❶ 如何理解生物学的发展历史
生物学是从分子、细胞、机体乃至生态系统等不同层次研究生命现象的本质、生物的起源进化、遗传变异、生长发育等生命活动规律的科学。其包含的范畴相当广泛,包括形态学、微生物学、生态学、遗传学、分子生物学、免疫学、植物学、动物学、细胞生物学、环境化学等。生物学随着人类认识世界及科学技术的发展,大概经历了四个时期:萌芽时期、古代生物学时期、近代生物学时期和现代生物学时期。
1.萌芽时期
指人类产生(约300万年前)到阶级社会出现(约4000年前)之间的一段时期。这时人类处于石器时代,这一时期的人类还处于认识世界的阶段,原始人开始栽培植物、饲养动物,并有了原始的医术,这一切成为生物学发展的启蒙。
2.古代生物学
到了奴隶社会后期(约4000年前开始)和封建社会,人类进入了铁器时代。随着生产的发展,出现了原始的农业、牧业和医药业,有了生物知识的积累,植物学、动物学和解剖学进入搜集事实的阶段。在搜集的同时也进行了整理,被后人称为,古代生物学。古代生物学在欧洲以古希腊为中心,着名的学者有亚里士多德(研究形态学和分类学)和古罗马的盖仑(研究解剖学和生理学),他们的学说整整统治了生物学领域1000年。其中亚里士多德没有停留在搜集、观察和纯粹的自然描述上,而是进一步作出哲学概括。在解释生命现象时,亚里士多德同先辈们一样,认为有机体最初是从有机基质里产生的,无机的质料可以变成有机的生命。中国的古代生物学,则侧重研究农学和医药学。贾思褫(约480—550年)着有《齐民要术》,系统地总结了农牧业生产经验,提出了相关变异规律,首次提到根瘤菌的作用。沈括(1031—1095年)着有《梦溪笔谈》,该书中有关生物学的条目近百条,记载了生物的形态、分布等相关资料。
3.近代生物学
从15世纪下半叶到19世纪,这一时期科学技术得到巨大发展,特别是工业革命开始后,生物学进入了全面繁荣的时代。如细胞的发现,达尔文生物进化论的创立,孟德尔遗传学的提出。巴斯德和科赫等人奠定了微生物学的科学基础,并在工农业和医学上产生了巨大影响。17世纪建立起来的动物(包括人体)生理学到19世纪有了明显的进展,着名学者有弥勒、杜布瓦·雷蒙、谢切诺夫和巴甫洛夫等。由于萨克斯、普费弗和季米里亚捷夫的努力,植物生理学在理论上达到了系统化。胡克改进了显微镜的使用方法,发表了《显微镜学》,内载生物学史上最早的细胞结构图,并命名为“cell”。达尔文以博物学家的身份乘英国海军勘探船“贝格尔”号,经历了5年的环球旅行,之后出版了震动当时学术界的《物种起源》。该书从变异性、遗传性、生存竞争和适应性等方面论述了生物界的进化现象,提出了以自然选择、适者生存为基础的进化学说。孟德尔多年从事植物杂交试验研究,并在自然科学学会杂志发表了论文《植物杂交试验》,文中提出了遗传单位因子(现在称为“基因”)的概念,阐明了生物遗传的基本规律,即分离规律和自由组合定律(亦称独立分配定律),使生物学研究逐渐集中到分析生命活动的基本规律上,生物学的发展进入“实验生物学阶段”。巴斯德在实验中严格控制无菌条件,并用长曲颈瓶净化与无菌肉汁接触的空气,证实了肉汁腐败的原因是来自外界的微生物污染,澄清了“自然发生说”谬论,为微生物学奠定了基础。
4.现代生物学
20世纪的生物学属于现代生物学的范畴,随着科学技术的进一步发展,生物学向理论(包括生物进化)和实践((主要是植物育种)两个方面深入发展。与此同时,由于物理学、化学和数学对生物学的渗透及许多新的研究手段的应用,一些新的边缘学科如生物物理、生物数学应运而生,随着分子生物学和分子遗传学的发展及形态研究的深入,细胞学也进入分子水平,出现了细胞生物学。现代生物学正向微观和综合方向深入。宏观方面,从研究生物体的器官、整体到研究种群、群落和生物圈,生态学为典型代表。现代生态学是研究生物有机体与生活场所的相互关系的科学,亦有人称之为研究生物生存条件、生物与环境相互作用过程及规律的科学,其目的是指导人与生物圈,即自然资源与环境的协调发展。第二次世界大战以后,人类社会经济与科技飞速发展,工业废物、农药化肥残毒、交通工具尾气、城市垃圾等造成了环境污染,破坏了自然生态系统的自我调节和相对平衡。全球变暖、臭氧层破坏、水土流失、沙漠扩大、水源枯竭、气候异常、森林消失等生态危机都是人类不适当的活动造成的。根据生态学中物种共生、物质再生循环及结构与功能协调等原则,以人与自然协调关系为基础、高效和谐为方向,将生态应用于废水污水资源化处理、湖泊富营养化控制、作物种植、森林管理、盐场管理、水产养殖、土地改良、废弃地开发和资源再生等方面,收到了显着的效果。微观方面,如“细胞生物学”“分子生物学”“量子生物学”的发展,分子生物学为其中典型代表。现代分子生物学是通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面阐明各种生命现象本质的科学。其目的是在分子水平上,对细胞的活动、生长发育、消亡、物质和能量代谢、遗传、衰老等重要生命活动进行探索。分子生物学的研究关系到人类的方方面面。如不同种类生物间的亲缘关系,过去主要根据不同种类生物在形态构造上的异同确定,这对形态结构较为简单的生物如细菌就很困难。通过对不同种类生物的蛋白质或核酸分子的测定,可以克服上述困难,并能更客观地反映生物间的亲缘关系。分子生物学与医学、农业、生物工程等方面的关系十分密切。分子生物学的研究成果使不同生物体之间的基因转移成为可能,在农业上开辟了育种的新途径,在医学上有可能治疗某些遗传性疾病,在工业上形成了以基因工程为基础的新兴工业,从而有可能生产出许多用常规技术从天然来源无法得到或无法大量得到的生物制品。目前的克隆技术只是分子生物学的一个应用,可以想象未来随着研究的深入及分子生物学的进一步发展,人类的生活必将更美好。
