导航:首页 > 生物信息 > 基因修饰生物包括哪些类型

基因修饰生物包括哪些类型

发布时间:2022-09-26 16:01:56

‘壹’ 生物的基因变异可分为哪几种(大类型)

生物变异分为基因重组、基因突变、染色体畸变。染色体畸变分为染色体数目变异和染色体结变异,染色体结构变异分为缺失、重复、倒位、易位,具体定义书上有的

‘贰’ 什么是转基因生物,主要分为哪几类

利用基因工程技术改变基因组构成,用于农业生产或农产品加工的动植物、微生物及其产品。转基因生物也称为基因工程生物、现代生物技术生物、遗传改良生物、遗传工程生物等。

转基因生物包括转基因动植物(含种子、种畜禽、水产苗种)和微生物;转基因动植物产品、微生物产品;转基因农产品的直接加工品(含有转基因动植物、微生物或者其产品成分的种子、种畜禽、水产苗种、农药、兽药、肥料和添加剂等产品)。

‘叁’ 生物的基因变异可分为哪几种(大类型) 基因的缺失,倒置,互换,增添

生物变异分为基因重组、基因突变、染色体畸变.染色体畸变分为染色体数目变异和染色体结变异,染色体结构变异分为缺失、重复、倒位、易位,具体定义书上有的

‘肆’ 基因重组类型有哪些

基因重组类型分为自然重组、噬菌体。

自然界不同物种或个体之间的基因转移和重组是经常发生的,它是基因变异和物种进化的基础。基因重组包括位点特异性的重组和同源重组两种类型。有整合酶催化的在两个DNA序列特异位点间发生的整合,产生位点特异的重组。

噬菌体的基因重组和细菌不同,而和真核的重组十分相似。杂交是用标记不同的噬菌体之间进行。然后计算重组噬菌体占总的子代噬菌体的比例来确定重组值。

基因重组与突变的区别

基因重组能产生大量的变异类型,但只产生新的基因型,不产生新的基因。基因重组发生在有性生殖的减数第一次分裂过程中,即四分体时期。

同源染色体的非姐妹染色单体交叉互换和减数第一次分裂后期非等位基因随着非同源染色体的自由组合而自由组合,基因重组是杂交育种的理论基础。

基因突变的频率很低,但能产生新的基因,对生物的进化有重要意义。发生基因突变的原因是 DNA在复制时因受内部因素和外界因素的干扰而发生差错。典型实例是镰刀形细胞贫血症。

以上内容参考 网络—基因重组

‘伍’ 为什么基因修饰动物是生物医学研究的核心模型

现代医学研究模式集 临床—靶分子—动物模型 于一体,其中针对靶分子的动物模型主要是基因修饰动物模型,包括转基因动物、基因敲除(knock-out)及基因敲入(knock-in)三种,其在现代医学研究中的应用日益广泛。本研究主要以SHP2 D61G突变基因knock-in等模型为工具,研究SHP2在小鼠白血病发生、发展中的作用及干预设想。SHP2(人类PTPN11基因)(Src homology 2 containing protein tyrosine phosphatase,SHP2)是一种含2个SH2结构域、第一个被定义为癌基因的酪氨酸磷酸酶。经细胞因子等刺激活化后,发挥磷酸酶活性和接头蛋白的功能,参与Ras-Raf-MAP kinase、Jak-STAT、PI3 kinase、RhoA及NFκB信号途径。

‘陆’ 基因修饰是什么

补充楼上的。
表观遗传修饰主要分为两类,DNA的甲基化和组蛋白的修饰。在哺乳动物基因组中,DNA的甲基化修饰主要存在于CpG位点,而组蛋白可以有很多修饰形式。一个核小体由两个H2A,两个H2B,两个H3,两个H4组成的八聚体和147bp缠绕在外面的DNA组成。.组成核小体的组蛋白的核心部分状态大致是均一的,游离在外的N-端则可以受到各种各样的修饰,包括组蛋白末端的乙酰化,甲基化,磷酸化,泛素化等等。在生物体内,组蛋白的甲基化发挥着重要的生理功能,比如说在活跃转录基因的启动子区域内,H3K4的三甲基化水平较高;H3K9的甲基化会导致染色体的异染色质化,而H3K27的甲基化同X-chromosome
inactivation相关(Cell
128,
707–719,
February
23,
2007)。
我的是原创的,是俺滴转博报告第一段,恩

‘柒’ 真核生物基因表达调控中的表观遗传修饰有哪些类型如何影响基因表达

谓表观遗传学,核仁显性,就是通过各种表观遗传的修饰方式来对基因进行调控.所以,基因组印记(genomic impriting),已知的表观遗传现象有,就是不改变基因的序列,基因表达的表观遗传学调控:DNA甲基化(DNA methylation).目前,通过对基因的修饰来调控基因的表达,母体效应(maternal effects),基因沉默(gene silencing),休眠转座子激活和RNA编辑(RNA editing)等.

