① 哪些机制保证从RNA到蛋白质翻译的稳定性
mRNA 5`末端帽子特征的生物学功能:
I: 使mRNA免遭核酸酶的破坏,保持其结构的稳定性;
II: 利于蛋白质起始因子的识别,从而促进翻译的起始。
② 高中生物“翻译”过程效率高的原因
效率高,为了提高翻译效率,真核生物细胞内一个基因通常多次被转录,转录后出细胞核的mRNA,经常有多个核糖体结合,独立完成多肽链的翻译。
③ 以RNA为遗传物质的生物体,如何进行基因的翻译和表达
体及免疫细胞受体是典型得生物文库. 在免疫系统中, 文库设计, 合成以及优化的整个过程都由生物体自己控制. 只有抗原结构和形成胚胎因子的遗传信息是外部的条件, 其余均是由内在因素自发控制. 因为免疫系统使用蛋白质结构文库, 它们将氨基酸作为文库的基本因素.
因为肽或以含氨基酸形成的蛋白质都是通过翻译遗传信息而合成的初产品, 需要序列的蛋白质能容易地借由向微生物如细菌或病毒体内插入修改后的遗传信息来获得. 微生物文库合成有几大优点. 可以克隆微生物使每种微生物只制造一种蛋白质, 而且即使只有一个细胞也可以利用细胞增殖简单克隆出足够数量. 使用生物的最大好处是他们能自我繁殖, 只需给予充足的补给.
这是对使用微生物的蛋白质合成过程的简短描述. 在合成用于制造目的蛋白质序列的DNA链之后, 合成其互补链, 如果需要的话使用酶. 为使合成的DNA在微生物中恰当的复制并翻译, 需要用病媒动物(vector)压缩它然后进入微生物之内. 蛋白质在微生物的表面上被表达, 下一步是寻找目的蛋白质.
制造文库需要多种遗传信息. 随机DNA合成或切片cDNA或某种生物全基因组DNA都可使用. 制造特定蛋白质的 DNA序列片断能被修改以制造突变蛋白质文库. 考虑到体积限制和微生物繁殖的表达速率, 可以制得109(十亿)种文库. 与106到107种合成文库相比, 这可是个大数. 5单元肽的数量是205(320万)种, 6单元的是6400万, 7单元肽的数量超过10亿. 因此, 如果改变了超过7氨基酸的肽, 就仅能制出没有包含全部可能组合的不完全文库. 但这并不意谓着我们不能制造超过7氨基酸的蛋白质. 对于长链蛋白质, 7个不同的氨基酸能被单独选择而且替换. 当DNA随机合成的时候, 可以重复DNA密码而指定相同的氨基酸, 并且改变产生的频率. 因此, 为得到所有可能的组合, 需要更多的克隆体.
::::抗菌素文库::::
抗菌素文库是最着名的蛋白质文库法之一. 抗菌素寄居宿主体内, 是一种含有衣壳和遗传物质的病毒. 这种方法在80年代中期发明, 在90年代开始用于多种领域.
M13和Lambda病毒是最着名的.
M13和lambda病毒
<http://www.cvm.msu.e/courses/mic569/docs/parasite/>
<http://www.hal.rcast.u-tokyo.ac.jp/genome/Present.htm>
M13 是一种薄长的病毒, 由于它的基因组体积小, 可以容易地制出多种文库. 不同于其他病毒, 它能到宿主细胞的外面而不损坏它们或抑制它们的生长. 已知M13在宿主细胞中增殖其遗传信息并且以包着衣壳的形式出现, 它能制造10种类型的蛋白质, 而且通常在pVIII, pIII衣壳中合成文库.
pVIII蛋白质包围其整个身体, 含有约50个氨基酸. 通常每一病毒表达2700个. 因为它的氨基端伸出衣壳, 可以修饰它以在其上表达一个不同的肽. 通常一个长肽不能够表达, 但是6单位的肽是可能的. 由于同时表达大量相同的文库分子, 尽管相对较短, 用它于多种配体反应是可以的.
pIII 蛋白质在病毒末端表达, 而且通常是含有406个氨基酸的3到5种蛋白质. 它能表达相当大的蛋白质因而可以将它用在全蛋白质或抗体文库种. 正常的抗体使用Fab, 即抗原识别区域, 或者说Fvs链. 抗菌素文库和杂种细胞是制造抗体的最着名的方法. M13是制造随机肽文库的理想材料, 而且病毒能够足够稳定的被沉淀和浓缩, 因而在1-10mL体积中筛选109种文库成为可能.