综上所述,生物学发展经历了四个主要时期,即萌芽时期、古代生物学时期、近代生物学时期和现代生物学时期。21世纪不但要认识世界、改造世界,而且要保护世界,对生物学的深层探讨和研究必将会带来丰厚的社会、经济和生态效益,生物学正成为新的科技革命的重要推动力。然而无论累积了多少生物学知识,已知的与未知的相比,不过是沧海一粟。时代在演变,科学技术在发展,人类对世界的认识亦不断前进,随着历史的发展,生物学必将迎来崭新的篇章。
❷ 简述2-3件基因分子生物学发展史中最具有影响力的事件它是如何推动相关研究领域的发展
内容太多 参考http://bio.cersp.com/swjssh/SWJSSH/200607/645.html
分子生物学的发展大致可分为三个阶段。
一、准备和酝酿阶段
确定了蛋白质是生命的主要基础物质
19世纪末Buchner兄弟证明酵母无细胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。20世纪20-40年代提纯和结晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、黄酶、细胞色素C、肌动蛋白等),证明酶的本质是蛋白质。随后陆续发现生命的许多基本现象(物质代谢、能量代谢、消化、呼吸、运动等)都与酶和蛋白质相联系,可以用提纯的酶或蛋白质在体外实验中重复出来。在此期间对蛋白质结构的认识也有较大的进步。1902年EmilFisher证明蛋白质结构是多肽;40年代末,Sanger创立二硝基氟苯(DNFB)法、Edman发展异硫氰酸苯酯法分析肽链N端氨基酸;1953年Sanger和Thompson完成了第一个
多肽分子--胰岛素A链和B链的氨基全序列分析。由于结晶X-线衍射分析技术的发展,1950年Pauling和Corey提出了α-角蛋白的α-螺旋结构模型。所以在这阶段对蛋白质一级结构和空间结构都有了认识。
确定了生物遗传的物质基础是DNA
虽然1868年F.Miescher就发现了核素(nuclein),但是在此后的半个多世纪中并未引起重视。20世纪20-30年代已确认自然界有DNA和RNA两类核酸,并阐明了核苷酸的组成。由于当时对核苷酸和硷基的定量分析不够精确,得出DNA中A、G、C、T含量是大致相等的结果,因而曾长期认为DNA结构只是“四核苷酸”单位的重复,不具有多样性,不能携带更多的信息,当时对携带遗传信息的侯选分子更多的是考虑蛋白质。40年代以后实验的事实使人们对核酸的功能和结构两方面的认识都有了长足的进步。1944年O.T.Avery等证明了肺炎球菌转化因子是DNA;1952年A.D.Hershey和M.Cha-se用DNA35S和32P分别标记T2噬菌体的蛋白质和核酸,感染大肠杆菌的实验进一步证明了是遗传物质。在对DNA结构的研究上,1949-52年S.Furbery等的X-线衍射分析阐明了核苷酸并非平面的空间构像,提出了DNA是螺旋结构;1948-1953年Chargaff等用新的层析和电泳技术分析组成DNA的硷基和核苷酸量,积累了大量的数据,提出了DNA硷基组成A=T、G=C的Chargaff规则,为硷基配对的DNA结构认识打下了基础。
二、现代分子生物学的建立和发展阶段
以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑开创了分子遗传学基本理论建立和发展的黄金时代。DNA双螺旋发现的最深刻意义在于:确立了核酸作为信息分子的结构基础;提出了硷基配对是核酸复制、遗传信息传递的基本方式;从而最后确定了核酸是遗传的物质基础,为认识核酸与蛋白质的关系及其在生命中的作用打下了最重要的基础。
遗传信息传递中心法则的建立
三、初步认识生命本质并开始改造生命的深入发展阶段
70年代后,以基因工程技术的出现作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。其间的重大成就包括:
1.重组DNA技术的建立和发展
2.基因组研究的发展
3.单克隆抗体及基因工程抗体的建立和发展
4.基因表达调控机理
❸ 简述现代分子生物学建立和发展的历程
这一阶段是从50年代初到70年代初,以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑开创了分子遗传学基本理论建立和发展的黄金。DNA双螺旋发现的最深刻意义在于:确立了核酸作为信息分子的结构基础;提出碱基配对是核酸复制、遗传信息传递的基本方式;从而最后确定了核酸是遗传的物质基础,为认识核酸与蛋白质的关系及其生命中的作用打下了最重要的基础。在些期间的主要进展包括:
遗传信息传递中心法则的建立。
