㈠ 生物可降解材料具体有哪些有什么具体的应用案例吗
生物可降解材料是在细菌、真菌、藻类等自然界存在的微生物作用下能发生化学、生物或物理降解或酶解的高分子材料。
最理想的可降解生物材料是利用可再生资源得到,降解后可以被生物所重新利用,产物最好是二氧化碳和水,从而使这种材料的生产和使用纳入自然界的循环。
生物可降解材料的具体类型:
1. 聚乳酸(PLA):PLA具有无毒无刺激、良好的生物相容性、强度高、可加工性好,可生物降解等特点,制成的片材、纤维、薄膜经过热成型、纺丝等二次加工后广泛用于包装、纺织和医疗等领域,其废弃物可通过微生物分解成水和二氧化碳。
2. 聚羟基脂肪酸酯(PHA):PHA是由很多微生物合成的一种细胞内聚酯,是一种天然的高分子生物材料,同时具有良好的生物相容性、生物可降解性和塑料的热加工性能,可作为生物医用材料和生物可降解包装材料。
3. 聚丁二酸丁二醇酯(PBS):PBS综合性能优异,性价比合理,用途极为广泛,可用于包装、餐具、化妆品瓶及药品瓶、一次性医疗用品、农用薄膜、农药及化肥缓释材料、生物医用高分子材料等领域。
4. 聚己内酯(PCL):PCL除了具有热塑性塑料易加工的特点外,还有生物可降解性、生物相容性、形状温控记忆性等特点,主要应用为可控释药物载体,完全可降解塑料手术缝合线等医用材料。
生物可降解材料具体的应用案例:
1、生物医用:心脏支架、人造皮肤、手术缝合线…
以上内容均节选自《揭秘未来100大潜力新材料(2019年版)》_新材料在线;
想了解更多关于超导材料的信息,XCLZX_HL,欢迎一起交流讨论。
㈡ 为人类造福的生物医学材料有哪些作用
当一个人发生骨折时,医生要用石膏为他固定患处;而患了龃齿时,则要用光固性高分子修补材料补上龃洞;而进行X光透视时所服用的钡餐,对很多人而言也不陌生。这些材料都是生物医学材料,又称生物材料,是用以和生物系统结合,以诊断、治疗或替换机体中的组织、器官或增进其功能。
生物医学材料有很多种类,它可以是天然产物,也可以是合成材料,或者是它们的结合,还可用有生命力的活体细胞或天然组织与无生命的材料结合而成混杂材料。生物医学材料不同于药物,其主要治疗目的不必要通过体内的化学反应或新陈代谢来实现,但是可以起到药理作用,甚至起药理活性物质的作用。与生物物质直接结合是生物医学材料最基本的特性,如直接进入人体的植入材料,人工心肺、肝、肾等体外辅助装置中与血液直接接触的材料等。除应满足一定的物理化学性质要求外,生物医学材料还必须满足生物学性能要求,即生物相容性要求,这是区别于其他功能材料的最重要特征。
生物医学材料按照组成和性质分为医用金属和合金、医用高分子材料、生物陶瓷以及它们结合而成的生物医学复合材料。经过处理的天然组织,由于其来源特殊,另成一类生物衍生材料。根据在生物环境中发生的生物化学反应水平,可分为近于惰性的、生物活性的以及可生物降解和吸收的材料。还可根据临床用途,分为骨、关节、肌腱等骨骼——肌肉系统修复和替换材料;皮肤、乳房、食道、呼吸道、膀胱等软组织材料;人工心瓣膜、血管、心血管内插管等医用膜材料;组织粘合剂和缝线材料;药物释放载体材料;临床诊断及生物传感器材料及齿科材料等。生物医学材料事关人们健康,生产和使用都必须遵守国际标准化组织或中国国家标准,严格地进行安全性、可靠性评价并认可之后,才能投入使用。
㈢ 生物医用材料主要应用在哪些方面
1.生物材料应用广泛,品种很多,有不同的分类方法。通常是按材料属性分为:合成高分子材料(聚氨醋、聚醋、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等)、金属与合金材料(如钦金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)、复合材料(碳纤维/聚合物、玻璃纤维/聚合物等)。根据材料的用途,这些材料又可以分为生物惰性(bioinert)、生物活性(bioactive)或生物降解(biodegradable)材料。这些材料通过长期植入、短期植入、表面修复分别用于硬组织和软组织修复与替换。生物医用材料由于直接用于人体或与人体健康密切相关,对其使用有严格要求。
