导航:首页 > 生物信息 > 毒作用的生物化学机制是什么

毒作用的生物化学机制是什么

发布时间:2022-10-03 13:11:54

① 试说明化学物质致突变、致癌和抑制酶活性的生物化学作用机理。

不同的化学物质致突变、致癌和抑制酶活性的生物化学作用机理是不同的。
以二恶英为例:

二恶英类化学物质的毒性机理

二恶英类化学物质毒性的分子机制还没完全研究清楚,但经过二十多年的研究人们对其机理也有了一定的认识。总的说来二恶英类化学物质产生作用并不是通过直接的损伤,二恶英类化学物质并不与蛋白质和核酸形成加合物,也不直接损害细胞DNA。它们的作用主要是通过芳香烃受体诱导基因表达,改变激酶活性,改变蛋白质功能等而起作用。

一、芳香烃受体介导的基因表达

通过芳香烃受体介导基因表达(如P4501A1)是二恶英类化学物质毒性作用最主要也是最基本的作用机制。芳香烃受体是一高分子量的蛋白质(110-150KD),与二恶英类化学物质有可逆转的高亲和力,主要存在于细胞浆中(也有小部分在胞核中),其作用模式类似于甾体类受体,但也有不同。该蛋白属于basichelix-loop-helix PAS(Per-Arnt-Stim)超家族,该家族均为转录因子),均含有两个功能部位即:basichelix-loop-helix部位和PAS功能部位,该族蛋白对激活基因的转录具有重要意义。且各芳香烃受体具有明显的种间,种内和组织差异。芳香烃受体在细胞浆中是以380 KD的复合物无活性的形式存在,除自身外还有3-4种蛋白质与之结合,其中只鉴别出了90 KD的热休克蛋白(heatshock protein, HSP90),该蛋白对受体的活性具有重要影响。
芳香烃受体介导的基因表达基本的作用过程可区分以下几个基本过程:①二恶英类化学物进入细胞;②化合物与芳香烃受体结合;③配体-受体复合物与DNA识别位点结合;④特异基因的转录及翻译;⑤表达蛋白发挥作用。在这些过程中,前三步研究的较清楚,而后续过程还不是很清楚.

1. 二恶英类化学物质进入细胞。通常认为二恶英类化学物质通过被动扩散方式进入细胞浆(由于二恶英类化学物质为脂溶性物质),但也有几个研究显示被动扩散并不能完全解释二恶英类化学物质的毒性反应。如:该类物质可刺激肝细胞的生长和脂肪的浸润,上皮细胞的肥大增生,这些观察表明细胞膜在二恶英类化学物质的毒性作用中起着一定作用。

2. 二恶英类化学物质与芳香烃受体的结合。二恶英类化学物质进入胞浆后即与胞浆中的芳香烃受体结合,该结合过程将导致芳香烃受体激活。但该结合导致的物理化学变化目前并不清楚。有实验显示配体-芳香烃复合物的形成并不能与DNA结合位点结合,不足以导致生物反应,说明受体的激活是一个多步骤的过程。体外研究中温度对芳香烃受体的激活有重要作用,于4℃形成的复合物并不能正确与基因位点结合,而在高于在20℃形成的复合物则有生物活性,说明该过程需要温度依赖性的激活步骤。HSP90对受体的激活起着重要作用,HSP90对于配体的结合是必须的,并且可以抑制未与配体结合的受体与DNA结合(设想为抑制受体与核中的转录因子结合)。当配体与受体结合,原结合于受体的HSP90即脱落下来,暴露出受体的DNA结合位点,导致受体的激活。

3. 配体-受体复合物与DNA的结合。二恶英类化学物质与芳香烃受体的结合使芳香受体激活,随后配体-受体复合物即转移入胞,在细胞核中聚集。该复合物在与DNA结合以前必须与细胞核中的一种蛋白结合即芳香烃受体核转位子蛋白(Ah receptor nuclear translocator protein, ARNT)结合,才能获得与DNA结合的能力。该蛋白质分子量为87kDa,也属于basic helix-loop-helixPAS(Per-Arnt-Stim)超家族,含有两个功能部位即:basic helix-loop-helix(bHLH)部位和PAS功能部位。它与同属一个家族的芳香烃受体结合形成异二聚体,对于与DNA的结合意义重大。仅保留芳香烃受体核转位子蛋白的bHLH和PAS部位,可保存ARNT形成二聚体及与DNA结合的能力,其中bHLH部位的两个α-helilx结构主要参与二聚体的形成,而basic结构则仅与DNA的结合有关;PAS部位包括两个亚结构即PASA和PAS B,去除两者之一,仅轻微影响异二聚体形成能力,但两者均去除则严重影响异二聚体形成能力。AhR/ ARNT复合物然后与特异基因上游部位的增强子即二恶英反应元件(dioxin responsive element, XRE)结合即可激活基因的转录。二恶英/外来物反应元件的核心序列为5′-T/GNGCGTGA/CG/CA-3′。

