白质的表达模式主要是分离并鉴定出正常生理条件下的蛋白质组中的全部蛋白质,建立相应的蛋白质组图谱和数据库,这是进行大规模蛋白质组分析研究的基础。分离并得到了蛋白质组的全部蛋白质以后,接下来是比较分析在变化了的条件下(如病理条件下)蛋白质组所发生的变化,比如蛋白质表达量的变化、翻译后的加工等。或者在可能的情况下分析蛋白质在细胞核或细胞器中定位的改变等,从而发现并鉴定出具有特定功能的蛋白质,或与疾病有关的蛋白质。而对蛋白质组功能模式的揭示则是蛋白质组研究的重要目标。基因组也好,蛋白质组也好,最终目标就是要揭示所有基因或蛋白质的功能及其作用模式。细胞或组织中的蛋白质不是杂乱无章的混合物,而是严格有序的、相互作用、相互协调的统一体,它是维持细胞正常生命活动的基础。揭示蛋白质组中蛋白质相互作用的连锁关系,是蛋白质组功能模式研究的重要内容。

随着蛋白质组学的不断深入研究,科学家们必将在揭示生长、发育和代谢调控等生命活动规律方面有重大突破,而且对探讨主要疾病的发病机理、疾病的诊断和防治以及新药的开发等,也将提供重要的理论依据。

⑶ 基因组,转录组,蛋白组有什么区别,相互关系是咋样的

比较形象的解释:基因组学反映了什么是可以发生的,转录组学反映的是将要发生的,蛋白质组学指出了赖以发生的, 代谢组学反映已经发生的。

⑷ 蛋白质组是什么

蛋白质组(Proteome)的概念最先由Marc Wilkins提出,指由一个基因组(genOME),或一个细胞、组织表达的所有蛋白质(PROTein). 蛋白质组的概念与基因组的概念有许多差别,它随着组织、甚至环境状态的不同而改变. 在转录时,一个基因可以多种mRNA形式剪接,一个蛋白质组不是一个基因组的直接产物,蛋白质组中蛋白质的数目有时可以超过基因组的数目. 蛋白质组学(Proteomics)处于早期“发育”状态,这个领域的专家否认它是单纯的方法学,就像基因组学一样,不是一个封闭的、概念化的稳定的知识体系,而是一个领域.

⑸ 分子生物学名词解释

分子生物学名词解释:

分子生物学(molecular biology)是从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。

自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系 (中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。

【基本内容】

1.蛋白质体系

蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。

2.蛋白质分子结构

蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间中进行盘曲折叠形成三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系为四级结构。

3.分子生物学研究

蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。

随着结构分析技术的发展,1962年已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。

发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究很受重视。

4.蛋白质-核酸体系

生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×10^6碱基对。人体细胞染色体上所含DNA为3×10^9碱基对。

遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。

基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。

5.蛋白质-脂质体系

生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。

1972年提出的流动镶嵌模型概括了生物膜的基本特征:其基本骨架是脂双层结构。膜蛋白分为表在蛋白质和嵌入蛋白质。膜脂和膜蛋白均处于不停的运动状态。

生物膜在结构与功能上都具有两侧不对称性。以物质传送为例,某些物质能以很高速度通过膜,另一些则不能。象海带能从海水中把碘浓缩 3万倍。生物膜的选择

生物膜的流动镶嵌模型

性通透使细胞内pH和离子组成相对稳定,保持了产生神经、肌肉兴奋所必需的离子梯度,保证了细胞浓缩营养物和排除废物的功能。

生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。对于这两种能量转换的机制,P.米切尔提出的化学渗透学说得到了越来越多的证据。生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟将会对人类更有效地利用能量作出贡献。