不同于M13, Lambda病毒在细胞质中包裹着衣壳, 当有足够数量后穿出衣壳而不是总是戴着衣壳出现. 换句话说, 如果表达不同的蛋白质, 它将会折叠的形状出现并具有恰当的功能. pV和D蛋白质普遍用于文库合成.
如同能在抗菌素表面表达蛋白质一样, 还有随机肽, 天然蛋白质碎片, 特异性突变蛋白质文库和部份抗体碎片, 他们可用于色谱材料, 蛋白质-蛋白质反应, 受体结合位搜索和药物发现.
::::细菌及酵母文库::::
不仅带有衣壳的病毒, 还有带有细胞壁和细胞膜的细菌也能用于文库表达. 革兰氏阳性菌和革兰氏阴性菌都能用来在细胞表面表达蛋白质, 还有大肠杆菌(E. coli), 一种革兰氏阴性菌, 也普遍使用. 大肠杆菌是如此有名, 以致于外行如我者也知道两种细菌: 一是大肠杆菌, 另一种是其余的. 细菌文库可以找出一种能够与抗体紧密结合的抗原, 然后将其用作疫苗. 细菌文库也可用于表达诊断抗体或受体文库, 以用于特定材料的分析.
革兰氏阳性菌 革兰氏阴性菌
<www.meddean.luc.e/.../DeptWebs/ microbio/med/gram/tech.htm>
<http://www.hhmi.org>
高等动物的蛋白质被蛋白质合成后的磷化作用或糖加成修饰的功能称为翻译修饰翻译修饰. 但是细菌作为一种原核生物 没有这种功能, 因而合成了一个蛋白质后要么它由于溶解度低而沉淀, 要么失活. 因此, 酿酒酵母, 一种真核细胞就被利用. 尽管酿酒酵母如细菌一般是单细胞, 它有翻译修饰功能并且能够使合成的蛋白质与原始的极为相似.
酵母
<news.bbc.co.uk/hi/english/health/ newsid_761000/761884.stm>
与病毒不同, 由于它有微米大小的细胞所以可以使用FACS(萤光活性细胞分类)技术. 文库中的蛋白质在细胞表面表达, 然后经过FACS机的细管, 这样萤光标记的目标分子就被加到其上. FACS根据萤光颜色和活性强度分类每个细胞. 分类不同颜色的目标分子并分类不同活性和选择性的细胞是可能的. 另外的优点是液相筛选, 它不必分离紧密附着的分子. 分类后的细胞再一次繁殖, 然后再筛选.
::::淘洗(Biopanning)::::
下面是一个合成的微生物文库的实例. 它的目的是寻找一种能够跟特定分子紧密连接的酶.
<http://www.hort.pure.e/CFPESP/Hasegawa/ha00002.htm>
首先,目标分子平均地被置于检光板上. 制备了的微生物文库被加到板上. 只有与目标分子紧密结合的微生物能够存留, 其余的都到了溶液中. 一段时间后, 除去没有结合的微生物, 然后以恰当的溶液洗涤弱结合或偶然结合的微生物. 目标分子结合的紧密程度决定了洗涤过程. 仍然存留的微生物可通过加入低pH或高浓度的目标分子而分离, 通过繁殖增加数量. 有时结合程度太强时分离它们而不致死细菌是困难的. 如果它是噬菌体, 而不是分离, 那就可以直接感染宿主细胞. 由于存在偶然未考虑的微生物种类, 第一次增殖的微生物直接进行重复筛选-增殖的过程以增加含有活性蛋白质的克隆体数量. 最后在低浓度下培养后, 每个克隆体得以分离. 通常选出几十个克隆体用于DNA序列分析. 如果从DNA信息得到的肽结构是可识别的而且大多数克隆体表现出相同的肽序列, 那就意味着成功了. 然而, 因为蛋白质可能对多种克隆体表现出毒性而且 DNA表达率能改变, 总是有一种可能性存在, 即克隆体增殖速度和表达效果均好于期望的筛选结果. 因此, 通过测量肽合成及键强度的证实步骤是必需的.