4. 特定基因的转录和翻译。二恶英类化学物质激活的基因表达包括细胞色素P4501A1和1A2,谷胱甘肽S转移酶,甲基醌氧化还原酶,醛脱羟酶等。其中最主要的是细胞色素P4501A1和1A2,同时也研究的最为广泛。AhR/ARNT复合物与增强子核心序列结合后,通过何种方式激活基因的转录研究较少。一般而言AhR/ ARNT复合物与增强子核心序列的结合后可导致DNA链的弯曲,核染色质的断裂,从而增加了激活启动子的机率,增加了CYP1A1起始转录的机率,导致细胞色素P4501A1的mRNA在核中的聚集。Roberton等研究发现,在细胞色素P4501A1转录起始点上游,281-950个碱基间有九个顺式反应元件,其中三个为二恶英反应元件,另六个元件的作用不详。但当AhR/ ARNT复合物与二恶英反应元件结合后其余几个反应元件更易与各自的蛋白作用因子结合。表明基因的转录可能主要是通过Oozing方式.转录后的信使RNA即进入细胞浆,结合于核糖体开始蛋白质的翻译。

5. 表达蛋白作用的发挥。对这一过程的研究很少,主要还是对细胞色素P4501A1和1A2表达产物的研究,如:芳烃羟化酶,可将前致癌物转化为致癌物,从而促进机体癌症的发生。

以上为二恶英类化学物质介导机体基因表达的基本方式,目前对该过程的研究仍是二恶英类化学物导致毒性的主要研究方向。

Fig.1. The mechanismof action for dioxin-like chemicals.

二、芳香烃受体介导的蛋白激酶途径

二恶英毒性作用的另一条途径是通过激活蛋白激酶,然后通过激酶途径产生各种生物学活性。首先发现的蛋白激酶为酪氨酸蛋白激酶。Enan等在1996发现2,3,7,8-TCDD在非细胞条件下可使豚鼠脂肪细胞胞浆中的酪氨酸蛋白激酶的活性增高,且该作用为芳香烃受体依赖性的。不久他们进一步发现酪氨酸蛋白激酶不仅可被2,3,7,8-TCDD激活,并且酪氨酸蛋白激酶在胞浆中特异地与芳香烃受体复合物结合。Enan等认为酪氨酸蛋白激酶在胞浆中与芳香烃受体复合物结合,当配体与芳香烃受体结合,则使酪氨酸蛋白激酶被释放且被激活。从而使细胞内蛋白质的酪氨酸残基的磷酸程度增加。这种磷酸化作用对于细胞的增殖和分化具有重要意义。Blankenship等通过实验也得出了类似的结论。不久又发现了cAMP依赖的蛋白激酶,Enan等发现2,3,7,8-TCDD可通过芳香烃受体使细胞内的cAMP依赖的蛋白激酶激活,从而使细胞内Ca+2水平增高,细胞分泌功能加强,以及对糖原分解和合成途径及葡萄糖的摄取产生影响,这对二恶英导致的机体脂肪消耗和进行性衰竭具有重要意义.

三、二恶英类化学物质对机体营养代谢影响的分子机制

二恶英类化学物质对机体营养代谢的影响主要体现在:高脂血症(高甘油三酯和高胆固醇),进行性衰竭,细胞葡萄糖摄取减少。在生化方面的表现主要为:影响脂蛋白脂肪酶,低密度脂蛋白受体和葡萄糖转位蛋白(glucose transport proteins, GLUT)。

二恶英类化学物质对细胞葡萄糖摄取的抑制与其影响GLUT浓度的作用相关。Hugh等研究表明2,3,7,8-TCDD对细胞摄取葡萄糖的抑制主要是通过GLUT-4浓度的下调而发生作用,芳香烃受体拮抗剂可拮抗二恶英类化学物质对细胞葡萄糖摄取的抑制,且各二恶英类化学物质与芳香烃受体的结合能力与它们抑制细胞葡萄糖摄取的能力一致。Hugh等的研究结果说明二恶英类化学物质主要是通过芳香烃受调控GLUT-4的浓度,从而抑制葡萄糖的摄取,但中间的具体过程目前还不清楚。细胞摄取葡萄糖的减少将导致脂肪组织中脂蛋白脂肪酶的活性降低和肝脏细胞膜上低密度脂蛋白受体的下调,也是二恶英类化学物质导致衰竭综合症的基本原因。脂蛋白脂肪酶主要作用为水解血清甘油三酯,使之转位于脂肪组织,该酶活性的降低则导致高甘油三酯血症和脂肪组织的耗竭。肝脏细胞膜上低密度脂蛋白受体途径为低密度脂蛋白代谢的主要途径,该受体的下调则导致血清低密度脂蛋白浓度上升,则血清胆固醇浓度也上升.