生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。

对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。

⑹ 分子生物学考试大纲

第二章
一 1基因:是编码一条多肽链或功能RNA(tRNA,rRNA,snRNA等)所必需的全部核苷酸序列.
2基因组:指某一特定生物单倍体染色体的数目及其所携带的全部基因.
3DNA的C值与C值矛盾:一个单倍体基因组的DNA含量(bp)总是恒定的,称为该物种DNA的C值;形态学的复杂程度与C值大小不一致的现象称C值矛盾或C值悖理.
4多顺反子mRNA:如果为两条以上的不同肽链编码的mRNA称为多顺反子mRNA(或原核生物DNA序列中功能相关的基因,往往丛集在基因组的一个或几个特定部位,形成一个功能单位或转录单位,它们可以被一起转录为含多个基因的mRNA分子,称为多顺反子 mRNA.)
5单顺反子mRNA:如果只为一条肽链编码则这种mRNA称为单顺反子mRNA;
6常染色质与异染色质:在细胞核的大部分区域,染色质结构的折叠压缩程度比较小,即密度较低,进行细胞染色时着色较浅,这部分染色质成常染色质. 着丝点部位的染色质丝,在细胞间期就折叠压缩的非常紧密,和细胞分裂时的染色体情况差不多,即密度较高,细胞染色时着色较深,这部分染色质称异染色质.
7基因家族:真核生物的基因组中有许多来源相同,结构相似,功能相关的基因,这样的异族基因称为基因家族.
8Alu序列:Alu序列是在人和某些哺乳动物中存在的约为300bp的片断,由于该片断含有一个限制性内切酶Alu I的酶切位点而得名.
9蛋白质组学:研究细胞内全部蛋白质的存在及其活动方式的一门科学,从研究单个蛋白质分子的结构与功能进入研究蛋白质群体(组)的结构与功能.
10生物信息学:是将生物遗传密码与电脑信息相结合,通过各种程序软件计算分析核酸,蛋白质等生物大分子的序列,揭示遗传信息,并通过查询,搜索,比较,分析生物信息,理解生物大分子信息的生物学意义.
二.1.原核生物基因组的结构特点:
(1),结构简炼;(2),存在转录单元;(3)操纵子调节;(4)有重叠基因.
2.真核生物基因组的结构特点:
1),基因组很大;2),有大量重复序列;3),有断裂基因;4),形成簇的基因家族;5),DNA上有多数不编码序列.
3.真核生物的重复序列有那些类型?
1),单一序列,又称非重复序列;2),轻度重复序列;3),中度重复序列;4),高度重复序列.
第三章 DNA的复制
一.1滚环式复制:某些病毒或细菌的双链环状DNA或以某种方式转变的双链环状DNA,在复制时由对正链复制原点处进行单链特异性切割,所形成的5’端即从双股DNA置换出来,并为SSB所覆盖.这时的DNA聚合酶III以3’-OH为引物,以负链为模板,从3’-OH基端逐步增添脱氧核苷酸,随着复制的进行,5’端长度即不断增加,这一过程中,单链尾巴的延伸伴随着双链DNA的绕轴转动,故称为滚环式复制.
2D环复制: 线粒体DNA的双股链由于浮力密度的不同而分为轻链(L链)和重链(H链),它有两个单向复制叉,俩条链的复制原点不再同一点上,而且两个复制原点的激活有先有后,复制从H链的原点开始,以L链为模板,新合成的H 链即转换为原来的 H链,所形成的结构为取代环,或D-环,故称D换复制.
3单复制子:原核生物和线粒体DNA分子都只含有一个复制起点,即单复制子.
4DNA呼吸作用:DNA双链中,氢键不断断裂和再生的过程。
5Klenow片段:当用枯草杆菌蛋白霉处理Pol I时,就裂解为大小不同的两个活性片断,较大的C端片断相对分子质量为68KDa,具有聚合酶活性和3'→5'核酸外切酶活性,也称为Klenow片段
6多复制子:真核生物DNA可以同时在多个复制起点上进行双向复制,也就是它们的染色体DNA含有多个复制子.
7转录激活:大多数情况下,RNA短链不直接作用于引物,其主要作用是通过形成RNA突环,影响起点的结构,因而有利于DnaA蛋白的直接识别,并结合于其实位点,然后引发酶和有关的蛋白质在此序列上装配形成引发体,进而合成RNA引物,这种作用称为转录激活.
8端粒与端粒酶:端粒是真核生物染色体的两个末端序列,由一段十分简单和串联重复的序列组成.
端粒酶是一种含RNA的蛋白质复合体,所含的RNA链约长150nt,并约含1~5个拷贝的CyAx重复序列,是合成端粒TxGy股的模板,是一种逆转录酶,催化互补于RNA模板的DNA片断的合成.
二.1核生物复制原点的一般特点是:1)是双螺旋DNA呼吸作用强烈的区域,即经常开放的区段;2)大都在特定位置;3)复制起始点都含有多个短的重复序列;4)有由复制起始蛋白识别的特异起始序列.
2 RNA引物与典型的RNA异同:引物RNA在合成以后,不与模板分离,而是以氢键与模板结合;而转录时的RNA,随着转录,RNA与DNA模板分离,其RNA/DNA杂交段只有十几个核苷酸.
3核生物DNA复制的特点:(1)真核生物每条染色体上可以有多处复制起始点,而原核生物只有一个起始复制点.(2)真核生物的染色体在全部复制完成之前,各个起始点上的DNA复制不能再开始;而在快速生长的原核生物中,复制起始点上可以连续开始新的DNA复制,表现为一个复制子上可以有多个复制叉存在.(3)真核生物复制原点的DNA序列一般无固定的模式,但大多包含一个富含A—T的序列和一个特异蛋白质的结合位点.
第五章 转录与加工
一.1正链与负链:对于一个基因来说,DNA的两条链中有一条链作为RNA合成时的模板,这条链叫负链另一条叫正链(65)
2 转录单位:起始于DNA的一个特定位点,终止于终止位点,此转录区域为转录单位,一个转录单位可以是一个基因,也可以是多个基因。