‘捌’ 人类基因组主要的表观遗传学修饰类型有哪些

表观遗传学是指表观遗传学改变 (DNA 甲基化、组蛋白修饰和非编码 RNA 如 miRNA) 对 表观基因组基因表达的调节,这种调节不依赖基因序列的改变且可遗传表观。因素如 DNA 甲基化、组蛋白修饰和 miRNA 是对环境刺激因素变化的反映,这些表观遗传学因素相互作用以调节基因表达,控制细胞表型,所有这些表观遗传学因素都是维持机体内环境稳定所必需的,有助于正常生理功能的发挥。

组蛋白的翻译后修饰不仅与染色体的重塑和功能紧密相关,而且在决定细胞命运、细胞生长以及致癌作用的过程中发挥着重要的作用,如组蛋白磷酸化就在有丝分裂、细胞死亡、DNA 损伤修复、DNA 复制和重组过程中发挥着直接的作用。

组蛋白翻译后修饰多发生在组蛋白的 N-端尾部,包括甲基化、乙酰化、磷酸化、ADP-核糖基化、泛素化和小分子泛素化修饰,这些修饰有助于其他蛋白质与 DNA 的结合,从而产生协同或者拮抗作用来调控基因转录。例如,乙酰化使组蛋白尾部正电荷减少,从而削弱了与带负电荷 DNA 骨架的作用,而促进染色质呈开放状态, 甲基化激活或抑制基因功能主要依赖于修饰的位点,主要与赖氨酸残基的单甲基化、双甲基化或三甲基化有关。

组蛋白修饰最基本的作用是调控基因表达。例如组蛋白甲基化多导致基因沉默,去甲基化则相反;乙酰化一般是转录激活,去乙酰化则相反。当然,也可在此基础上产生复杂的生物学效应。例如组蛋白去乙酰化酶 HDAC 可影响免疫系统;H3K4me3、H3K9me2 能够调控记忆的形成, 而且 H3K 甲基化与 X 染色体失活、基因组印记和异染色质形成有关;H3 乙酰化通过多种机制调控以来 ATP 的染色质重塑 ,并参与炎症反应;H2A、H2B 泛素化则与 DNA 损害反应有关;而 H3S28 磷酸化与 H3K27 乙酰化可激活转录并拮抗聚梳基因 polycomb 沉默,另外磷酸化不仅是某些信号转导通路的重要中间步骤,而且常与其他类型的修饰相互作用,共同参与细胞分裂、影响细胞周期。
乙酰化是这些修饰中研究得最多的。组蛋白乙酰化与基因活化以及 DNA 复制相关,组蛋白的去乙酰化和基因的失活相关。乙酰化转移酶(HATs)主要是在组蛋白 H3、H4 的 N 端尾上的赖氨酸加上乙酰基,去乙酰化酶(HDACs)则相反,不同位置的修饰均需要特定的酶来完成。乙酰化酶家族可作为辅激活因子调控转录,调节细胞周期,参与 DNA 损伤修复,还可作为 DNA 结合蛋白。去乙酰化酶家族则和染色体易位、转录调控、基因沉默、细胞周期、细胞分化和增殖以及细胞凋亡相关。
组蛋白乙酰化和去乙酰化
乙酰化修饰是一个在细胞核或细胞质的亚细胞器内广泛存在的翻译后修饰调控机制,参与了转录、趋化作用、新陈代谢、细胞信号转导、应激反应、蛋白质水解、细胞凋亡,以及神经元的发育等多个过程。赖氨酸乙酰化是一种典型的蛋白质翻译后修饰,最先在组蛋白中被发现。所以,起初的赖氨酸乙酰化研究一直集中于组蛋白领域 (Histone H1, H2, H3, H4),研究人员发现这种修饰能够调节很多细胞功能,例如基因表达、核染色质重构和细胞周期。直到最近十年,赖氨酸乙酰化才被证明能够发生在除了组蛋白的其他蛋白质中,而且同样能够影响许多细胞内的调控过程。
自从发现第 1 个非组蛋白 p53 的赖氨酸乙酰化修饰以来,越来越多的赖氨酸乙酰化修饰被发现,其中转录因子占了相当的比重。Choudhary 等鉴定出 29 个转录因子上的 40 个乙酰化位点,这些赖氨酸乙酰化修饰的转录因子调控着细胞中不同的生物学过程。