二恶英类化学物质毒性的分子机理经过十余年的研究,至今以有一个大致的轮廓,但很多细节问题还没有完全研究清楚,尤其是基因表达后,表达产物如何发挥作用;蛋白激酶激活后如何导致毒性效应;以及芳香烃受体存在于机体的意义也就是其生理作用和内源性配体。这些问题是当前二恶英类化学物质毒理机制研究的重点及热点,对这些问题的研究将对二恶英毒性的评价、预防和治疗都具有十分重要的意义。

微生物毒素的化学成分与作用机制有哪些

毒素的化学成分与作用机制都很复杂,其作用位点有植物细胞的质膜蛋白、线粒体、叶绿体或特定的酶类等,依毒素种类不同而异。植物细胞膜损伤,透性改变和电解质外渗几乎是各种敏感植物对毒素的普遍反应。毒素还钝化或抑制一些主要酶类,中断相应的酶促反应,引起植物广泛的代谢变化,包括抑制或刺激呼吸作用,干扰光合作用,抑制蛋白质合成,干扰酚类物质代谢或使水分关系紊乱等。总之,毒素处理的植物在形态上、生理上和生化上都发生了一系列重要变化。证明毒素的作用,可以从病原菌培养液中提取毒素,用以处理植物,检查是否出现预期的症状。也可以利用不产生毒素的突变菌株(tox-菌株)接种植物,确定其致病性的降低。

③ 有机磷农药中毒与解毒的生物化学机制是什么

有机磷农药中毒的机理:

一般认为是抑制了胆碱酯酶的活性,造成组织中乙酰胆碱的积聚,其结果引起胆碱能受体活性紊乱,而使有胆碱能受体的器官功能发生障碍.凡由脏器平滑肌,腺体,汗腺等兴奋而引起的症状,与毒蕈中毒所引起的症状相似,则称为毒蕈样症状;凡由交感神经节和横纹肌活动异常所引起的症状,与烟碱中毒所引起的症状相似,故称烟碱样症状。

解毒机制:

胆碱能神经抑制剂,如阿托品,拮抗乙酰胆碱的毒蕈碱样作用,提高机体对乙酰胆碱的耐受性,尤其可解除平滑肌痉挛,抑制支气管分泌,保持呼吸道通畅,防止发生肺水肿并对高血压和心律失常有拮抗作用。

胆碱酯酶复活剂,有解磷定,氯解磷定,双复磷,可夺取与胆碱酯酶结合的有机磷,恢复胆碱酯酶分解乙酰胆碱的活力,对解除烟碱样作用和促进昏迷病儿苏醒有明显作用,与阿托品有协同作用。

④ 毒的致毒机理

此类物质称为环境毒物。由于毒物作用的结果,使肌体发生各种病变,这种病变称为中毒。
毒物进入生物体后,同肌体发生作用,损害肌体组织,扰乱或破坏肌体正常代谢机能,引起病变以致危及生命的过程,称为致毒机理。
(1)腐蚀性毒物作用
常见的腐蚀性毒物有强酸、强碱和许多氧化剂,这些都能破坏组织细胞。
①浓硫酸。能使机体细胞结构脱水,细胞死亡后其蛋白质结构由于肽键在酸性条件下催化水解而被破坏。
②光气。吸入肺部发生水解反应,产生盐酸:COCl2+H2O→2HCl+CO2
由于强酸对组织的脱水使用引起肺水肿,水在肺中积聚,损坏了肺组织,使之不能吸氧,致使受害者窒息。
③氢氧化钠。能腐蚀肌体组织,氢氧根OH—也能催化肽键水解
(2)代谢性毒物
代谢性毒物比破坏组织的腐蚀性毒物更隐蔽,是一种潜在的危险性毒物。代谢性毒物干扰重要的生物化学历程。使生物化学历程停止或阻碍其有效地进行,从而引起疾病或死亡。
①一氧化碳(CO)。一氧化碳干扰细胞的氧传递,一氧化碳像氧一样,能与血红蛋白(Hb)结合。
Hb O2(aq)+CO(g)→Hb CO(aq)+O2(g)
一氧化碳中毒的程度主要取决于Hb?CO的饱和度,45%~50%时,发生恶心、呕吐与昏迷;90%时死亡。
由于血红蛋白与一氧化碳的结合能力大于与氧气的结合能力,一氧化碳达到一定浓度,可导致人体内因缺氧而死亡。虽然一氧化碳不是积累性毒物,但如果某些重要细胞,如脑细胞,缺氧超过几分种,就会造成永久性的损伤。人对一氧化碳的忍受量也不完全相同,一般来说,贫血或低血红蛋白的人更为敏感。一氧化碳对任何人都是有害的,因此吸烟,也能因此而慢性中毒。
②氰化物。比如氢氰酸(HCN)常用作仓库和船舱的熏蒸剂。天然CN—来自樱桃、李、梅、桃和杏的果仁。
氰根CN—的毒性能迅速起作用,但CN—中毒机理不同于一氧化碳,它不阻止细胞获得氧,而是干扰氧化酶,使氧化酶失去活性,结果是虽然有充足的氧气进入细胞,但用氧气维持生命的历程停止了,因此使细胞死亡。如果过程发生在生命中枢,中毒者将死亡。
③重金属。重金属可能是所有代谢性毒物中最常见的,比如甲基汞Hg(CH3)2能降低脑、肝蛋白合成活性,还可导致脑细胞合成蛋白氨基酸比例失调,造成脑神经传导障碍。汞引起神经中毒表现为精神障碍等神经系统症状(日本水俣病)。
(3)神经性毒物
①罂粟—吗啡—海洛因。吗啡是由罂粟液汁制得的。10kg鸦片可制得1kg吗啡。吗啡与醋酸酐按1∶1反应生成海洛因。一般吸食的海洛因纯度只有9%~10%。鸦片和海洛因都是对人体十分有害的成瘾性毒物。全世界年交易额仅次于军火交易。
吗啡的急性中毒可导致昏迷、严重缺氧和血压降低,最后死于呼吸麻痹。经常使用吗啡有成瘾性,突然停用会出现许多生理反应,如呕吐、扩瞳、呼吸困难以及难以忍受的痛苦表情。
②肉毒毒素。肉毒毒素是由肉毒梭菌产生,是一种强烈的神经毒素,注入人体3μg即可致死,是食物中毒中危害最严重的一种。
我国由肉毒毒素引起中毒的食品中有91.5%是植物性食物,其余是动物性食品。主要有豆酱、臭豆腐、豆豉等。这些发酵食品常带有肉毒梭菌,但肉毒毒素对热极不稳定,在80℃加热30min,或在100℃加热10~20min即可被破坏。

