导航:首页 > 生物信息 > 生物电现象是如何传导的

生物电现象是如何传导的

发布时间:2022-10-23 18:27:23

Ⅰ 生物电是如何产生的

细胞是由细胞膜将外界隔开,保持细胞内环境的稳定。细胞膜是选择性半透膜,细胞内外的物质交换要得到这层膜的允许。
实验发现,人体中的细胞内液和细胞外液含有多种离子,包括阴离子和阳离子,其中钠和钾是比较重要的阳离子。细胞内的钾离子浓度较细胞外高,细胞外的钠离子则高于细胞内。在细胞膜上存在一种蛋白,称为钠钾通道或钠钾泵,细胞内外钠钾交换是通过钠钾泵来完成的。通常状态下钠钾泵关闭,细胞外钠离子浓度虽然很高,但无法穿过细胞膜进入细胞内。而钾离子则稍有不同,允许一小部分钾离子穿过钠钾泵从细胞内流到细胞外。因为钾离子带有正电荷,所以流失后,细胞内呈现负电状态。这时如果将细胞内插入一个微电极,得到一个负电势(生理学上将电压称为电势)数值,称为静息电位。
当细胞受到刺激时,细胞膜上的钠钾泵迅速开放,根据物质都有从高浓度向低浓度运动的扩散原理,细胞外钠离子大量涌进细胞内,而细胞内的钾离子虽然有一部分事先运动到细胞外,但细胞内的浓度还是高于细胞外,于是钾离子也由细胞内流到细胞外。值得注意的是,钠离子进入细胞内的速度要大于钾离子出胞的速度,一般来说,三个钠离子进入换出两个钾离子流出。
总的结果就是大量的阳离子由细胞外进入细胞内,是原本是负电势的细胞转换成正电位,通过微电极的检测发现,这时的细胞形成一个峰电位,称为动作电位。细胞在形成动作电位后,产生一个运动,如肌细胞的收缩或腺体细胞的分泌等。而后细胞内外的钠钾离子再从新分布,细胞内的钠离子被移除到细胞外,细胞外的钾离子被移进细胞内,细胞重新恢复静息电位的状态,等待下一个刺激引起的动作电位。

Ⅱ 生物:细胞的电现象是如何形成的电压一般是多少

细胞的生物电现象
(1)静息电位及其产生机制:静息电位是指细胞在未受刺激时存在于细胞膜内、外两侧的电位差,绝大多数细胞的静息电位是稳定的负电位。机制:①钠泵主动转运造成的细胞膜内、外Na+和K+ 的不均匀分布是形成生物电的基础。②静息状态下细胞膜主要是K+通道开放,K+受浓度差的驱动向膜外扩散,膜内带负电荷的大分子蛋白质与K+隔膜相吸,形成膜外为正,膜内为负的跨膜电位差,当达到平衡状态时,此时的跨膜电位称为K+平衡电位。安静状态下的膜只对K+有通透性,因此静息电位就相当于K+平衡电位。
(2)动作电位及其产生机制:在静息电位的基础上,兴奋细胞膜受到一个适当的刺激,膜电位发生迅速的一过性的波动,这种膜电位的波动称为动作电位。它由上升支和下降支组成,两者形成尖峰状的电位变化称为锋电位。上升支指膜内电位从静息电位的-90mV到+30mV,其中从-90mV上升到0mV,称为去极化;从0mV到+30mV,即膜电位变成了内正外负,称为反极化。动作电位在零以上的电位值称为超射。下降支指膜内电位从+30mV逐渐下降至静息电位水平,称为复极化。锋电位后出现膜电位的低幅、缓慢的波动,称为后电位。其产生机制:
①上升支的形成:当细胞受到阈刺激时,引起Na+内流,去极化达阈电位水平时,Na+通道大量开放,Na+迅速内流的再生性循环,造成膜的快速去极化,使膜内正电位迅速升高,形成上升支。主要是Na+的平衡电位。
②下降支的形成:钠通道为快反应通道,激活后很快失活,随后膜上的电压门控K+通道开放,K+顺梯度快速外流,使膜内电位由正变负,迅速恢复到刺激前的静息电位水平,形成动作电位下降支(复极相)。