3启动子:RNA聚合酶识别、结合和开始转录的一段DNA序列
4增强子:许多真核生物启动子的转录可被远离转录起始位点数千个碱基的调控元件所增强,这个调控元件叫增强子
5外显子和内含子:在成熟的RNA中尚存的基因序列叫外显子;一些生物(包括人类) 基因的外显子常被一些长的DNA片段分割。(这些片段又称内含子或垃圾DNA,通常没有明确功能)
二.1大肠杆菌的σ70启动子的结构:大肠杆菌的σ70启动子由40-60bp的序列组成,它的-55到+20之间的区域可被RNA聚合酶结合,其中-20到+20之间的区域可被紧密地结合。启动子序列的突变分析表明在-10和-35位置的两个6bp序列对于打长杆菌启动子的功能尤其重要。
2原核生物转录的起始过程:(1)核心酶在σ因子的参与下结合到DNA上;(2)起始识别。(3)开放型起始复合物的形成。(4)形成三元起始复合物,起始转录。
3原核生物RNA合成的终止机制:
4真核生物三种RNA聚合酶的启动子的结构
5增强子特点如下:
(1)增强子是一个相当大的单元,常包括几百个bp,有时含重复序列,这些重复序列都有特定的功能。( 2)可在距离起始位点很远的位置(一般距离1~4 kb)发挥作用,(3)无特定位置 ④增强子的作用与其序列的方向无关⑤有组织专一性或细胞专一性
6RNA转录后的加工有那些内容?(1)内切核酸酶和外切酶对核苷酸的切除;(2)向初生RNA转录物或剪切产物的3′端和5′端添加核苷酸;(3)对某些特殊的核苷酸碱基或糖苷进行修饰。
第六章 蛋白质的生物合成
一1密码子的变偶性:mRNA的密码子与tRNA的反密码子作用时,三个核苷酸中,前二个是精确配对的,而第三个却不需如此。即在密码子的3′端位置和反密码子的5′端位置的核苷酸碱基之间可能发生非标准的碱基配对,称为摆动现象,也即密码子的变偶性。
2分子伴侣:在细胞内具有结合并稳定靶蛋白不同的不稳定构象,帮助新生肽链正确组装,促进其跨膜运输等功能,但是它自己不是靶蛋白构成成分的一类蛋白质
3热休克蛋白:在各种不同的构象形成过程中,阻止不稳定蛋白质的聚集。
4前导肽:
5SD序列:
二1遗传密码的特点:(1)起始与终止密码子(2)读码的连续性(3)密码的简并性(4)密码的通用性与例外
2原核生物和真核生物蛋白质合成的抑制剂及其作用机理:原核生物蛋白质合成的抑制剂及其作用机理如下:(1)氯霉素和新霉素:抑制原核生物的肽基转移酶。(2)链霉素:抑制原核生物肽链合成的起始,也诱发 mRNA密码子错读。(3)红霉素:通过核糖体的大亚基抑制原核生物的翻译。(4)褐霉酸,又称为梭链孢酸:类似红霉素阻止EF-G从大亚基分离。(5)四环素和土霉素:抑制原核生物的氨酰- tRNA 连接到核糖体的小亚基上,对人体细胞的80S核糖体也有抑制作用
真核生物蛋白质合成的抑制剂及其作用机理: (1)嘌呤霉素:由于嘌呤霉素的结构类似氨酰- tRNA末端,带有游离氨基,干扰肽基转移,从而取代一些氨基酰tRNA进入核糖体的A位,造成原核生物和真核生物细胞蛋白合成的提前终止。(2)白喉霉素 对真核生物的延长因子-2(3)起共价修饰作用,并导致EF-2失活,抑制细胞整个蛋白质合成,而导致细胞死亡。(4)蓖麻毒素:在蓖麻豆中发现,催化真核生物的大亚基 rRNA裂解。(5)放线菌酮 ,又称为环己酰亚胺:抑制真核生物的肽基转移酶
3.帮助蛋白质正确折叠的酶有哪些?如何作用?
(1)折叠酶:蛋白质二硫键异构酶,它能识别和水解非正确配对的二硫键,使它们在正确的半胱氨酸残基位置重新形成二硫键,从而改变二硫键的连接位置。
(2)肽基脯氨酸顺反异构酶: 催化肽-脯氨酰之间肽键的旋转反应,促进X-pro(X可以是任何的氨基酸)肽键的顺反异构化。
4. 肽链合成后的加工有哪些内容?
多肽链的水解.(一些新合成的蛋白质,其多肽链需要在其它酶蛋白的作用下被水解切割后才能形成成熟的功能蛋白质或功能寡肽。有些情况需要将非功能多肽多次水解切割和组合后,才能获得一个功能蛋白质。)蛋白质的修饰((1)糖基化(2)磷酸化 (3)羟基化 (4)二硫键的形成 (5)末端的修饰 ) 蛋白质切割裂分和剪接(一般真核细胞中一个基因对应一个mRNA,一个mRNA对应一条多肽链,但有的基因表达产物为多聚蛋白质,多聚蛋白质是一个很大的多肽,在翻译后能被切割生成好几种蛋白质。有一些多聚蛋白质在不同组织中以不同方式受到切割,蛋白质前体通过多肽的剪辑被切成数个片段后再按一定顺序结合起来,最后形成有活性的蛋白质,即蛋白质剪接。) 亚基的聚合
5. 真核生物蛋白质合成的运输是怎样进行的?(1)共翻译移位 与内质网结合的核糖体可以合成三类主要的蛋白质:溶酶体蛋白、构成质膜骨架的蛋白和分泌到胞外的蛋白,它们在翻译的同时即开始移位。
信号肽约有15~30个氨基酸,靠近N端部位有一至多个带正电荷的氨基酸,中部由10~15个几乎全是疏水氨基酸组成的疏水核。C端有一个可被信号肽酶识别的位点,此位点上游常为一段疏水性较强的5肽。信号肽的作用是引导合成中的多肽穿过内质网膜进入内质网腔,在那里继续进行蛋白质的合成和加工。
进入内质网的蛋白质大部分需要继续输送至它处,留在内质网中的蛋白只是少数需要继续输送的肽链被传送到高尔基复合体进行糖基化加工,其中不属于高尔基体的蛋白质会被包在输送小泡内,继续前往溶酶体、浆膜、或储存在分泌性小泡内。
前往细胞核的蛋白质具有的特定序列称为细胞核定位序列.
2. 翻译后移位
由细胞质中游离核糖体合成的蛋白质前体,需要按其所携带的信号的不同,从细胞质转移到线粒体、叶绿体、细胞核、过氧化物酶体等细胞器中,是在翻译后易位的。导向不同细胞器的信号序列的位置、性质和长短都不同,因而会导向不同的细胞器。