⑤ 毒性是物理性质还是化学性质

毒性是化学性质。

1、毒性反应是由化学物质与生物系统的化学成分进行可逆或不可逆的相互作用,而干扰机体正常代谢及自稳机制,以致引起细胞死亡、细胞氧化、突变、恶性变、变态反应或炎症反应,主要是一个分子过程。

2、毒性又称生物有害性,一般是指外源化学物质与生命机体接触或进入生物活体体内后,能引起直接或间接损害作用的相对能力,或简称为损伤生物体的能力。也可简单表述为,外源化学物在一定条件下损伤生物体的能力。

(5)毒作用的生物化学机制是什么扩展阅读:

1、毒是环境中的化学物质,在一定的条件下进入肌体后,能与肌体发生生物化学或生物物理作用,进而干扰或破坏肌体的正常生理功能,引起暂时性或持久性的病理状态,甚至危及生命。

2、一般因用药剂量过大或用药时间过长引起,治疗量有时也可发生。根据药物的不同,中毒症状表现各异,主要是对中枢神经、消化、血液和循环系统以及对肝、肾造成功能性或器质性损害,严重者可危及生命。

3、毒性反应的类型、严重程度主要取决于毒物的理化性质、接触状况、生物系统或个体的敏感性。

4、有些外源化学物的急性毒性与慢性毒性完全不同,如苯的急性毒性表现为中枢神经系统的抑制,但其慢性毒性却表现为对造血系统的严重抑制。

⑥ 动植物内源有毒成份及其产生的机理

食品毒理学基本知识与安全性评价概述

第一节 概述
一、毒理学的历史沿革及其发展
毒理学(toxicology)是一门既老又新的学科,是研究化学、物理、生物等因素对机体负面影响的科学。其起源可追溯到数千年前,古代人类应用动物毒汁或植物提取物用以狩猎、战争或行刺,如我国用作箭毒的乌头碱就已经为毒理学的形成奠定了基础。随着欧洲工业生产的发展,劳动环境的恶化,发生了各种职业中毒。学者们在研究职业中毒过程中促进了毒理学的发展。20世纪50年代由于社会生产的快速发展,大量化学物进入人类环境,这些外源化学物对生物界、尤其是对人类的巨大负面效应引起了关注,如震惊世界的反应停事件、水俣病事件、TCDD污染以及多种化学物的致癌作用等等,使毒理学研究有了长足的进步,此后化学物中毒机理的研究也伴随着生物学、化学与物理学的发展而广泛展开,以至目前毒理学从不同领域、不同角度、不同深度形成了众多的、交叉的毒理学分支学科。食品毒理学是现代毒理学的一门分支学科。
二、基本概念
1、毒理学:经典毒理学是研究化学物质的测定、事故、特性、效应和调节的中毒有害作用机理和保护作用的一门学问。主要研究内容是外源性化学物的有害作用及机理。现代毒理学是研究环境物理、化学和生物因素对生物体毒作用性质、量化机理和防治措施。
2、卫生毒理学(hygienic toxicology):是从卫生学角度,利用毒理学的概念和方法,研究人类生产和生活可能接触的环境因素(理化和生物因素)对机体的生物学作用,特别是毒性损害作用及其机理和防治措施的科学。为工业毒理学、环境毒理学、食品毒理学的统称。也是毒理学的一个分支学科。
3、食品毒理学:应用毒理学方法研究食品中可能存在或混入的有毒、有害物质对人体健康的潜在危害及其作用机理的一门学科;包括急性食源性疾病以及具有长期效应的慢性食源性危害;涉及从食物的生产、加工、运输、储存及销售的全过程的各个环节,食物生产的工业化和新技术的采用,以及对食物中有害因素的新认识。食品毒理学的研究方法包括:
①生物试验采用各种哺乳动物、水生动物、植物、昆虫、微生物等,但常用的仍是哺乳动物,如小鼠、大鼠、狗、家兔、豚鼠和猴等。可采用整体动物、离体的动物脏器、组织、细胞、亚细胞甚至DNA进行。
②人群和现场调查, 即采用流行病学和卫生学调查的方法,根据已有的动物实验结果和环境因素如化学物的性质,选择适当的指标,观察生态环境变化和受试因素接触人群的因果关系、剂量一反应关系。
4、毒物:在一定条件下,较小剂量就能够对生物体产生损害作用或使生物体出现异常反应的外源化学物称为毒物。食物中的毒物来源有:天然的或食品变质后产生的毒素等、环境污染物、农兽药残留、生物毒素、以及食品接触所造成的污染。