Ⅲ 生物电是怎样形成的

生物电现象是
指生物机体在进行生理活动时所显示出的电现象,这种现象是普遍存在的.细胞膜内外都存在着电位差,当某些细胞(如神经细胞、肌肉细胞)兴奋时,可以产生动作电位,并沿细胞膜传播出去。而另一些细胞(如腺细胞、巨噬细胞、纤毛细胞)的电位变化对于细胞完成种种功能也起着重要作用。随着科学技术的日益进展,生物电的研究取得了很大的进步。在理论上,单细胞电活动的特点,神经传导功能,生物电产生原理,特别是膜离子流理论的建立都取得了一系列的突破。在医学应用上,利用器官生物电的综合测定来判断器官的功能,给某些疾病的诊断和治疗提供了科学依据。我们的临床工作中经常遇到兴奋性、兴奋与兴奋传导这些概念,堵隔壁生物电有关。了解了生物电的现代基本理论,对于正确理解这些概念以及心电、脑电、肌电等的基本原理都有重要意义。细胞生物电现象有以下几种1、静息电位组织细胞安静状态下存在于膜两侧的电位差,称为静息电位,或称为膜电位。细胞在安静状态时,正电荷位于膜外一侧(膜外电位为正),负电荷位于膜内一侧(膜内电位为负,)这种状态称为极化。如果膜内外电位差增大,即静息电位的数值向膜内负值加大的方向变化时,称为超极化。相反地,如果膜内外电位差减小,即膜内电位向负值减小的方向变化,则称为去极化或极化。一般神经纤维的静息电位如以膜外电位为零,膜内电位为-70~-90m2、动作电位当细胞受刺激时,在静息电位的基础上可发生电位变化,这种电位变化称为动作电位。动作电位的波形可因记录方法不同而有所差异以微电极置于细胞内,记录到快速、可逆的变化,表现为锋电位;锋电位代睛细胞兴奋过程,是兴奋产生和传导的标志。锋电位在示波器上显示为灰锐的波形,它可分为上升支和一个下降支。上升支先是膜内的负电位迅速降低到零的过程,称为膜的去极化(除极),接着膜内电位继续上升超过膜外电位,出现膜外电位变负而膜内电位变正的状态,称为反极化。下降支是膜内电位恢复到原来的静息电位水平的过程,称为复极化。锋电位之后到完全恢复到静息电位水平之前,还有微小的连续缓慢的电变化,称为后电位。心肌细胞的生物电现象和神经纤维、骨骼肌等细胞一样,包括安静时的静息电位和兴奋时的动作电位,但有其特点。心肌细胞安静时,膜内电位约为-90mv。心肌细胞静息电位形成的原理基本上和神经纤维相同。主要是由于安静时细胞内高农度的K+向膜外扩散而造成的。当心肌细胞接受刺激由静息状态转入兴奋时,即产生动作电位。其波形与神经纤维有较大的不同,主要特征是复极过程复杂,持续时间长。心肌细胞的某一点受刺激除极后,立即向四周扩散,直至整个心肌完全除极为止。已除极处的细胞膜外正电荷消失,未除极处的细胞膜仍带正电而形成电位差。除极与未除极部位之间的电位差,引起局部电流,由正极流向负极。复极时,最先除极的地方首先开始复极,膜外又带正电,再次形成复极处与未复极处细胞膜的电位差,又产生电流。如此依次复极,直至整个心肌细胞的同时除极也可以看成许多电偶同时在移动,不论它们的强度和方向是否相同,这个代表各部心肌除极总效果的电偶称为等效电偶。心脏的结构是一个立体,它除极时电偶的方向时刻在变化,表现在心电图上,是影响各波向上或向下的主要原因。由于各部心肌的大小、厚薄不同,心脏除极又循一定顺序,所以心脏除极中,等效电偶的强度时刻都在变化。它主要影响心电图上各波的幅度。人体是一个容积导体,心脏居人体之中,心脏产生的等效电偶,在人体各部均有它的电位分布。在心动周期中,心脏等效电偶的电力强度和方向在不断地变化着。身体各种的电位也会随之而不断变动,从身体任意两点,通过仪器(心电图机)就可以把它描记成曲线,这就是心电图.
随着分子生物学和膜的超微结构研究的进展,人们更试图从膜结构中某些特殊蛋白和其他物质的分子构型的改变,来理解膜的通透性能的改变和生物电的产生,这将把生物电现象的研究推进到一个新阶段。