第七章 原核生物基因表达的调控
一1组成型表达与诱导型表达:
2管家基因:维持每个细胞生命活动都必需的基因的表达基本是不受调控的,且持续表达,其表达产物大致以恒定水平始终存在于细胞内,其表达为组成性基因表达,其表达产物称为组成性蛋白
3可诱导基因:应环境条件变化,基因表达水平增高的现象称为诱导,这类基因称为可诱导的基因。
4调节蛋白:
5操纵子:操纵子是DNA上基因表达的协调单位,它包括在功能上彼此相关的结构基因、启动子和操纵基因等。
6衰减子:当trp操纵子的mRNA合成起始以后,除非培养基中完全没有色氨酸,转录总是仅产生—个140个核苷酸的RNA分子即终止。这个区域称为衰减子或弱化子。
7终止子:
8反义RNA: 是指与RNA具有互补序列的RNA分子。
二1.乳糖操纵子的调控原理。
2.色氨酸操纵子的阻遏调控和衰减调控机制。
3.反义RNA对基因表达的调节机制。1.反义RNA能通过互补序列与特定的mRNA分子结合,结合位置包括SD序列和起始密码子AUG,从而抑制该mRNA的加工与翻译。2.反义RNA与靶mRNA结合后引起该双链RNA分子对RNA酶Ⅲ的敏感性增加,使其降解。3.反义RNA也可通过与mRNA的SD序列的上游非编码区结合,阻止了核糖体的结合,从而抑制靶mRNA的翻译功能。4.反义RNA和mRNA有不完全的互补序列,如果能形成类似于终止子的结构,就可使转录提前终止,从而达到直接抑制靶mRNA转录的目的。5.在原核生物细胞中反义RNA可控制噬菌体溶菌-溶源状态以及抑制转座子的转位作用等。
8. 真核生物基因表达的调控
一.解释名词:
1基因丢失: 是在某些低等真核生物的个体发育过程中,细胞分化时一些不需要的基因被消除的现象。
2基因扩增:基因组中的特定基因在某些情况下复制产生大量拷贝的现象。
3基因重排:某些基因片段改变原来存在的顺序而重新排布的现象。
4顺式作用元件与反式作用因子:是调控基因表达的一段DNA序列,一般自身没有转录功能。与顺式作用元件结合而影响转录的可扩散蛋白称为反式作用因子。
5转录因子:
6通用(基本)转录因子 :是所有启动子起始RNA合成的必需因子,与RNA 聚合酶结合形成围绕在起始位点周围的复合物,决定转录的起始位点。
7锌指结构
8亮氨酸拉链:肽链约由35个氨基酸形成α-螺旋,每圈螺旋3.5个残基,每两圈出现一个亮氨酸,排在α-螺旋一侧,两个蛋白质分子靠亮氨酸的疏水作用力形成二聚体,形同拉链状。拉链区的氨基端是由富含赖氨酸和精氨酸的碱性区形成的α-螺旋,借助其正电荷与DNA的磷酸基团结合,此种结构称为碱性亮氨酸拉链