5、外源化学物(xenobiotics):是存在于外界环境中,而能被机体接触并进入体内的化学物;它不是人体的组成成分,也不是人体所需的营养物质。近来,确切的概念应称为“外来生物活性物质”。
6、毒性:是指外源化学物与机体接触或进入体内的易感部位后,能引起损害作用的相对能力,或简称为损伤生物体的能力。也可简述为外源化学物在一定条件下损伤生物体的能力。
7、“三致”作用:指致突变、致畸、致癌作用。
三、表示毒效应的常用指标
1、半数致死量(median lethal dose,LD50): 较为简单的定义是指引起一群受试对象50%个体死亡所需的剂量。因为LD50并不是实验测得的某一剂量,而是根据不同剂量组而求得的数据。故精确的定义是指统计学上获得的,预计引起动物半数死亡的单一剂量。LD50的单位为mg/kg体重,LD50的数值越小,表示毒物的毒性越强;反之,LD50数值越大,毒物的毒性越低。
毒理学最早用于评价急性毒性的指标就是死亡,因为死亡是各种化学物共同的、最严重的效应,它易于观察,不需特殊的检测设备。长期以来,急性致死毒性是比较、衡量毒性大小的公认方法。LD50在毒理中是最常用于表示化学物毒性分级的指标。因为剂量—反应关系的“S”型曲线在中段趋于直线,直线中点为50%,故LD50值最具有代表性。LD50值可受许多因素的影响,如动物种属和品系、性别、接触途径等,因此,表示LD50时,应注明动物种系和接触途径。雌雄动物应分别计算,并应有95%可信限。
2、绝对致死剂量(absolute lethal dose,LD100):指某实验总体中引起一组受试动物全部死亡的最低剂量。
3、最小致死剂量(minimal lethal dose,MLD或MLC或LD01):指某实验总体的一组受试动物中仅引起个别动物死亡的剂量,其低一档的剂量即不再引起动物死亡。
4、最大耐受剂量(maximal tolerance dose,MTD或LD0或LC0):指某实验总体的一组受试动物中不引起动物死亡的最大剂量。
5、最小有作用剂量(minimal effective dose) 或称阈剂量或阈浓度:是指在一定时间内,一种毒物按一定方式或途径与机体接触,能使某项灵敏的观察指标开始出现异常变化或使机体开始出现损害作用所需的最低剂量,也称中毒阈剂量。
6、最大无作用剂量(maximal no-effective dose) :是指在一定时间内,一种外源化学物按一定方式或途径与机体接触,用最灵敏的实验方法和观察指标,未能观察到任何对机体的损害作用的最高剂量,也称为未观察到损害作用的剂量。最大无作用剂量是根据亚慢性试验的结果确定的,是评定毒物对机体损害作用的主要依据。
四、剂量、剂量—效应和剂量—反应关系
剂量:既可集体接触化学物的量,或在实验中给予机体受试物的量,又可指化学毒物被吸收的俩量或在体液和靶器官中的量。大小意味着生物体接触毒物的多少,是决定毒物对机体造成损害的最主要的因素。
效应:即生物学效应,指机体在接触一定剂量的化学物后引起的生物学改变。生物学效应一般具有强度性质,为量化效应或称计量资料。例如,有神经性毒剂可抑制胆碱酯酶,酶活性的高低则是以酶活性单位来表示的。效应用于叙述在群体中发生改变的强度时,往往用测定值的均数来表示。
反应:指接触一定剂量的化学物后,表现出某种生物学效应并达到一定强度的个体在群体中所占的比例,生物学反应常以“阳性”、“阴性”并以“阳性率”等表示,为质化效应或称计数资料。例如,将一定量的化学物给予一组实验动物,引起50%的动物死亡,则死亡率为该化学物在此剂量下引起的反应。
“效应”仅涉及个体,即一个动物或一个人;而“反应”则涉及群体,如一组动物或一群人。效应可用一定计量单位来表示其强度;反应则以百分率或比值表示。
剂量-反应关系, 是指不同剂量的毒物与其引起的质化效应发生率之间的关系。剂量-反应关系是毒理学的重要概念,如果某种毒物引起机体出现某种损害作用,一般就存在明确的剂量反应关系(过敏反应例外)。剂量反应关系可用曲线表示,不同毒物在不同条件下引起的反应类型是不同的。