即使在被获得的DNA或肽中有重要的药物候选者, 它们也将在蛋白质激酶的作用下在体内迅速水解. 因此, 用具有相似肽结构的人造分子取代它们是必需的, 尽管这个步骤非常困难. 几年以前麻州理工学院的Peter Kim小组报道了一个有趣的实验, 他们用D-氨基酸取代其光学异构体天然L-氨基酸以降低水解率. 他们使用人造D-氨基酸作为靶分子, 用天然L-氨基酸筛选发现了高亲合的肽. 因为真正的受体是由L-氨基酸构成, 也即其镜像, 于是他们合成了已发现的L-肽的镜像, 即D-肽. 当D-肽被用于天然受体的时候, 它仍然表现了高活性. Perter Kim, 过去一直作HIV感染途径和治疗方面的工作, 现在正在Merk工作, 他是在Sung-ho Kim博士那一代之后最强有力的韩国诺贝尔奖候选人.
::::DNA, RNA 文库::::
微生物蛋白质文库技术基本基于活体生物的自我再生能力. 那就是, 通过放大(饲养)少量已获得的候选分子来提高纯度和数量. 蛋白质是活体生物利用遗传信息的产物这一点也非常重要. 如果用DNA或RNA而不是蛋白质可以吗? PCR(DNA扩增技术)的发展, 使得自90年代早期以来使用核酸做文库成为可能.
因为DNA和RNA是由4种单位构成, 10长度的低聚体有410(约106=一百万)种, 20长度的低聚体文库有约1012种. 通过使用自动固相DNA合成机, 序列中的5'端和3'端被修饰, A, T, C和G随机放置, 每个约占序列的25%. 当有了一条链后, 就通过使用酶或PCR扩增复制它. 通常约1014-15个分子被合成和使用, 但是时常存在大约40个随机引入位(1024种), 有时他们以不完全文库系列开始. 对于DNA文库, 基本使用DNA本身, 而对于RNA文库, 需要T7 RNA 聚合酶转录.
制备的文库按照与靶分子结合程度筛选;用PCR扩增DNA, 用RT-PCR扩增RNA. 蛋白质, 不同的核酸, 糖类和小分子都可用作靶分子. 放大了的文库的筛选和扩增过程被重复直到1014-15 的起始数量降至几百, 然后分析获得的候选分子的序列, 并且测量每个的亲合强度.
SELEX
<http://web.uvic.ca/sciweb/Courses/B300/B300.Outline.html>
这些已获得的DNA和RNA叫做智能配体(aptamers), 它们表现出对蛋白质靶分子的强亲合性, 高1nM Kd. 智能配体抑制靶分子在体内的功能, 但是它很快地被体内的核酸酶破坏. 为了解决这个问题, 文库的一些部份用人造核酸取代以增强对核酸酶的抵抗性. 在他们之中, 核酶(ribozymes), 一种可以催化其它化学反应的催化剂, 也被发现而且可以确认RNA界假说.
参考资料:http://www.nyu.e/classes/ytchang/book/c006.html
④ mRNA在翻译过程中与核糖体作用的几个特殊位点以及解说
1. PABP在翻译起始中的作用
所有真核生物mRNA 5′端都有帽子结构,早在1976年Shtkin就根据体外翻译实验结果指出,5′端帽子有增强翻译效率的作用。此后众多研究证实,大多数mRNA的翻译依赖于帽子结构。
除了帽子外,真核生物mRNA的3′端大都有polyA尾巴,在许多体内实验和高活性的体外翻译体系中都观察到,mRNA polyA结构与翻译效率有直接的关系,带polyA的mRNA比无polyA尾巴的相应mRNA的翻译效率高得多。5′端帽子和3′端polyA能够协同地调节mRNA的翻译效率。进一步研究表明,真核生物翻译起始过程中,polyA被PABP所结合,通过PABP影响翻译。
PABP在真核生物中高度保守,含有4个RNA识别模体(RNA recognition motif, RRM)。Sachs等首先证明,PABP参与翻译起始。PABP能协助60S亚基与40S亚基结合从而促使80S核糖体的形成〔5〕。生化方面的证据也揭示了PABP在翻译起始中的作用。无论是polyA还是5′端帽子结构都不能单独作用于翻译,而只能协同作用,PABP在此过程中参与帽子和其起始因子的相互作用〔3、6〕。可能PABP可以直接与CBP作用或通过一个中介物间接作用(如图1),通过这种相互作用,mRNA的两末端在空间上十分靠近而形成环状。这与40多年前电子显微照相观察到多核糖体是环状的实验结果一致。可能真核生物就是通过两末端作用而提高翻译效率的。