在发现DNA双螺旋结构同时,Watson和Crick就提出DNA复制的可能模型。其后在1956年A.Kornbery首先发现DNA聚合酶;1958年Meselson及Stahl同位素标记和超速离心分离实验为DNA半保留模型提出了证明;1968年Okazaki(冈畸)提出DNA不连续复制模型;1972年证实了DNA复制开始需要RNA作为引物;70年代初获得DNA拓扑异构酶,并对真核DNA聚合酶特性做了分析研究;这些都逐渐完善了对DNA复制机理的认识。
在研究DNA复制将遗传信息传给子代的同时,提出了RNA在遗传信息传到蛋白质过程中起着中介作用的假说。1958年Weiss及Hurwitz等发现依赖于DNA的RNA聚合酶;1961年Hall和Spiege-lman用RNA-DNA杂增色证明mRNA与DNA序列互补;逐步阐明了RNA转录合成的机理。
❹ 为什么说免疫学,分子生物学和细胞生物学是推动现代生命科学前进的三架马车
从现在生命科学的发展进程中可以看出来这三驾马车的作用。以下是现代生物学的发展过程:
发展过程
目前,普遍认为现代生命科学系统的建立开始于16世纪。他的基本特征是人们对生命现象的研究牢固地植根于观察和实验的基础上,以生命为对象的生物分支学科相继建立,逐渐形成一个庞大的生命科学体系。现代生命科学可以说是从形态学创立开始的。1543年比利时医生维萨里(Andreas Vesalius 1514~1564)的名着《人体的结构》发表不仅标志着解剖学的建立,并直接推动了以血液循环研究为先导的生理分支学科的形成,其标志是1628年,英国医生哈维(William Harvey 1578~1657)发表了他的名着《心血循环论》。解剖学和生理学的建立为人们对生命现象的全面研究奠定了基础。
18世纪以后,随着自然科学全面蓬勃地发展,生命科学业进入它的辉煌发展阶段。生命科学重要得分支相继建立,其中以细胞学、进化论和遗传学为主要代表,构成了现代生命科学的基石。
1665年,胡克(Robert Hooke,1636~1702)在他的《显微图谱》中第一次使用“细胞”一词(cell)。
现在一般认为细胞学创立于19世纪30年代,是由施莱登(Matthias Jacob Schleiden, 1804~1881)、施旺(Theodor Schwann,1810~1882)以及稍后的数位生物学家共同完成的。他们奠定了细胞是独立的生命单位、新细胞只能通过老细胞分裂繁殖产生,一切生物都是有细胞组成和由细胞发育而来的细胞学说的基本内容。
林耐因他对现代生物分类系统建立的卓越贡献成为有史以来最伟大的生物分类学家千姿百态的生物物种被科学的归纳在界、门、纲、目、科、属、种的秩序里。林耐生物分类系统建立的更重要的意思还在于他直接的诱发了生物进化理论。在林耐当初建立生物分类体系时,企图表达的是精确地显现上帝造物的构思和成就。但是事与愿违,林耐生物分类系统中体现的各生物物种的相关性和物种由简单到复杂的“秩序”排列强烈的安是了生物的进化现象。在马耶(Benoit 的 Mailler,1656~1738)、布丰(Comte de Lamarck 1744~1829)拉马克(Chavalier de Lamarck 1744~1829)等人工作的基础上,1859年,达尔文(Charless Darwin,1809~1882)的《物种起源》发表。
19世纪前后,生命科学的重大成就还包括其他一些重要的发现和分支学科的建立。解剖学和细胞学促使人们对生物发育现象的研究获得了长足的进步,并由此建立了实验胚胎学。胚胎学实现了对各种代表生物的形态发育过程的组织学和细胞学的研究,绘制了有史以来最精美的生物学图谱。魏斯曼(August Weismann,1839~1914)关于生物发育的种质学说推动了遗传学的建立。
1856年,现代遗传学创始人孟德尔(Gregor Mendel,1822~1884)在“布隆自然历史学会”上宣读了自己的豌豆杂交实验结果,遗憾的是其工作的价值被满摸了30多年。直到20世纪初,当孟德尔发现的生物遗传规律被几个人几乎同时再次试验证实时,才引起了人们的注意。为遗传学作出重大贡献的另一位伟大的遗传学家是摩尔根(Thomas Hunt Morgen,1866~1945)。202世纪10~20年代他用果蝇为实验材料确立了以孟德尔和摩尔根的名字共同命名的景点遗传学的分离、连锁和交换三大定律,并因此而荣获了1933年的诺贝尔奖。遗传学科学的解释了生物的遗传现象,将细胞学发现的染色体结构和进化论解释的生物进化现象联系起来,指出了遗传物质定位在染色体上而推动了DNA双螺旋结构合中心法则的发现,为分子生物学的建立奠定了基础。
在19世纪中,法国科学家巴斯德(Louis Paster,1822~1895)创立了微生物学。微生物学直接导致了医学疫苗的发明和免疫学的建立,推动了生物化学的进展,并为分子生物学的出现准备了条件。生物化学的辉煌发展出现在20世纪的前叶到中叶,围绕能量和生物大分子物质代谢的研究,发现了生物以三磷酸循环卫枢纽的有着复杂超循环结构的代谢途径,和以电子传递和氧化磷酸化为中心的生物能量获取、利用的基本方式。