第二节 毒物在体内的生物转运与生物转化
一、毒物生物转运及概念
外源化学物与机体接触、吸收、分布和排泄的过程称为生物转运;外源化学物由机体接触到入血液的过程称为吸收;通过血流分散到全身组织细胞中为分布;在组织细胞中,外源化学物经各种酶系的催化,发生化学结构与物理性质的变化的这一过程称为代谢。代谢产物和一部分未经代谢的母体化学物排除体外的过程为排泄。
外源化学物的吸收:一毒物的吸收途径主要是胃肠道,呼吸道和皮肤,在毒理学实验中有时也利用皮下注射,静脉注射,肌肉注射和腹腔注射等方法使毒物被吸收。食品毒理学中,经消化道吸收是主要的途径,小肠是主要吸收部位。
影响胃肠道吸收的因素
(1)外源化学物的性质 一般说来,固体物质且在胃肠中溶解度较低者,吸收差;脂溶性物质较水溶性物质易被吸收;同一种固体物质,分散度越大,与胃肠道上皮细胞接触面积越大,吸收越容易;解离状态的物质不能借助简单扩散透过胃肠粘膜而被吸收或吸收速度极慢。
(2)机体方面的影响 胃肠蠕动情况 、胃肠道充盈程度 、胃肠道酸碱度、胃肠道同时存在的食物和外源化学物、某些特殊生理状况
外源化学物排泄
排泄是外源化学物及其代谢产物由机体向外转运的过程,是机体物质代谢过程中最后一个重要环节。排泄的主要途径是肾脏,随尿排出;其次是经肝、胆通过消化道,随粪便排出;挥发性化学物还可经呼吸道,随呼出气排出。
二、生物转化
(一)基本概念:外源化学物通过不同途径被吸收进入体内后,将发生一系列化学变化并形成一些分解产物或衍生物,此种过程称为生物转化或代谢。肝脏是机体内最重要的代谢器官,未经肝脏的生物转化作用而直接分布至全身,对机体的损害作用相对较强。
外源化学物的生物转化过程分两项反应:
第一相反应主要包括氧化、还原和水解;
第二相反应主要为结合反应, 结合反应指化学物经第一相反应形成的中间代谢产物与某些内源化学物的中间代谢产物相互结合的反应过程。
绝大多数外源化学物在第一相反应中无论发生氧化、还原或水解反应,最后必须进行结合反应排出体外。结合反应首先通过提供极性基团的结合剂或提供能量ATP而被活化,然后由不同种类的转移酶进行催化,将具有极性功能基团的结合剂转移到外源化学物或将外源化学物转移到结合剂形成结合产物。结合物一般将随同尿液或胆汁由体内排泄。 常见有葡萄糖醛酸化、硫酸化、乙酰化、氨基酸化、谷胱甘肽化、甲基化。

第三节 毒作用机制
一、直接损伤作用。如强酸或强碱可直接造成细胞和皮肤粘膜的结构破坏,产生损伤作用。
二、受体配体的相互作用与立体选择性作用,产生特征性生物学效应。
三、干扰易兴奋细胞膜的功能。毒物可以多种方式干扰易兴奋细胞膜的功能,例如,有些海产品毒素和蛤蚌毒素均可通过阻断易兴奋细胞膜上钠通道而产生麻痹效应。
四、干扰细胞能量的产生。通过干扰碳水化合物的氧化作用以影响三磷酸腺苷(ATP)的合成。例如,铁在血红蛋白中的化学性氧化作用,由于亚硝酸盐形成了高铁血红蛋白而不能有效地与氧结合。
五、与生物大分子(蛋白质、核酸、脂质)结合。毒物与生物大分子相互作用主要方式有两种,一种是可逆的,一种是不可逆的。如底物与酶的作用是可逆的,共价结合形成的加成物是不可逆的。
六、膜自由基损伤①膜脂质过氧化损害。②蛋白质的氧化损害。③DNA的氧化损害。
七、细胞内钙稳态失调。正常情况下,细胞内钙稳态是由质膜Ca2+转位酶和细胞内钙池系统共同操纵控制的。细胞损害时,这一操纵过程紊乱可导致Ca2+内流增加,导致维持细胞结构和功能的重要大分子难以控制的破坏。
八、选择性细胞死亡。这种毒性作用是相当特异的。例如,高剂量锰可引起脑部基底神经节多巴胺能细胞损伤,产生的神经症状几乎与帕金森氏病难以区分。在胎儿发育的某一阶段给孕妇服用止吐药物“反应停”,由于胚胎细胞毒性,使早期肢芽生成细胞丢失,而造成出生时婴儿缺肢畸形。
九、体细胞非致死性遗传改变。毒物和DNA的共价结合也可以通过引发一系列变化而致癌。
十、影响细胞凋亡。凋亡是在细胞内外因素作用下激活细胞固有的DNA编码的自杀程序来完成的,又称为程序性死亡。细胞凋亡是基因表达的结果,受细胞内外因素的调节,如果这一调控失衡,就会引起细胞增殖及死亡平衡障碍。细胞凋亡在多种疾病的发生中具有重要意义。例如,肿瘤的发生,病毒感染和爱滋病关系,组织的衰老和退行性病变以及免疫性疾病,病毒感染性疾病的发病机理都与凋亡有密切关系。如果受损伤的细胞不能正确启动凋亡机制,就有可能导致肿瘤。