图1 翻译起始mRNA两末端的相互作用
如果在溶菌酶的体外翻译体系中加入外源polyA,蛋白质的合成就受抑制,这表明外源polyA结合(squester)了一种翻译必须成分。Gallie等还发现,没有帽子结构的mRNA的抑制效应比有帽子的mRNA大,表明含5′端帽子的mRNA能高效竞争易被外源polyA结合的某成分。而且,加入纯化的eIF4F和eIF4B能逆转polyA导致的抑制效应。可见,这种外源polyA所结合的成分就是eIF4F、eIF4B。虽然这些因子能直接作用于polyA,但是它们与polyA的亲合力只有它们与PABP的亲合力的二分之一左右〔7〕。对此最可能的解释是,polyA与eIF4F、eIF4B的结合是通过PABP/polyA复合物和各因子间的蛋白质-蛋白质相互作用完成的。
在酵母和植物中,PABP与eIF4F(eIFiso4F)的大亚基eIF4G(eIFiso4G)直接作用而促进40S亚基与mRNA结合〔7、8〕。但哺乳动物的PABP却不和eIF4G直接作用。最近在哺乳动物中发现了一个与eIF4G具一定同源性的PABP作用蛋白,PAIP-1。Craig等〔9〕就此提出了一个模型,认为哺乳动物PABP和eIF4A以PAIP-1为中介而在polyA和5′-UTR间形成一个桥,5′端帽子和polyA对翻译起始的协同作用或许是按以下步骤完成的:eIF4A通过与eIF4G作用而召集于5′端帽子,而帽子反过来又促进eIF4A的召集反应(图1),然后eIF4A以PAIP-1为中介与PABP作用〔4、9〕。在植物中,不但eIF4F(eIFiso4F)和eIF4B能分别提高PABP对polyA的亲和力,而且两者还能协同影响PABP对polyA的结合力。提示PABP、eIF4F、eIF4B三因子间必有一个功能上的相互作用〔7〕。而在哺乳动物体内,eIF4F含量较低,为提高翻译效率,eIF4F与PABP结合以分别提高它们与帽子及polyA的结合〔4〕。
PABP与其相关起始因子的分子间相互作用受细胞间PABP和mRNA浓度的控制,在一定浓度下,polyA(很可能是与PABP共同作用)能选择性提高体外mRNA的翻译。而且,两末端的这种PABP参与的分子间相互作用对翻译前mRNA的完整性起着检测作用,从而可以阻止不完整的mRNA的翻译。PABP在起始中参与分子间作用的另一个原因,也许是通过两末端靠近促进再起始。已有证据表明,40S亚基在翻译结束后仍与mRNA结合在一起;与mRNA结合的核糖体能被优先召集。在GCN4 ORF的上游有 4个小的上游开放阅读框(suORF)。GCN4 mRNA为了翻译远端开放阅读框,40S亚基在近端suORF翻译后仍与mRNA结合着。随着第一suORF翻译的终止及60S亚基的脱离,仍有50%的40S亚基与mRNA结合继续进行扫描,从而提高翻译效率。
40S亚基在翻译终止后,仍结合于mRNA的3′-UTR有利于再起始,而3′-UTR长度决定其结合的时间。翻译效率低的mRNA往往利用这种机制,构建一系列3′-UTR长度不一的mRNA,随着3′-UTR长度加长,翻译效率也提高。3′-URT越长,翻译终止后,核糖体仍结合于3′-UTR的时间也长,从而提高了它们的召集反应。而且在此过程中,结合在mRNA上的40S亚基浓度比已从mRNA上脱离的40S亚基浓度高。PABP/polyA复合物和eIF4F/5′端帽子复合物可能便于再召集〔4〕。
2. 两末端的相互作用提高mRNA稳定性