分子生物学的建立是生命科学进入20世纪最伟大的成就。遗传学的研究预示了生物遗传载体分子的存在,而DNA双螺旋结构的发现(J.D.Watson,F.Crick,1953)直接导致了对生物DNA-RNA-蛋白质中心法则(central dogma)的揭示。人们因此探索到了生命运作的基础框架和生物世代更替的联系方式。从此,以基因组成、基因表达和遗传控制为核心的分子生物学的思想和研究方法迅速的深入到生命科学的各个领域,极大地推动了生命科学的发展。
(自己摘抄点 归纳下 就可以出答案了)
❺ 生物学发展经历的三个阶段及其主要标志事件是什么
生命科学的发展经历了三个重要阶段:一、描述生物学:20世纪以前主要是对自然的观察和描述,是关于博物学和形态分类的研究。二、实验生物学:1900年孟德尔遗传规律的重新发现。三、分子生物学:1953年DNA分子双螺旋结构模型的建立。随着生物学理论与方法的不断发展,它的应用领域不断扩大。生物学的影响已突破上述传统的领域,而扩展到食品、化工、环境保护、能源和冶金工业等等方面。
❻ 分子生物学阶段是什么时候
分子生物学 的诞生和发展按其重大的突破和进展可大致地划分为三个阶段。 第一阶段:在上上世纪的后期, 巴斯德 由于发现了细菌而在自然科学史上留下丰功伟绩,但是他的“活力论”观点,即认为细菌的代谢活动必须依赖完整细胞的看法,却阻碍了生物化学的进一步发展。直至1890~1900年问suchner兄弟证明酵母提出液可使糖发酵之后,科学家们才认识到细胞的活动原来可以再拆分为更细的成分加以研究。此后相继结晶了许多酶,如腺酶(Sumner,1926)、 胰蛋白酶 (Northrop,1930)及 胃蛋白酶 (Northrop及Kunitz,1932)等,并且证实了这些物质都是蛋白质。这些成果开辟了近代生物化学的新纪元。事实上,分子生物学正是在科学家们打破了细胞界限之日诞生的。在这以后的几十年间,科学界普遍认为,蛋白质是生命的主要物质基础,也是遗传的物质基础。与此同时,被湮没达 35年之久的 孟德尔遗传定律 (1865),又被重新发现,摩根等在这个定律基础上建立了 染色体 学说,使遗传学的研究引起了科学界的重视。这个时期,尤其是在 第一次世界大战 之后,正是 物理学 空前发达的年代, 量子理论 和 原子物理学 的研究表明,尽管自然界的物质变化万千,但是组成物质的 基本粒子 相同,它们的运动都遵循共同的规律。那么,是否可以 应用物理学 的基本定律来探讨和解释 生命现象 呢?不少科学家抱着这个信念投身到生命科学的研究中,从而开始了由物理学家、生化学家、遗传学家和 微生物学 家等 协同作战 的新时期,在这个时期里,科学家们各自沿着两条 并行不悖 的路线进行研究。一派是以英国的Astbury等为代表的所谓结构学派(structurists),他们主要用 x射线 衍射 技术研究蛋白质和核酸的空间结构,认为只有搞清 生物大分子 的三维结构,才能阐明生命活动的本质,分子生物学一词正是Astbury在1950年根据他的这一思想首先提出来的。另一学派称为信息学派,他们着眼于遗传信息的研究。它的创始始人之一,德国的Delbruck,本来是原子物理学家,由于 矢志 于遗传学的研究, 由德国 来到美国 摩根的遗传学实验室。当他无法用数学表达果蝇的遗传规律时,转而以 噬菌体 为研究对象,把噬菌体看成为最小的遗传单位,研究其遗传信息的表达和调控。所以这一派也称为噬菌体学派。 在这个时期,分子生物学研究的最重要成果是证明了遗传的物质基础是DNA而不是蛋臼质,Avery等(1944)证明了使 肺炎双球菌 由粗糙型转成为光滑型的转化因子是DNA。随后,噬菌体学派的Hershey和chase进一步提出了更加令人信服的证据,他们用蛋白质 上标 记了 放射性 硫的噬菌体感染细菌,发现只有噬菌体的DNA被“注射”到细菌体内去并在其中繁殖,而蛋白质则留在细胞之外。但在当时,由于科学界对DNA的结构尚少研究,所以还无从知道何以DNA能成为遗传的物质基础。 分子生物学发展的第二阶段是以DNA双螺旋的发现为标记的,这个划时代的发现正是结构学派和信息学派汇合所结出的 硕果 ,从此以后,关于生物大分子结构和信息的研究才紧密地结合起来,Watson 和Crick的DNA双螺旋学说 破天荒 地用分子结构的特征解释生命现象的最基本问题之一--基因复制的机理,从而使生物学真正进入分子生物学的新时代。在这以后的年代里,DNA的研究始终占据着分子生物学的中心地位。在短短的20年里,mRNA的发现和遗传密码的破译,以及DNA聚合酶、RNA聚合酶、 限制性核酸内切酶 、连接酶, 质粒 等一系列重大发现,终于导致70年代初重组DNA技术的问世。这标志着分子生物学发展到了更高阶段,即第三阶段。这项技术使分子生物学家能够在体外按照主观愿望切割和拼接DNA分子,借助细菌制造大量所需的DNA片段,极大地促进了DNA本身结构和功能的研究。更有甚者,这项 技术标 志着分子生物学家从认识和利用生物的时代进入了改造和创建物种的新时期。
❼ 简述分子生物学形成与发展的经历。