9应答元件:与诱导型转录因子结合的顺式作用元件称为应答元件
10RNA编辑:NA编辑是在RNA水平上发生的碱基取代、插入或缺失的现象,是通过非剪接作用对RNA信息的改变。
二.问答题:
1.试述真核生物基因表达调控的特点。①染色质结构对基因表达有调控作用② 以正调控为主3)基因表达调控的多层次性④有细胞特异性或组织特异性
2.反式作用因子有哪些类型?它们各结合在DNA的什么部位?根据作用不同,将它们分为三类:即通用或基本转录因子、上游转录因子和可诱导因子。通用转录因子结合在启动子上与RNA聚合酶一起形成转录起始复合物;上游转录因子结合在启动子和增强子的上游控制位点(上游元件);可诱导因子与应答元件相互作用
3.反式作用因子的结构模式有哪些?(1)与DNA直接结合的转录因子:结构中必需包含DNA结合结构域和转录激活结构域。(2)不与DNA直接结合的转录因子:没有DNA结合结构域,但能通过激活转录结构域直接或间接作用于转录复合体而影响转录效率。
9 基因工程原理
一.解释名词:
1基因工程:也称为重组DNA技术(recombinant DNA technique),是指在体外将核酸分子插入病毒、质粒或其它载体分子,构成遗传物质的新组合,并使之参入到原先没有这类分子的宿主细胞内,且能继续稳定地繁殖,从而赋予宿主特殊性状的一门技术。
2限制性内切酶:是细菌内存在的一类能识别特定核苷酸序列并剪切含该特定序列的外源双链DNA的核酸内切酶。
3完全消化与局部消化 完全消化是所有识别位点都切割的酶解作用;局部消化是只切割部分识别位点的酶解作用
4粘性末端与平末端
5单克隆位点
6基因组DNA文库和cDNA文库 基因组文库:是指通过克隆方法保存在适当宿主中的一群混合分子,所有这些分子中的插入片段的总和可代表某种生物的全部基因组序列。cDNA文库:是指通过克隆方法保存在适当宿主中的一群混合分子,所有这些分子中的插入片段的总和可代表某种生物的全部mRNA序列。
二.问答题:
1. 一个理想的质粒载体应具备哪些条件?①分子量小、多拷贝、松弛控制型;②具有多种常用的限制性内切酶的单切点;③能插入较大的外源DNA片段;④具有容易操作的检测表型。
2.构建基因组文库和cDNA文库的一般步骤。构建基因组文库的一般步骤载体(1)DNA的制备(2)基因组DNA片段的制备(3)连接产生重组DNA(4)将重组DNA转入适当的宿主,(5)筛选鉴别重组克隆(6)扩增和保存文库。
cDNA文库的一般步骤包括:(1)载体DNA的制备(2)mRNA的制备(3)cDNA的合成(4)连接产生重组DNA(5)将重组DNA转入适当的宿主(6)筛选重组克隆(7)扩增和保存文库
3. PCR的原理。将含有待扩增DNA样品的反应混合物放置在高温环境下加热使DNA分子变性为两条单链的DNA分子(一般变性温度与时间为94℃ ,1分钟);然后降低反应温度,使一对寡核苷酸引物与两条单链模板DNA发生退火作用,结合在靶DNA区段两端的互补序列位置上(一般退火温度和时间为37~55℃,1~2分钟);最后,将反应混合物的温度上升到72℃(1~2分钟),此时在DNA聚合酶的作用下,脱氧核苷三磷酸分子便从引物的3′端开始掺入,并沿着模板分子按5′→3′的方向延伸,合成出新生的DNA互补链。