㈣ 生活中哪些方面应用了生物材料
生物材料用于人体组织和器官的诊断、修复或增进其功能的一类高技术材料,即用于取代、修复活组织的天然或人造材料,其作用药物不可替代。生物材料能执行、增进或替换因疾病、损伤等失去的某种功能,而不能恢复缺陷部位。
一般医学上用
㈤ 生物化材料都有哪些用途
生物化材料有多种名称,如杂化生物材料、组织工程材料、第三代生物医学材料等。当前生物化材料研究涉及的组织和器官有骨骼、牙齿、皮肤、食道、血管、肝脏、胸腺、肾脏、心脏和神经等。由于目前的技术还不能完全控制人工器官植入人体后的排异反应,今后一段时间内,在医学领域,人们还不能放心地长期使用全人工合成器官。因此,研究一种通过组织培养或诱导生长的人体自身组织和器官修复与再生,比去追求人造器官材料的寿命要更有意义。
生物化材料的研究具有两个革命性意义:一是创造了具有生物活性的材料;二是力求人体组织的完全天然修复和再生。这也表明人类已经进入了改造和创新生命形态的时代。这是生物、医学、工程技术等合理分工、密切合作的结果,其发展必将为人类的健康造福。
㈥ 目前高分子纳米生物材料主要应用有哪些
目前,纳米高分子材料的应用已涉及免疫分析、药物控制释放载体及介人性诊疗等许多方面。免疫分析现在已作为一种常规的分析方法在对蛋白质、抗原、抗体乃至整个细胞的定量分析发挥着巨大的作用。在药物控制释放方面,高分子纳米微粒具有重要的应用价值。许多研究结果已经证实,某些药物只有在特定部位才能发挥其药效,同时它又易被消化液中的某些生物大分子所分解。因此,口服这类药物的药效并不理想。于是人们用某些生物可降解的高分子材料对药物进行保护并控制药物的释放速度,这些高分子材料通常以微球或微囊的形式存在。
㈦ 生物材料在生物医学中的应用有哪些
生物医学材料是指这样一类具有特殊性 能 特种功能 用于人工器官 外科修复 理疗康复 诊断 治疗疾患 而对人体组织不会产生不良影响的材料 取材于各种合成材料 天然高分子材料 金属和合金材料 陶瓷和碳素材料以及各种复合材料 其制成品都已经被广泛应用于临床和科研 主要应用于人工皮肤 人工食道 人工心肺气管 烧伤保护膜 手术缝合线 填充物注射针筒 血袋引流插管及植入体(imp1ant)人工脏器止血剂(如止血绵)微胶囊 皮下注射剂 避孕海绵等 在国外发达国家的应用已经进入普及阶段
㈧ 生物材料的种类
生物材料应用广泛,品种很多,其分类方法也很多。生物材料包括金属材料(如碱金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)和有机材料三大类。有机材料中主要是高分子集合物材料,高分子材料通常按材料属性分为合成高分子材料(聚氨酯、聚酯、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等);根据材料的用途,这些材料又可以分为生物惰性(bioinert)、生物活性(bioactive)或生物降解(biodegradable) 材料,高分子聚合物中,根据降解产物能否被机体代谢和吸收,降解型高分子又可分为生物可吸收性和生物不可吸收性。根据材料与血液接触后对血液成分、性能的影响状态则分为血液相容性聚合物和血液不相容性。根据材料对机体细胞的亲和性和反映情况,可分为生物相容性和生物不相容性聚合物等。
特点
生物材料主要用在人身上,对其要求十分严格,必须具有四个特性:
⑴生物功能性。因各种生物材料的用途而异,如:作为缓释药物时,药物的缓释性能就是其生物功能性。
⑵生物相容性。可概括为材料和活体之间的相互关系,主要包括血液相容性和组织相容性(无毒性、无致癌性、无热原反应、无免疫排斥反应等)。
⑶化学稳定性。耐生物老化性(特别稳定)或可生物降解性(可控降解)。
⑷可加工性。能够成型、消毒(紫外灭菌、高压煮沸、环氧乙烷气体消毒、酒精消毒等)。
㈨ 生物高分子材料在生物医用材料中有哪些应用
生物材料也称为生物医学材料,是指以医疗为目的,用于与生物组织接触以形成功能的无生命的材料。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、病理学、血液学等多种边缘学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗等)。