PABP和CBP的相互作用不但能促进高效翻译起始,而且在维持mRNA的完整性方面也起着重要作用〔4、9〕。在酵母和哺乳动物中,mRNA在降解时,去polyA的反应发生于去帽子之前。polyA首先降解导致PABP从mRNA上释放,随着PABP的释放,5′端帽子被去帽子酶DcplP切掉,整个mRNA也迅速被5′→3′RNA核糖体外切酶XrnlP降解。PABP从mRNA上的释放使5′端帽子易受攻击,PABP在此过程中起了保护作用。PABP能增强植物eEF4F和帽子结构的结合,说明PABP是以eIF4G为中介通过稳定eIF4E与帽子的结合以发挥其功能〔2〕。而在哺乳动物中,mRNA的去polyA发生在5′ 端帽子降解之前,说明PABP很可能以PAIP-1为中介促进eIF4F与帽子结合而发挥其保护作用〔4〕。
3. mRNA两端功能性作用的调节
有多种内外因素调节mRNA 5′端帽子和polyA的相互作用,如蛋白质修饰等。哺乳动物细胞培养时,当血清饥饿时翻译受抑制,反之翻译又被激活。此外,胰岛素也能以浓度依赖的方式诱导血清饥饿细胞帽子/polyA协同作用促进翻译,说明对PABP和帽子相关起始因子相互作用的调节(可能以PAIP-1为中介)是胰岛素信号转导途径的一部分〔11〕。胰岛素的调节可能是通过蛋白因子磷酸化来完成的〔4〕。如诱导eIF4E发生磷酸化,从而提高了它与帽子结合的活性,或促使eIF4E结合蛋白发生磷酸化,促进eIF4E与eIF4G的相互作用,最终影响eIF4A的召集,从而影响其与PAIP-1作为两末端间“桥”的作用。
基因诱导是另一种调节两末端功能性作用的方式。研究发现,T细胞被激活后诱导产生PAIP-1,然后PAIP-1与polyA结合蛋白(iPABP)作用〔9〕。
环境胁迫如热激,一方面能使多核糖体快速解体,另一方面使mRNA的帽子和polyA的相互作用下降而抑制翻译。热激直接或间接地使与PABP结合的蛋白因子的磷酸化状态发生变化,如使哺乳动物eIF4E和eIF4B〔1〕、植物eIF4B〔11〕发生去磷酸化。去磷酸化直接降低了植物eIF4F/eIF4B和PABP的作用;而在哺乳动物中,去磷酸化间接降低eIF4A的召集及其与PAIP-1/PABP/polyA复合物作用的机会,从而抑制翻译。
4. 无polyA和帽子的mRNA末端相互作用的功能
研究表明,没有polyA或帽子结构的mRNA的两末端也能发生相互作用对翻译起作用。哺乳动物中的细胞周期调控组蛋白的mRNA没有polyA,但其5′端有一个保守的茎环结构,该结构是核胞质转运和调控不同细胞周期时mRNA稳定性所必需的。同时发现它对以茎环结构终止的哺乳动物mRNA的高效翻译也是必需的。这种茎环结构类似于polyA,它作为调节因子的活性依赖于5′端帽子,表明5′端帽子和茎环结构间也存在相互作用。
在病毒中发现了一些有polyA而没有5′端帽子的mRNA,如番茄蚀刻病毒的基因组mRNA,利用一个5′端前导序列代替5′端帽子授于mRNA进行不依赖帽子的翻译功能。5′端前导序列就象5′端帽子一样和polyA发生相互作用,促进高效翻译。但是,介导这种相互作用及细胞周期调控组蛋白mRNA两末端作用的蛋白因子仍在研究之中。
其它一些缺帽子或polyA的病毒RNA两端也显示了功能性相互作用,这种作用是通过与帽子或polyA功能类似的RNA元件来完成的。如TMV mRNA没有polyA,但含有一个20bp的3′-UTR,具有与polyA相似的功能。此3′-UTR是一个包含5个RNA假结(pseudo-knots)和一个类似tRNA的末端区域的高级结构。
没有polyA或帽子结构的非保守mRNA的研究说明,开放阅读框旁侧的序列元件或许是高效翻译的基础。关于蛋白质翻译机制还有许多问题仍不清楚,环状mRNA翻译可能就是蛋白质翻译机制之一,这还有待进一步研究。
⑤ 多个核糖体参与一条多肽链的合成
A、一个核糖体完成一条多肽链的合成,A错误;
B、一条mRNA上结合多个核糖体,同时完成多条多肽链的合成,能提高翻译效率,B正确;
C、一种氨基酸可能对应多种密码子,这样使生物体具有一定的容错性,提高翻译效率,C正确;
D、一个细胞中有多条相同的信使RNA,可翻译出更多的蛋白质,D正确.