Ⅳ 生物电传输的根本原因是什么

首先,生物电是在生命活动过程中在生物体内产生的各种电位或电流,包括细胞膜电位、动作电位、心电、脑电等。很多生物都有生物电,教科书上最常见的就是电鳗(由于ATP和点位的变化)的例子,还有含羞草(由刺激点发生的负电位变化)。
原因很复杂(简单的说),当神经细胞受到较强的电刺激时,在阴极产生的局部电反应随刺激增强而增大,超过阈值,就会引起一个能沿神经纤维传导的神经冲动。神经冲动到达的区域伴有膜电位的变化,称动作膜电位(简称动作电位)。这是一个膜电位的反极化过程,即由原来的膜外较膜内正变为膜外较膜内负。因此,发生兴奋的部位与静息部位之间,出现电位差,兴奋部位较正常部位为负,电位可达 100毫伏以上。

Ⅳ 生物电在心脏内的传导

生物电兴奋在心脏内传导的途径如下:窦房结→心房肌→房室交界(延搁)→结间束→房室束及左、右束支→浦肯野纤维→心室肌。
心脏内兴奋传播途径中有两个高速度和一个低速度的特点。一个高速度发生在优势传导通路(0.06秒), 窦房结的兴奋可经此通路快速的达左、右心房, 使左、右心房同步兴奋和收缩。另一个高速度发生在浦肯野纤维,使兴奋快速传播到左、右心室,使两心室产生同步收缩, 实现心脏强有力的泵血功能。一个低速度发生在房室交界区, 特别是结区最慢, 兴奋在这里出现了房室延搁(0.1秒). 房室延搁的生理意义:使心房、心室依次兴奋收缩和舒张,避免发生房、室同时收缩,这样使心室有足够的充盈时间,以提高搏出量,有利于射血.

Ⅵ 生物电原理

生物电从哪里来

最早记录生物电现象的是18世纪末的意大利解剖医学家及物理学家路易·伽伐尼。有一次,当他在解剖一只青蛙时,发现当金属刀的刀尖碰到青蛙腿上外露的神经时,蛙腿发生了抽搐现象。于是,伽伐尼创造了术语“动物电”来描述这个现象,并由此认为肌肉活动是由电流或者是神经里的物质引起的。

生物电的科学解释是指生物细胞的静电压,以及在活组织中的电流,如神经和肌肉中的电流。生物细胞用生物电储存代谢能量,用来工作或引发内部的变化,并且相互传导信号。

生物学家认为,组成生物体的每个细胞都像一台微型发电机。一些带有正电荷或者负电荷的离于如钾离子、钙离子、钠离子、氯离子等,分布在细胞膜内外,使得细胞膜外带正电荷,膜内带负电荷。当这些离子流动时就会产生电流,并造成细胞内外电位差。

生物电通常都很微弱,比如,人的心脏跳动时,会产生1-2毫伏的电压,眼睛开闭时,会产生5-6毫伏的电压;读书或思考问题时,大脑会产生0.2-1毫伏的电压。当然,也有不少生物瞬间能产主非常大的电压,如前面提到的电鲶、电鳗等。