(蛋白质乙酰化修饰研究进展)目前,对于 p53 的乙酰化修饰已经研究得较为清楚,在 p300/CBP 的催化下,p53 的 C 端 DNA 结合调控区域上发生多个赖氨酸位点的乙酰化修饰,从而激活 p53 上特异 DNA 结合区域的活化。还比如 AP-1,ATF-5,BMAL1,CBP,Cytokeratin,E2F-4,EF-1,HMG-1,Hsp90,Hsp70,ku-70,stat3,Ub,NF-E4,NF-Kb-p65 P73,Nrf2,P300,PTEN,Ref-1 等,修饰后的蛋白质可以对细胞内的各类通路进行精确的调节与控制。

组蛋白甲基化是指在组蛋白甲基转移酶催化下组蛋白 H3 和 H4 的 N 端赖氨酸或者精氨酸残基发生的甲基化,组蛋白赖氨酸甲基化由不同的特异性组蛋白赖氨酸甲基转移酶催化。SUV39 蛋白是第一个被发现的组蛋白甲基转移酶,能特异性地使组蛋白 H3K9 甲基化。根据每一位点甲基化程度的不同,赖氨酸残基能分别被单甲基化、双甲基化和三甲基化。
组蛋白磷酸化在有丝分裂、细胞死亡、DNA 损伤修复、DNA 复制和重组过程中发挥着直接的作用。例如,组蛋白 H3N 端的磷酸化可能促进染色质在有丝分裂期间的凝集。在哺乳动物中,aurora B 是有丝分裂时 H3S10 磷酸化的激酶,但是在存在 aurora B 对 H3S10 的磷酸化是不够的。牛痘苗相关激酶 1 是哺乳动物 NHK1 的同系物,它能在体内和体外直接使组蛋白 H3T3 和 H3S10 磷酸化,而失去 VPK1 的活性,组蛋白 H3 的磷酸化也将减少。
组蛋白 H1 被细胞周期蛋白依赖的磷酸化是其翻译后主要的修饰作用。组蛋白 H1 的磷酸化能够影响 DNA 二级结构的改变和染色体凝集状态的改变。另一方面,组蛋白 H1 的磷酸化需要 DNA 的复制,并且激活 DNA 复制的蛋白激酶也促进组蛋白 H1 的磷酸化。组蛋白 H4 N 端的磷酸化可能促进染色质在有丝分裂期间的凝集。组蛋白 H1 的磷酸化能够影响 DNA 二级结构的改变和染色体凝集状态的改变。此外,组蛋白 H1 的磷酸化需要 DNA 的复制,并且激活 DNA 复制的蛋白激酶也促进组蛋白 H1 的磷酸化。因此,二者存在一个协同发生的机制。

‘玖’ 什么是转基因生物

自然界每种生物都固有不同的生命特征,而保持这些生命特征的物质就是细胞核中的基因(DNA)。所谓转基因生物就是指为了达到特定的目的而将DNA进行人为改造的生物。通常的做法是提取某生物具有特殊功能的基因片断,通过基因技术加入到目标生物当中。经基因改造的农作物,外表和天然作物没多大区别,味道也相似,但有的转基因作物中添加了提高营养物质的基因,有的则可以适应恶劣的自然环境以及提高产量和质量等。

据不完全统计,1996年全球转基因农作物耕种面积为170万公顷,到了2000年增至4420万公顷,短短4年增长近30倍,发展迅猛可想而知。而其中转基因的大豆和玉米的耕种面积约占总耕种面积的80%左右。在食品工业中,大豆和玉米以及他们的加工品都是必不可少的原料,利用这些转基因原料制成的食品也是转基因食品。

阅读全文

与基因修饰生物包括哪些类型相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:977
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1060