故选:A.
⑥ 蛋白质翻译高效性的原因
1.mRNA携带信息的精确性,mRNA转录,剪接,加工,修饰都是一系列严格调控的过程.保证DNA存储的遗传信息准确无误的传递到RNA.真核生物mRNA前体经过5端加帽,3端加尾,内含子切除等等复杂的加工过程后成为成熟的mRNA,这也是受多因子调控的复杂的酶促过程.
2.核糖体结构与机能的精确性.在翻译过程中,核糖体大小亚基,tRNA以及各种酶类都参与翻译过程,SD序列与16SrRNA 的3`端反向互补将mRNA置于核糖体适当位置,使翻译正确起始.各种氨基酸对应的氨酰tRNA合成酶具有的特异性识别氨基酸和携带有密码子的tRNA,tRNA通过反密码子与mRNA密码子准确配对,也是严格调控机制.
详细情况还请参考专业书籍,沃森《Molecular Biology of Gene》 朱玉贤《现代分子生物》
⑦ 真核生物转录前水平的基因表达调节主要有哪些方式
真核生物转录前水平的基因表达调节主要有哪些方式
1、转录起始水平。这一环节是调控的最主要环节,由对基因转录活性的调控来完成,包括基因的空间结构、折叠状态、DNA上的调控序列、与调控因子的相互作用等。a.活化染色质:在真核生物体内,RNApol与启动子的结合受染色质结构的限制,需通过染色质重塑来活化转录。常态下,组蛋白可使DNA链形成核小体结构而抑制其转录,转录因子若与转录区结合则基因具有转录活性。因而基础水平的转录是限制性的,核小体的解散时必要前提,组蛋白与转录因子之间的竞争结果可以决定是否转录。组蛋白的抑制能力可因其乙酰化而降低。另外,由于端粒位置效应或中心粒的缘故,抑或是收到一些蛋白的调控,真核生物细胞可能出现10%的异染色质,异染色质空间上压缩紧密,不利于转录。b.活化基因:真核生物编码蛋白的基因含启动子元件和增强子元件(启动子:在DNA分子中,RNA聚合酶能够识别、结合并导致转录起始的序列。增强子:指能使与它连锁的基因转录频率明显增加的DNA序列。),转录因子与启动子元件相互作用调节基因表达;转录激活因子与增强子元件相互作用,再通过与结合在启动子元件上的转录因子相互作用来激活转录。两种元件以相同的机制作用于转录。真核生物RNApol对启动子亲和力很小或没有,转录起始依赖于多个转变路激活因子的作用,而若干个调节蛋白与特定DNA序列的结合大大提高了活化的精确度,无疑是这一作用机制的一大优势。在这一作用中,增强子与适当的调节蛋白作用以增加临近启动子的转录是没有方向性的,典型的增强子可以出现在转录起始位点上游或下游。RNApol与启动子的结合一般需要三种蛋白质的作用,即基础转录因子(又名通用转录因子)、转录激活因子和辅激活因子。能直接或间接地识别或结合在各类顺式作用元件上,参与调控靶基因转录的蛋白质又名转录因子。基础转录因子与RNApol结合成全酶复合物并结合到启动子上,转录激活因子可以以二聚体或多聚体的形式结合到DNA靶位点上,远距离或近距离作用域启动子。在远距离作用时,往往还会有绝缘子参与,以阻断邻近的增强子对非想关基因的激活;在近距离作用时,结构转录因子可以改变DNA调控区的形状,使其他蛋白质相互作用、激活转录。2、转录后水平。真核生物mRNA前体须经过5’-加帽、3’-加尾以及拼接过程、内部碱基修饰才能成为成熟度的mRNA,加帽位点与加尾位点、拼接点的选择就成了调控的手段。a.5’-加帽:几乎所有的真核生物和病毒mRNA的5’端都具有帽子结构,其作用为保护mRNA免遭5’外切酶降解、为mRNA的核输出提供转运信号和提高翻译模板的稳定性和翻译效率。实验证实,对于通过滑动搜索起始的转录过程来说,mRNA的翻译活性依赖于5’端的帽子结构。b.3’-加尾:3’UTR序列及结构调节mRNA稳定性和寿命