一、分子生物学的孕育 分子生物学是生物学与化学及物理学交叉的产物,新的物理学、化学研究手段和理论用于 生物大分子和生命过程研究,是分子生物学诞生的基础。从生物学内部来说,遗传学、微生 物学、细胞学和生物化学的交叉,是分子生物学孕育的温床。 自20 世纪初重新发现孟德尔定律以后,遗传学的发展非常迅速。到30 年代,基因论 已经得到学术界普遍承认,并且在医学和农业育种实践中得到应用。 1941 年,比德尔根据对红色面包霉:粗糙链孢菌)生化突变型的遗传学研究,提出了 “一个基因一个酶”的学说。这个学说把基因的功能与蛋白质合成联系起来,成为以后产生 遗传密码概念的思想基础。 基因的化学实体是什么?可能的答案有两个——蛋白质或者DNA(脱氧核糖核酸),因 为它们是染色体的主要化学成分。
❽ 急求分子生物学是如何发展的~
分子生物学的发展大致可分为三个阶段。
一、准备和酝酿阶段
19世纪后期到20世纪50年代初,是现代分子生物学诞生的准备和酝酿阶段。在这一阶段产生了两点对生命本质的认识上的重大突破:
确定了蛋白质是生命的主要基础物质
19世纪末Buchner兄弟证明酵母无细胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。20世纪20-40年代提纯和结晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、黄酶、细胞色素C、肌动蛋白等),证明酶的本质是蛋白质。随后陆续发现生命的许多基本现象(物质代谢、能量代谢、消化、呼吸、运动等)都与酶和蛋白质相联系,可以用提纯的酶或蛋白质在体外实验中重复出来。在此期间对蛋白质结构的认识也有较大的进步。1902年EmilFisher证明蛋白质结构是多肽;40年代末,Sanger创立二硝基氟苯(DNFB)法、Edman发展异硫氰酸苯酯法分析肽链N端氨基酸;1953年Sanger和Thompson完成了第一个多肽分子--胰岛素A链和B链的氨基全序列分析。由于结晶X-线衍射分析技术的发展,1950年Pauling和Corey提出了α-角蛋白的α-螺旋结构模型。所以在这阶段对蛋白质一级结构和空间结构都有了认识。
确定了生物遗传的物质基础是DNA
虽然1868年F.Miescher就发现了核素(nuclein),但是在此后的半个多世纪中并未引起重视。20世纪20-30年代已确认自然界有DNA和RNA两类核酸,并阐明了核苷酸的组成。由于当时对核苷酸和碱基的定量分析不够精确,得出DNA中A、G、C、T含量是大致相等的结果,因而曾长期认为DNA结构只是“四核苷酸”单位的重复,不具有多样性,不能携带更多的信息,当时对携带遗传信息的侯选分子更多的是考虑蛋白质。40年代以后实验的事实使人们对核酸的功能和结构两方面的认识都有了长足的进步。1944年O.T.Avery等证明了肺炎球菌转化因子是DNA;1952年A.D.Hershey和M.Cha-se用DNA35S和32P分别标记T2噬菌体的蛋白质和核酸,感染大肠杆菌的实验进一步证明了是遗传物质。在对DNA结构的研究上,1949-52年S.Furbery等的X-线衍射分析阐明了核苷酸并非平面的空间构像,提出了DNA是螺旋结构;1948-1953年Chargaff等用新的层析和电泳技术分析组成DNA的碱基和核苷酸量,积累了大量的数据,提出了DNA碱基组成A=T、G=C的Chargaff规则,为碱基配对的DNA结构认识打下了基础。
二、现代分子生物学的建立和发展阶段
这一阶段是从50年代初到70年代初,以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑开创了分子遗传学基本理论建立和发展的黄金时代。DNA双螺旋发现的最深刻意义在于:确立了核酸作为信息分子的结构基础;提出了碱基配对是核酸复制、遗传信息传递的基本方式;从而最后确定了核酸是遗传的物质基础,为认识核酸与蛋白质的关系及其在生命中的作用打下了最重要的基础。在此期间的主要进展包括:
遗传信息传递中心法则的建立
在发现DNA双螺旋结构同时,Watson和Crick就提出DNA复制的可能模型。其后在1956年A.Kornbery首先发现DNA聚合酶;1958年Meselson及Stahl用同位素标记和超速离心分离实验为DNA半保留模型提出了证明;1968年Okazaki(冈畸)提出DNA不连续复制模型;1972年证实了DNA复制开始需要RNA作为引物;70年代初获得DNA拓扑异构酶,并对真核DNA聚合酶特性做了分析研究;这些都逐渐完善了对DNA复制机理的认识。
在研究DNA复制将遗传信息传给子代的同时,提出了RNA在遗传信息传到蛋白质过程中起着中介作用的假说。1958年Weiss及Hurwitz等发现依赖于DNA的RNA聚合酶;1961年Hall和Spiege-lman用RNA-DNA杂交证明mRNA与DNA序列互补;逐步阐明了RNA转录合成的机理。
在此同时认识到蛋白质是接受RNA的遗传信息而合成的。50年代初Zamecnik等在形态学和分离的亚细胞组分实验中已发现微粒体(microsome)是细胞内蛋白质合成的部位;1957年Hoagland、Zamecnik及Stephenson等分离出tRNA并对它们在合成蛋白质中转运氨基酸的功能提出了假设;1961年Brenner及Gross等观察了在蛋白质合成过程中mRNA与核糖体的结合;1965年Holley首次测出了酵母丙氨酸tRNA的一级结构;特别是在60年代Nirenberg、Ochoa以及Khorana等几组科学家的共同努力破译了RNA上编码合成蛋白质的遗传密码,随后研究表明这套遗传密码在生物界具有通用性,从而认识了蛋白质翻译合成的基本过程。