正因为通常状态下生物电的电压很低、电流也很弱,所以只有用精密的仪器才能测量到。直到20世纪初,荷兰生理学家威廉·艾因索维才在前人的基础上完善了用来测量生物电的电流计,研制出了第一台实用的心电图仪。

随着科技的发展,现在有了越来越精确地测量生物电的仪器。生物电测量在医学上的广泛应用大大促进了疾病的临床诊断,如用心电图仪测量心电图,用脑电图仪测量脑电图,它们在诊治疾病过程中起到了很重要的作用。

目前国内郑州三和医电的全息生物电检测仪是做的很好的,性价比高。可以查一下

Ⅶ 生物电如何产生的

生物电,为生物体内广泛、繁杂的电现象,是正常生理活动的反映。企图用一种学说,去解释各种生物体中所出现的各种不同的电现象是不可能的。
生物有机体是一个导电性的容积导体。当一些细胞或组织上发生电变化时,将在这容积导体内产生电场。因此在电场的不同部位中可引导出电场的电位变化,而且其大小与波形各不相同。
例如,有些植物受刺激后,会产生运动反应。这时,往往出现可传导的电位变化。比如,含羞草受刺激时,叶片发生的闭合运动反应,就能传布相当的距离。在这一过程中,由刺激点发生的负电位变化,可以每秒2~10毫米的速度向外扩布。电位变化在1~2秒内达到最大值,其幅值可达50~100毫伏。但恢复时间长,需几十分钟才能回到原来的极性状态,这一段负电位变化时期就是它的不应期。

Ⅷ 简述细胞生物电产生的原理

生物电现象是指生物细胞在生命活动过程中所伴随的电现象。它与细胞兴奋的产生和传导有着密切关系。细胞的生物电现象主要出现在细胞膜两侧,故把这种电位称为跨膜电位,主要表现为细胞在安静时所具有的静息电位和细胞在受到刺激时产生的动作电位。心电图、脑电图等均是由生物电引导出来的。

1.静息电位及其产生原理

静息电位是指细胞在安静时,存在于膜内外的电位差。生物电产生的原理可用"离子学说"解释。该学说认为:膜电位的产生是由于膜内外各种离子的分布不均衡,以及膜在不同情况下,对各种离子的通透性不同所造成的。在静息状态下,细胞膜对K+有较高的通透性,而膜内K+又高于膜外,K+顺浓度差向膜外扩散;细胞膜对蛋白质负离子(A-)无通透性,膜内大分子A-被阻止在膜的内侧,从而形成膜内为负、膜外为正的电位差。这种电位差产生后,可阻止K+的进一步向外扩散,使膜内外电位差达到一个稳定的数值,即静息电位。因此,静息电位主要是K+外流所形成的电-化学平衡电位。

2.动作电位及其产生原理

细胞膜受刺激而兴奋时,在静息电位的基础上,发生一次扩布性的电位变化,称为动作电位。动作电位是一个连续的膜电位变化过程,波形分为上升相和下降相。细胞膜受刺激而兴奋时,膜上Na+通道迅速开放,由于膜外Na+浓度高于膜内,电位比膜内正,所以,Na+顺浓度差和电位差内流,使膜内的负电位迅速消失,并进而转为正电位。这种膜内为正、膜外为负的电位梯度,阻止Na+继续内流。当促使Na+内流的浓度梯度与阻止Na+内流的电位梯度相等时,Na+内流停止。因此,动作电位的上升相的顶点是Na+内流所形成的电-化学平衡电位。

在动作电位上升相达到最高值时,膜上Na+通道迅速关闭,膜对Na+的通透性迅速下降,Na+内流停止。此时,膜对K+的通透性增大,K+外流使膜内电位迅速下降,直到恢复静息时的电位水平,形成动作电位的下降相。