⑺ 论述蛋白质组学与基因组学的区别和联系

组学omics,研究的是整体. 按照分析目标不同主要分为基因组学,转录组学,蛋白质组学,代谢组学。
基因组学研究的主要是基因组DNA,使用方法目前以二代测序为主,将基因组拆成小片段后再用生物信息学算法进行迭代组装。当然这仅仅是第一步,随后还有繁琐的基因注释等数据分析工作。
转录组学研究的是某个时间点的mRNA总和,可以用芯片,也可以用测序。芯片是用已知的基因探针,测序则有可能发现新的mRNA,
蛋白组学针对的是全体蛋白,组要以2D-Gel和质谱为主,分为top-down和bottom-up分析方法。理念和基因组类似,将蛋白用特定的物料化学手段分解成小肽段,在通过质量反推蛋白序列,最后进行搜索,标识已知未知的蛋白序列。
代谢组分析的代谢产物,是大分子和小分子的混合物,主要也是用液相和质谱。
总而言之,这些技术都想从全局找变量,都是一种top-down的研究方法,原因很简单:避免‘只缘身在此山中’的尴尬。
但因为技术局限,都各有缺点,尤其是转录组和蛋白组数据,基本上颠覆了以前一直认为的mRNA水平能代表蛋白水平的观念,因为这两组数据的重合度太低。
所以目前很多研究都开始使用交叉验证方法。
无论如何,都需要对数据进行分析,有经验的分析往往能化腐朽为神奇。

⑻ 蛋白质组学与分子生物学的联系与区别是什么

一个是以蛋白为基础,一个是以DNA等核酸为基础,分子生物学里的DNA指导合成了所有的蛋白质就是蛋白组学研究的对象,所以联系也是十分紧密的,蛋白组学大到物种,个体,小到组织细胞,所以同一分子基础的物种细胞表达差别还是很大的

阅读全文

与分子生物学什么是蛋白质组学相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:741
乙酸乙酯化学式怎么算 浏览:1407
沈阳初中的数学是什么版本的 浏览:1354
华为手机家人共享如何查看地理位置 浏览:1046
一氧化碳还原氧化铝化学方程式怎么配平 浏览:887
数学c什么意思是什么意思是什么 浏览:1412
中考初中地理如何补 浏览:1302
360浏览器历史在哪里下载迅雷下载 浏览:704
数学奥数卡怎么办 浏览:1389
如何回答地理是什么 浏览:1027
win7如何删除电脑文件浏览历史 浏览:1059
大学物理实验干什么用的到 浏览:1488
二年级上册数学框框怎么填 浏览:1702
西安瑞禧生物科技有限公司怎么样 浏览:980
武大的分析化学怎么样 浏览:1251
ige电化学发光偏高怎么办 浏览:1340
学而思初中英语和语文怎么样 浏览:1655
下列哪个水飞蓟素化学结构 浏览:1426
化学理学哪些专业好 浏览:1489
数学中的棱的意思是什么 浏览:1061