上述重要发现共同建立了以中心法则为基础的分子遗传学基本理论体系。1970年Temin和Baltimore又同时从鸡肉瘤病毒颗粒中发现以RNA为模板合成DNA的反转录酶,又进一步补充和完善了遗传信息传递的中心法则。
对蛋白质结构与功能的进一步认识
1956-58年Anfinsen和White根据对酶蛋白的变性和复性实验,提出蛋白质的三维空间结构是由其氨基酸序列来确定的。1958年Ingram证明正常的血红蛋白与镰刀状细胞溶血症病人的血红蛋白之间,亚基的肽链上仅有一个氨基酸残基的差别,使人们对蛋白质一级结构影响功能有了深刻的印象。与此同时,对蛋白质研究的手段也有改进,1969年Weber开始应用SDS-聚丙烯酰胺凝胶电泳测定蛋白质分子量;60年代先后分析得血红蛋白、核糖核酸酶A等一批蛋白质的一级结构;1973年氨基酸序列自动测定仪问世。中国科学家在1965年人工合成了牛胰岛素;在1973年用1.8AX-线衍射分析法测定了牛胰岛素的空间结构,为认识蛋白质的结构做出了重要贡献。
三、初步认识生命本质并开始改造生命的深入发展阶段
70年代后,以基因工程技术的出现作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。其间的重大成就包括:
1.重组DNA技术的建立和发展
分子生物学理论和技术发展的积累使得基因工程技术的出现成为必然。1967-1970年R.Yuan和H.O.Smith等发现的限制性核酸内切酶为基因工程提供了有力的工具; 1972年Berg等将SV-40病毒DNA与噬菌体P22DNA在体外重组成功,转化大肠杆菌,使本来在真核细胞中合成的蛋白质能在细菌中合成,打破了种属界限;1977年Boyer等首先将人工合成的生长激素释放抑制因子14肽的基因重组入质粒,成功地在大肠杆菌中合成得到这14肽;1978年Itakura(板仓)等使人生长激素191肽在大肠杆菌中表达成功;1979年美国基因技术公司用人工合成的人胰岛素基因重组转入大肠杆菌中合成人胰岛素。至今我国已有人干扰素、人白介素2、人集落刺激因子、重组人乙型肝炎疫苗、基因工程幼畜腹泻疫苗等多种基因工程药物和疫苗进入生产或临床试用,世界上还有几百种基因工程药物及其它基因工程产品在研制中,成为当今农业和医药业发展的重要方向,将对医学和工农业发展作出新贡献。
转基因动植物和基因剔除动植物的成功是基因工程技术发展的结果。1982年Palmiter等将克隆的生长激素基因导入小鼠受精卵细胞核内,培育得到比原小鼠个体大几倍的“巨鼠”,激起了人们创造优良品系家畜的热情。我国水生生物研究所将生长激素基因转入鱼受精卵,得到的转基因鱼的生长显着加快、个体增大;转基因猪也正在研制中。用转基因动物还能获取治疗人类疾病的重要蛋白质,导入了凝血因子Ⅸ基因的转基因绵羊分泌的乳汁中含有丰富的凝血因子Ⅸ,能有效地用于血友病的治疗。在转基因植物方面,1994年能比普通西红柿保鲜时间更长的转基因西红柿投放市场,1996年转基因玉米、转基因大豆相继投入商品生产,美国最早研制得到抗虫棉花,我国科学家将自己发现的蛋白酶抑制剂基因转入棉花获得抗棉铃虫的棉花株。到1996年全世界已有250万公顷土地种植转基因植物。
基因诊断与基因治疗是基因工程在医学领域发展的一个重要方面。1991年美国向一患先天性免疫缺陷病(遗传性腺苷脱氨酶ADA基因缺陷)的女孩体内导入重组的ADA基因,获得成功。我国也在1994年用导入人凝血因子Ⅸ基因的方法成功治疗了乙型血友病的患者。在我国用作基因诊断的试剂盒已有近百种之多。基因诊断和基因治疗正在发展之中。
这时期基因工程的迅速进步得益于许多分子生物学新技术的不断涌现。包括:核酸的化学合成从手工发展到全自动合成,1975-1977年Sanger、Maxam和Gilbert先后发明了三种DNA序列的快速测定法;90年代全自动核酸序列测定仪的问世;1985年Cetus公司Mullis等发明的聚合酶链式反应(PCR)的特定核酸序列扩增技术,更以其高灵敏度和特异性被广泛应用,对分子生物学的发展起到了重大的推动作用。
2.基因组研究的发展
目前分子生物学已经从研究单个基因发展到研究生物整个基因组的结构与功能。1977年Sanger测定了ΦX174-DNA全部5375个核苷酸的序列;1978年Fiers等测出SV-40DNA全部5224对碱基序列;80年代λ噬菌体DNA全部48,502碱基对的序列全部测出;一些小的病毒包括乙型肝炎病毒、艾滋病毒等基因组的全序列也陆续被测定;1996年底许多科学家共同努力测出了大肠杆菌基因组DNA的全序列长4x106碱基对。测定一个生物基因组核酸的全序列无疑对理解这一生物的生命信息及其功能有极大的意义。1990年人类基因组计划(HumanGenomeProject)开始实施,这是生命科学领域有史以来全球性最庞大的研究计划,将在2005年时测定出人基因组全部DNA3x109碱基对的序列、确定人类约5-10万个基因的一级结构,这将使人类能够更好掌握自己的命运。