由于医用高分子材料可以通过组成和结构的控制而使材料具有不同的物理和化学性质,以满足不同的需求,耐生物老化,作为长期植入材料具有良好的生物稳定性和物理、机械性能,易加工成型,原料易得,便于消毒灭菌,因此受到人们普遍关注,已成为生物材料中用途最广、用量最大的品种,近年来发展需求量增长十分迅速。医用高分子材料的研究目前仍然处于经验和半经验阶段,还没有能够建立在分子设计的基础上,以材料的结构与性能关系,材料的化学组成、表面性质和生命体组织的相容性之间的关系为依据来研究开发新材料。目前全世界应用的有90多个品种,西方国家消耗的医用高分子材料每年以10%~20%的速度增长。随着人民生活水平的提高和对生命质量的追求,我国对医用高分子材料的需求也会不断增加。
合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能,因而可以植入人体,部分或全部取代有关器官。因此,在现代医学领域得到了最为广泛的应用,成为现代医学的重要支柱材料。当前研究主要集中在外科置入件用高分子材料和生物降解及药物控制释放材料。
外科置入件用高分子材料耐生物老化,作为长期置入材料具有良好的生物稳定性和物理、机械性能,易于加工成型,原料易得,便于消毒,受到人们普遍的关注,这类材料主要用于生物体软、硬组织修复体、人工器官、人工血管、接触镜、膜材、粘结剂和空腔制品诸方面。其特点是大多数不具有生物活性,与组织不易牢固结合,易导致毒性、过敏性等反应。不过作为承重的植入件用高分子材料还有许多方面的问题,目前研究主要集中在提高材料的对生物体的安全性;提高组织相容性和血液相容性;改善生物学性能,改善提高力学、机械、物理性能。在生物膜材料方面,属于线性高分子多糖结构的壳聚糖是甲壳质脱乙酰基的衍生物,无毒、无抗原性,可在生物体内自行降解.壳聚糖膜有促进创面愈合的作用,具有良好通透性,且含有游离氨基,能结合酸分子,是天然多糖中唯一的碱性多糖。因而具有许多特殊的物理化学性质和生理功能,在医学生物材料上可作为人工肾膜和人造皮肤。
生物降解型医用高分子材料的主要成分是聚乳酸、聚乙烯醇及改性的天然多糖和蛋白质等,在临床上主要用于暂时执行替换组织和器官的功能,或作药物缓释系统和送达载体、可吸收性外科缝线、创伤敷料等。其特点是易降解,降解产物经代谢排出体外,对组织生长无影响,目前已成为医用高分子材料发展的方向。
高分子药物控制释放体系不仅能提高药效,简化给药方式,大大降低了药物的毒副作用,而且纳米靶向控制释放体系使药物在预定的部位,按设计的剂量,在需要的时间范围内以一定的速度在体内缓慢释放,而达到治疗某种疾病或调节生育的目的,比如高分子多肽或蛋白药物控制释放体系新的研究进展,为那些口服无效的多肽或蛋白药物的临床应用,展示了令人鼓舞的前景。
㈩ 生物的应用
伴随着生命科学的新突破,现代生物技术已经广泛地应用于工业、农牧业、医药、环保等众多领域,产生了巨大的经济和社会效益。1、生物技术在材料方面的应用。材料是一个社会经济建设的重要支柱之一,通过生物技术构建新型生物材料,是现代新材料发展的重要途径之一。首先,生物技术使一些废弃的生物材料变废为宝。其次,生物技术为大规模生产一些稀缺生物材料提供了可能。例如,蜘蛛丝是一种特殊的Array,其强度大约是钢材的5倍,而可塑性比钢材高30%,可用于生产防弹背心、降落伞等轻而坚固的用品,但是我们无法像养蚕一样饲养蜘蛛而获得大量的蜘蛛丝。美国怀俄明大学的一个研究小组将编码蛛丝蛋白的基因转入细菌获得表达,产生的蛛丝蛋白与蜘蛛丝中的蛋白质相同,有可能通过Array途径大量生产。而加拿大研究人员将蛛丝蛋白的基因在山羊的乳腺细胞中成功表达,这种转基因山羊产出的奶便含有了能制造蜘蛛丝的蛋白质,然后利用特殊的溶剂,就可以从羊奶中“抽出”连续不断的纤维,这种纤维在机械强度上可以和真正的蜘蛛丝媲美。因此,用这种“活体生物反应器”同样有可能大量生产优质的“蛛丝蛋白”。2、生物技术在能源方面的应用。能源是人类生存的物质基础之一,是社会经济发展的原动力。能源分为不Array(如石油、天然气、煤)和可再生能源(如太阳能、风能、生物质能等)