第四节 毒物的毒效应
一、急性毒性
指机体一次给予受试化合物,低毒化合物可在24小时内多次给予,经吸入途径和急性接触,通常连续接触4小时,最多连续接触不得超过24小时。在短期内发生的毒效应。食品毒理学研究的途径主要是经口给予受试物,方式包括① 灌胃 ② 喂饲 ③ 吞咽胶囊等。
急性毒性研究的目的,主要是探求化学物的致死剂量,以初步评估其对人类的可能毒害的危险性。再者是求该化学物的剂量-反应关系,为其它毒性实验打下选择染毒剂量的基础。
(一)急性致死毒性实验:最常用的指标是LD50,它与LD100、LD0等相比有更高的重现性;是一个质化反应,而不能代表受试化合物的急性中毒特性。急性毒性分级标准并未完全统一。无论我国或国际上急性分级标准都还存在着不少缺点。我国《食品安全性毒理学评价程序和方法》(GB 15193.3-94)颁布的急性毒性(LD50)剂量分级标准见表。

表 急性毒性份级(LD50)剂量分级

急性毒性分级 大鼠口服LD50 相当于人的致死剂量
mg/kg mg/kg g/人
极 毒 <1 稍 尝 0.05
剧 毒 1~50 500~4000 0.5
中 等 毒 51~500 4000~30000 5.0
低 毒 501~5000 30000~250000 50.0
实际无毒 5001~15000 250000~500000 500.0
无 毒 >15000 >500000 2500.0

(二)非致死性急性毒性 :为了克服致死性急性毒性只能提供死亡指标这一缺点,非致死性急性毒性可提供常规的非致死急性中毒的安全界限和对急性中毒的危险性估计。评价指标有急性毒作用阈(Limac)。毒性效应是一种或多种毒性症状或生理生化指标改变。对于某些生理生化的改变,如体重、体力或酶活性等,Limac是指均值与对照组比较时,其差异有统计学意义的最低剂量。无论毒性效应是量效应还是质效应,在Limac及其以上1~2个剂量组中应存在剂量-反应关系。Limac越低,该受检物的急性毒性越大,发生急性中毒的危险性越大。

二、蓄积毒性
当化学物反复多次染毒动物,而且化学物进入机体的速度或总量超过代谢转化的速度与排出机体的速度或总量时,化学物或其代谢产物就可能在机体内逐渐增加并贮留某些部位。这种现象就称为化学物的蓄积作用,大多数蓄积作用会产生蓄积毒性。
蓄积毒性:指低于一次中毒剂量的外源化学物,反复与机体接触一定时间后致使机体出现的中毒作用。一种外源化学物在体内蓄积作用的过程,表现为物质蓄积和功能蓄积两个方面。在外源化学物毒理学评定的实际工作中,可根据受试物的蓄积毒性强弱作为评估它的毒性作用指标之一,也是制定卫生标准时选用安全系数大小的重要参考依据。

⑦ 一氧化碳中毒的生物化学机制

一氧化碳中毒的生物化学机制:一氧化碳与血红蛋白(Hb)可逆性结合引起缺氧,随着碳氧血红蛋白含量的逐渐增加,氧合血红蛋白中氧的解离和组织内二氧化碳的输出受到阻碍,最终导致组织缺氧和二氧化碳滞留。

一氧化碳在大气中数量最多、分布最广,是煤、石油等含碳物质不完全燃烧的产物,其生成机理为:RH→R→RO2→RCHO→RCO→CO(R表示碳氢自由基团)。

主要来源于冶金工业中炼焦、炼铁等生产过程;化学工业中合成氨、甲醇等生产过程;矿井放炮和煤矿瓦斯爆炸事故;汽车等交通工具尾气的排放;锅炉中燃料的不完全燃烧;家庭居室中煤炉产生的煤气或液化气管道漏气以及火山爆发、森林火灾、地震等自然灾害中一氧化碳的释放。

此外,高层大气的化学反应、二氧化碳的轻微解离作用及动物新陈代谢过程中也会产生少量的一氧化碳。

(7)毒作用的生物化学机制是什么扩展阅读

在通常状况下,一氧化碳是无色、无臭、无味、难溶于水的气体。

一氧化碳分子是不饱和的亚稳态分子,在化学上就分解而言是稳定的。 常温下,一氧化碳不与酸、碱等反应,属于惰性气体。

但一氧化碳与空气混合能形成爆炸性混合物,遇明火、高温能引起燃烧、爆炸,属于易燃、易爆气体。[26]因一氧化碳分子中碳元素的化合价是+2,能被氧化成+4价,具有还原性;且能被还原为低价态,具有氧化性。