3.单克隆抗体及基因工程抗体的建立和发展
1975年Kohler和Milstein首次用B淋巴细胞杂交瘤技术制备出单克隆抗体以来,人们利用这一细胞工程技术研制出多种单克隆抗体,为许多疾病的诊断和治疗提供了有效的手段。80年代以后随着基因工程抗体技术而相继出现的单域抗体、单链抗体、嵌合抗体、重构抗体、双功能抗体等为广泛和有效的应用单克隆抗体提供了广阔的前景。
4.基因表达调控机理
分子遗传学基本理论建立者Jacob和Monod最早提出的操纵元学说打开了人类认识基因表达调控的窗口,在分子遗传学基本理论建立的60年代,人们主要认识了原核生物基因表达调控的一些规律,70年代以后才逐渐认识了真核基因组结构和调控的复杂性。1977年最先发现猴SV40病毒和腺病毒中编码蛋白质的基因序列是不连续的,这种基因内部的间隔区(内含子)在真核基因组中是普遍存在的,揭开了认识真核基因组结构和调控的序幕。1981年Cech等发现四膜虫rRNA的自我剪接,从而发现核酶(ribozyme)。80-90年代,使人们逐步认识到真核基因的顺式调控元件与反式转录因子、核酸与蛋白质间的分子识别与相互作用是基因表达调控根本所在。
5.细胞信号转导机理研究成为新的前沿领域
细胞信号转导机理的研究可以追述至50年代。Sutherland1957年发现cAMP、1965年提出第二信使学说,是人们认识受体介导的细胞信号转导的第一个里程碑。1977年Ross等用重组实验证实G蛋白的存在和功能,将G蛋白与腺苷环化酶的作用相联系起来,深化了对G蛋白偶联信号转导途径的认识。70年代中期以后,癌基因和抑癌基因的发现、蛋白酪氨酸激酶的发现及其结构与功能的深入研究、各种受体蛋白基因的克隆和结构功能的探索等,使近10年来细胞信号转导的研究更有了长足的进步。目前,对于某些细胞中的一些信号转导途径已经有了初步的认识,尤其是在免疫活性细胞对抗原的识别及其活化信号的传递途径方面和细胞增殖控制方面等都形成了一些基本的概念,当然要达到最终目标还需相当长时间的努力。
以上简要介绍了分子生物学的发展过程,可以看到在近半个世纪中它是生命科学范围发展最为迅速的一个前沿领域,推动着整个生命科学的发展。至今分子生物学仍在迅速发展中,新成果、新技术不断涌现,这也从另一方面说明分子生物学发展还处在初级阶段。分子生物学已建立的基本规律给人们认识生命的本质指出了光明的前景,但分子生物学的历史还短,积累的资料还不够,例如:在地球上千姿万态的生物携带庞大的生命信息,迄今人类所了解的只是极少的一部分,还未认识核酸、蛋白质组成生命的许多基本规律;又如即使到2005年我们已经获得人类基因组DNA3x109bp的全序列,确定了人的5-10万个基因的一级结构,但是要彻底搞清楚这些基因产物的功能、调控、基因间的相互关系和协调,要理解80%以上不为蛋白质编码的序列的作用等等,都还要经历漫长的研究道路。可以说分子生物学的发展前景光辉灿烂,道路还会艰难曲折。
❾ 分机生物学发展经历了__遗传学和__遗传学阶段
分子生物学发展简史
分子生物学的发展大致可分为三个阶段。
(一)准备和酝酿阶段
19世纪后期到20世纪50年代初,是现代分子生物学诞生的准备和酝酿阶段。在这一阶段产生了两点对生命本质的认识上的重大突破。
确定了蛋白质是生命的主要物质基础。
19世纪末Buchner兄弟证明酵母无细胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。20世纪20-40年代提纯和结晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、共同酶、细胞色素C、肌动蛋白等),证明酶的本质是蛋白质。随后陆续发现生命的许多基本现象(物质代谢、能量代谢、消化、呼吸、运动等)都与酶和蛋白质相联系,可以用提纯的酶或蛋白质在体外实验中重复出来。在此期间对蛋白质结构的认识也有较大的进步。1902年EmilFisher证明蛋白质结构是多肽;40年代末,Sanger创立二硝基氟苯(DNFB)法、Edman发展异硫氰酸苯酯法分析肽链N端氨基酸;1953年Sanger和Thompson完成了第一个多肽分子——胰岛素A链和B链的氨基酸全序列分析。由于结晶X-线衍射分析技术的发展,1950年Pauling和Corey提出了α-角蛋白的α-螺旋结构模型。所以在这阶段对蛋白质一级结构和空间结构都有了认识。
确定了生物遗传的物质是DNA。
虽然1868年F.Miescher就发现了核素(nuclein),但是在此后的半个多世纪中并未引起重视。20世纪20-30年代已确认了自然界有DNA和RNA两类核酸,并阐明了核苷酸的组成。由于当时对核苷酸和碱基的定量分析不够精确,得出DNA中A、G、C、T含量是大致相等的结果,因而间长期认为DNA结构只有“四核苷酸”单位的重复,不具有多样性,不能携带更多的信息,当时对携带遗传信息的侯选分子更多的是考虑蛋白质。40年代以后的实验事实使人们对核酸的功能和结构两方面的认识都有了长足的进步。1944年O.T.Avery等证明了肺炎球菌转化因子是DNA;1952年S.Furbery等的X-线衍射分析阐明了核苷酸并非平面的空间构像,提出了DNA是螺旋结构;1948-1953年Chargaff等用新的层析和电泳技术分析组成DNA的碱基和核苷酸量,积累了大量的数据,提出了DNA碱基组成A=T、G=C的Chargaff规则,为碱基酸对的DNA结构认识打下了基础。