可兴奋细胞每发生一次动作电位,膜内外的Na+、K+比例都会发生变化,于是钠-钾泵加速转运,将进入膜内的Na+泵出,同时将逸出膜外的K+泵入,从而恢复静息时膜内外的离子分布,维持细胞的兴奋性。

Ⅸ 生物电是什么

生物电现象是
指生物机体在进行生理活动时所显示出的电现象,这种现象是普遍存在的.细胞膜内外都存在着电位差,当某些细胞(如神经细胞、肌肉细胞)兴奋时,可以产生动作电位,并沿细胞膜传播出去。而另一些细胞(如腺细胞、巨噬细胞、纤毛细胞)的电位变化对于细胞完成种种功能也起着重要作用。随着科学技术的日益进展,生物电的研究取得了很大的进步。在理论上,单细胞电活动的特点,神经传导功能,生物电产生原理,特别是膜离子流理论的建立都取得了一系列的突破。在医学应用上,利用器官生物电的综合测定来判断器官的功能,给某些疾病的诊断和治疗提供了科学依据。我们的临床工作中经常遇到兴奋性、兴奋与兴奋传导这些概念,堵隔壁生物电有关。了解了生物电的现代基本理论,对于正确理解这些概念以及心电、脑电、肌电等的基本原理都有重要意义。细胞生物电现象有以下几种1、静息电位组织细胞安静状态下存在于膜两侧的电位差,称为静息电位,或称为膜电位。细胞在安静状态时,正电荷位于膜外一侧(膜外电位为正),负电荷位于膜内一侧(膜内电位为负,)这种状态称为极化。如果膜内外电位差增大,即静息电位的数值向膜内负值加大的方向变化时,称为超极化。相反地,如果膜内外电位差减小,即膜内电位向负值减小的方向变化,则称为去极化或极化。一般神经纤维的静息电位如以膜外电位为零,膜内电位为-70~-90m2、动作电位当细胞受刺激时,在静息电位的基础上可发生电位变化,这种电位变化称为动作电位。动作电位的波形可因记录方法不同而有所差异以微电极置于细胞内,记录到快速、可逆的变化,表现为锋电位;锋电位代睛细胞兴奋过程,是兴奋产生和传导的标志。锋电位在示波器上显示为灰锐的波形,它可分为上升支和一个下降支。上升支先是膜内的负电位迅速降低到零的过程,称为膜的去极化(除极),接着膜内电位继续上升超过膜外电位,出现膜外电位变负而膜内电位变正的状态,称为反极化。下降支是膜内电位恢复到原来的静息电位水平的过程,称为复极化。锋电位之后到完全恢复到静息电位水平之前,还有微小的连续缓慢的电变化,称为后电位。心肌细胞的生物电现象和神经纤维、骨骼肌等细胞一样,包括安静时的静息电位和兴奋时的动作电位,但有其特点。心肌细胞安静时,膜内电位约为-90mv。心肌细胞静息电位形成的原理基本上和神经纤维相同。主要是由于安静时细胞内高农度的k+向膜外扩散而造成的。当心肌细胞接受刺激由静息状态转入兴奋时,即产生动作电位。其波形与神经纤维有较大的不同,主要特征是复极过程复杂,持续时间长。