由于一氧化碳分子中碳氧键很牢固,需要有很高的活化能,故一氧化碳实际上不能进行无催化分解。当一氧化碳活性吸附在某些物质的晶体表面上时,才有可能进行分解。

⑧ 生物化学原理分析高血氨的毒性作用机制合成尿素的代谢过程及其生理意义

咨询记录 · 回答于2021-12-16

⑨ 试述有机磷农药中毒与解毒的生物化学机制

以下内容和资料,来自互联网。
有机磷农药从消化道、呼吸道和皮肤进入机体,经血液和淋巴液循环分布到全身各器官和组织产生毒性作用。有机磷农药中毒的机理,一般认为是抑制胆碱酯酶的活性,有机磷农药属于不可逆性胆碱酯酶抑制剂。具体说就是,有机磷化合物与人体神经系统的胆碱酯酶(ChE)结合成磷酰化胆碱酯酶(即中毒酶),使胆碱酯酶(ChE)丧失正常水解乙酰胆碱(ACh)的功能,导致胆碱能神经递质乙酰胆碱(ACh)大量积聚,作用于有关器官的胆碱能受体(ChR),产生严重的胆碱能神经功能紊乱,而使有胆碱能受体的器官功能发生障碍,表现为胆碱能危象的各种症状。凡由脏器平滑肌、腺体、汗腺等兴奋而引起的症状,与毒蕈中毒所引起的症状相似,则称为毒蕈样症状;凡由交感神经节和横纹肌活动异常所引起的症状,与烟碱中毒所引起的症状相似,故称烟碱样症状。

有机磷农药中毒的解毒药有两大类,即生理拮抗剂(抗胆碱能药)与中毒酶重活化剂(又称复能剂)。此外还有复方制剂。
生理拮抗剂主要有两类:(1)外周性抗胆碱能药,如阿托品、山莨菪碱等,主要作用于外周M胆碱受体,对中枢作用小。(2)中枢性抗胆碱能药,如东莨菪碱、苯那辛、苄托品、丙环定等,对中枢M、N胆碱受体作用大,对外周M胆碱受体作用小。此外,尚有神经节阻断剂(作用于外周N1受体,如六甲溴铵)和神经肌肉阻断剂(作用于外周N2受体,如筒箭毒碱),但因毒副作用较大,临床上很少应用。最近新研制一种抗胆碱能药盐酸戊乙奎醚(又称长效托宁),对中枢MR(M胆碱受体)、NR(N胆碱受体)和外周MR均有作用,作用比阿托品强,选择性作用于M1、M3受体亚型,而对M2受<br>体亚型作用极弱,因此心率增快的副作用小,作用时间较长,生物半衰期约6~8h。
中毒酶重活化剂,主要为肟类重活化剂,此类药物可使被有机磷农药抑制的ChE恢复活性,亦作用于外周N受体,拮抗外周N症状。有下列几种:(1)氯解磷定(氯磷定,PAM—C1)一重活化作用强,毒性小,水溶性大,可供静脉注射,亦可供肌内注射,市场有售,是我国目前最好的重活化剂。(2)碘解磷定(解磷定,PAM-1)一重活化作用较差,毒性小,水溶性小,只可供静脉注射,市场有售,是我国次选的重活化剂。(3)甲磺磷定一为解磷定的甲磺酸盐,水溶性小,仅供静脉注射,我国尚未上市,主要在英国使用。(4)双复磷(DM04)一重活化作用强,毒性较大,水溶性大,可供静脉注射,亦可供肌内注射。但目前国内尚未上市,多见于欧洲各国。(5)双解磷(TMB4)一重活化作用最强,毒性大,水溶性大,可供肌内注射。因对肝脏毒性大,我国已取缔其使用,而仍用于美国及北约组织国家。(6)HI6-重活化作用强,对多种有机磷(包括难治性神经性毒剂梭曼)抑制的胆碱酯酶有重活化作用,毒性小,水溶性大,但水溶液不稳定。尚未广泛应用于临床。
复方制剂,是为了在战地对有机磷类化学毒剂(神经性毒剂)中毒的伤员进行战地急救,将生理拮抗剂与中毒酶重活化剂联合组成复方,称为神经毒急救针剂。急救针剂系根据有机磷毒物中毒救治的治疗原则(见后),选用了较好的(药效学与药物动力学)药物组成,不但对神经性毒剂中毒有较好的疗效,且对有机磷农药中毒的疗效也非常显着。国外如前华约组织国家的NEMICOL复方制剂(含阿托品、苯那辛及双复磷)和北约组织国家的TAB复方制剂(含双解磷、阿托品及苯那辛)。国内有解磷注射液(含阿托品、苯那辛及氯磷定)和苯克磷注射液(含苄托品、丙环定及双复磷)。

阅读全文

与毒作用的生物化学机制是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059