⑧ 高中生物,一个核糖体为什么与mRNA的结合部位形成2个tRNA
一个核糖体上可以覆盖mRNA上6个碱基的位置,刚好可以允许2个tRNA进入。
这一结构现象可以说是生物体集约化利用资源的一个典型案例,既保证反应正常进行,又避免浪费
2个tRNA能够携带2个氨基酸进入核糖体,随后相邻的氨基酸之间脱水缩合反应生成肽键形成多肽,如果有3个tRNA的位置,要形成2个肽键,根据tRNA进入的速度及肽键形成的速度而定,显然时间资源出现浪费,如果仅有1个tRNA的位置,则不会出现氨基酸相邻形成肽键的过程。
故我认为,这个机制是生物体提高效率的最佳选择,也可以看成是生物进化,适应环境的最佳选择
⑨ 生物学:转录和翻译忠实性怎么保持
生物体DNA复制具有高度的真实性,复制107~1011碱基对中只有一个错误碱基。
1. DNA聚合酶的碱基选择作用。DNA聚合酶能够依照模板的核苷酸,选择正确的dNTP掺入到引物末端,这称为DNA聚合酶的碱基选择作用。
2. DNA聚合酶对底物的识别作用。DNA 聚合酶有两种底物,一是DNA模板-引物,另一是dNTP的2价离子复合物。
3. 3′→5′外切活性的校正阅读。DNA聚合酶的重要功能之一是校正错误碱基。
4. 错误修配。DNA聚合酶的校对作用(切除错误掺入DNA的碱基)。
蛋白质合成的忠实性是由以下机制保证的:
1. 转录的忠实性。贮存在DNA上的遗传信息通过RNA传递给蛋白质,RNA与蛋白质之间的联系是通过遗传密码的破译来实现的。以碱基配对的原则形成RNA链。
2. 翻译的正确性。氨酰RNA酶的专一性,对氨基酸和RNA具高度的选择性,以防错误的氨基酸掺入。RNA准确无误地将所需的氨基酸运送到核糖体上,三叶草型二级结构,通过密码子、反密码子的配对与RNA结合,将其末端所转运的氨基酸运送到延伸的多肽上。RNA上每3个核苷酸翻译成蛋白质多肽链上的一个氨基酸,这3个核苷酸就成为密码子。翻译时从起始密码子AUG开始,沿着RNA5′到3′端的方向连续阅读密码子,直至终止密码子,生成一条具特定序列的多肽链。新的多肽链中氨基酸的组成和排列顺序决定于其DNA的碱基序列。
3. 氨酰tRNA合成酶具有高度的专一性和水解校正作用。(1)氨酰tRNA合成酶具有高度的专一性,对将要活化的氨基酸及相应的受体(tRNA)皆有高度的选择性。(2)氨酰tRNA合成酶具有水解校正作用,它具有两个活性部位,一个为合成部位,另一个为水解部位。它的校正作用可能是一种叠加的筛网,要通过第一次和第二次筛选。第一次筛选时,比正确氨基酸大的氨基酸,不能进入合成酶的活性部位,从而不被活化;第二次筛选时,比正确氨基酸小的氨基酸,虽能被活化,但由于不太适合酶的活性部位,活化速度慢。已被活化的错误的氨基酸进入水解部位后,即被水解掉,从而保证蛋白质合成的忠实性。
⑩ 遗传信息是如何进行翻译的
生物细胞中的DNA是生物体传宗接代的命根子,它就如同一份绝密图纸,是千万不能遗失的。任何生物体直到死之前,都要按照蓝图所规定的模型去工作。所以这幅蓝图只能锁在细胞核这个保险箱中,只许抄写,不能借出或销毁。此外,DNA分子很长,细胞核这个工作场所太小,装配起来不方便,效率低,必须依靠翻译家的帮助,才能完成如此程序化的工作。这也正是为什么细胞不直接把氨基酸运到细胞核中的DNA那里合成,而要经过RNA的翻译的原因所在。