Ⅹ 生物电是什么它是怎么产生的在人体起着什么样的…

生物电现象是 指生物机体在进行生理活动时所显示出的电现象,这种现象是普遍存在的.细胞膜内外都存在着电位差,当某些细胞(如神经细胞、肌肉细胞)兴奋时,可以产生动作电位,并沿细胞膜传播出去。而另一些细胞(如腺细胞、巨噬细胞、纤毛细胞)的电位变化对于细胞完成种种功能也起着重要作用。随着科学技术的日益进展,生物电的研究取得了很大的进步。在理论上,单细胞电活动的特点,神经传导功能,生物电产生原理,特别是膜离子流理论的建立都取得了一系列的突破。在医学应用上,利用器官生物电的综合测定来判断器官的功能,给某些疾病的诊断和治疗提供了科学依据。我们的临床工作中经常遇到兴奋性、兴奋与兴奋传导这些概念,堵隔壁生物电有关。了解了生物电的现代基本理论,对于正确理解这些概念以及心电、脑电、肌电等的基本原理都有重要意义。细胞生物电现象有以下几种1、静息电位组织细胞安静状态下存在于膜两侧的电位差,称为静息电位,或称为膜电位。细胞在安静状态时,正电荷位于膜外一侧(膜外电位为正),负电荷位于膜内一侧(膜内电位为负,)这种状态称为极化。如果膜内外电位差增大,即静息电位的数值向膜内负值加大的方向变化时,称为超极化。相反地,如果膜内外电位差减小,即膜内电位向负值减小的方向变化,则称为去极化或极化。一般神经纤维的静息电位如以膜外电位为零,膜内电位为-70~-90m2、动作电位当细胞受刺激时,在静息电位的基础上可发生电位变化,这种电位变化称为动作电位。动作电位的波形可因记录方法不同而有所差异以微电极置于细胞内,记录到快速、可逆的变化,表现为锋电位;锋电位代睛细胞兴奋过程,是兴奋产生和传导的标志。锋电位在示波器上显示为灰锐的波形,它可分为上升支和一个下降支。上升支先是膜内的负电位迅速降低到零的过程,称为膜的去极化(除极),接着膜内电位继续上升超过膜外电位,出现膜外电位变负而膜内电位变正的状态,称为反极化。下降支是膜内电位恢复到原来的静息电位水平的过程,称为复极化。锋电位之后到完全恢复到静息电位水平之前,还有微小的连续缓慢的电变化,称为后电位。心肌细胞的生物电现象和神经纤维、骨骼肌等细胞一样,包括安静时的静息电位和兴奋时的动作电位,但有其特点。心肌细胞安静时,膜内电位约为-90mv。心肌细胞静息电位形成的原理基本上和神经纤维相同。主要是由于安静时细胞内高农度的K+向膜外扩散而造成的。当心肌细胞接受刺激由静息状态转入兴奋时,即产生动作电位。其波形与神经纤维有较大的不同,主要特征是复极过程复杂,持续时间长。心肌细胞的某一点受刺激除极后,立即向四周扩散,直至整个心肌完全除极为止。已除极处的细胞膜外正电荷消失,未除极处的细胞膜仍带正电而形成电位差。除极与未除极部位之间的电位差,引起局部电流,由正极流向负极。复极时,最先除极的地方首先开始复极,膜外又带正电,再次形成复极处与未复极处细胞膜的电位差,又产生电流。如此依次复极,直至整个心肌细胞的同时除极也可以看成许多电偶同时在移动,不论它们的强度和方向是否相同,这个代表各部心肌除极总效果的电偶称为等效电偶。心脏的结构是一个立体,它除极时电偶的方向时刻在变化,表现在心电图上,是影响各波向上或向下的主要原因。由于各部心肌的大小、厚薄不同,心脏除极又循一定顺序,所以心脏除极中,等效电偶的强度时刻都在变化。它主要影响心电图上各波的幅度。人体是一个容积导体,心脏居人体之中,心脏产生的等效电偶,在人体各部均有它的电位分布。在心动周期中,心脏等效电偶的电力强度和方向在不断地变化着。身体各种的电位也会随之而不断变动,从身体任意两点,通过仪器(心电图机)就可以把它描记成曲线,这就是心电图. 随着分子生物学和膜的超微结构研究的进展,人们更试图从膜结构中某些特殊蛋白和其他物质的分子构型的改变,来理解膜的通透性能的改变和生物电的产生,这将把生物电现象的研究推进到一个新阶段。

阅读全文

与生物电现象是如何传导的相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1651
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059