(二)现代分子生物学的建立和发展阶段
这一阶段是从50年代初到70年代初,以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑开创了分子遗传学基本理论建立和发展的黄金。DNA双螺旋发现的最深刻意义在于:确立了核酸作为信息分子的结构基础;提出碱基配对是核酸复制、遗传信息传递的基本方式;从而最后确定了核酸是遗传的物质基础,为认识核酸与蛋白质的关系及其生命中的作用打下了最重要的基础。在些期间的主要进展包括:
遗传信息传递中心法则的建立。
在发现DNA双螺旋结构同时,Watson和Crick就提出DNA复制的可能模型。其后在1956年A.Kornbery首先发现DNA聚合酶;1958年Meselson及Stahl同位素标记和超速离心分离实验为DNA半保留模型提出了证明;1968年Okazaki(冈畸)提出DNA不连续复制模型;1972年证实了DNA复制开始需要RNA作为引物;70年代初获得DNA拓扑异构酶,并对真核DNA聚合酶特性做了分析研究;这些都逐渐完善了对DNA复制机理的认识。
在研究DNA复制将遗传信息传给子代的同时,提出了RNA在遗传信息传到蛋白质过程中起着中介作用的假说。1958年Weiss及Hurwitz等发现依赖于DNA的RNA聚合酶;1961年Hall和Spiege-lman用RNA-DNA杂增色证明mRNA与DNA序列互补;逐步阐明了RNA转录合成的机理。
在此同时认识到蛋白质是接受RNA的遗传信息而合成的。50年代初Zamecnik等在形态学和分离的亚细胞组分实验中已发现微粒体(microsome)是细胞内蛋白质合成的部位;1957年Hoagland、Zamecnik及Stephenson等分离出tRNA并对它们在合成蛋白质中转运氨基酸的功能提出了假设;1961年Brenner及Gross等观察了在蛋白质合成过程中mRNA与核糖体的结合;1965年Holley首次测出了酵母丙氨酸tRNA的一级结构;特别是在60年代Nirenberg、Ochoa以及Khorana等几组科学家的共同努力破译了RNA上编码合成蛋白质的遗传密码,随后研究表明这套遗传密码在生物界具有通用性,从而认识了蛋白质翻译合成的基本过程。
上述重要发现共同建立了以中心法则为基础的分子遗传学基本理
❿ 分子生物学是如何产生和发展的,可分为哪几个重要的阶段主要人物和功绩是什么
在分子水平上研究生命现象的科学。通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程。比如光合作用、发育的分子机制、神经活动的机理、癌的发生等。 分子生物学从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系 (中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。 生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理学理论、技术和方法的应分子生物学用推动了生物大分子结构功能的研究,从而出现了近30年来分子生物学的蓬勃发展。分子生物学和生物化学及生物物理学关系十分密切,它们之间的主要区别在于:①生物化学和生物物理学是用化学的和物理学的方法研究在分子水平,细胞水平,整体水平乃至群体水平等不同层次上的生物学问题。而分子生物学则着重在分子(包括多分子体系)水平上研究生命活动的普遍规律;②在分子水平上,分子生物学着重研究的是大分子,主要是蛋白质,核酸,脂质体系以及部分多糖及其复合体系。而一些小分子物质在生物体内的转化则属生物化学的范围;③分子生物学研究的主要目的是在分子水平上阐明整个生物界所共同具有的基本特征,即生命现象的本质;而研究某一特定生物体或某一种生物体内的某一特定器官的物理、化学现象或变化,则属于生物物理学或生物化学的范畴。
[编辑本段]发展简史
结构分析和遗传物质的研究在分子生物学的发展中作出了重要的贡献。结构分析的中心内容是通过阐明生物分子的三维结构来解释细胞的生理功能。1912年英国 W.H.布喇格和W.L.布喇格建立了X射线晶体学,成功地测定了一些相当复杂的分子以及蛋白质的结构。以后布喇格的学生W.T.阿斯特伯里和J.D.贝尔纳又分别对毛发、肌肉等纤维蛋白以及胃蛋白酶、烟草花叶病毒等进行了初步的结构分析。他们的工作为后来生物大分子结晶学的形成和发展奠定了基础。50年代是分子生物学作为一门独立的分支学科脱颖而出并迅速发展的年代。首先是在蛋白质结构分析方面,1951年L.C.波林等提出了 α-螺旋结构,描述了蛋白质分子中肽链的一种构象。1955年F.桑格完成了胰岛素的氨基酸序列的测定。接着 J.C.肯德鲁和M.F.佩鲁茨在X射线分析中应用重原子同晶置换技术和计算机技术分别于1957和1959年阐明了鲸肌红蛋白和马血红蛋白的立体结构。1965年中国科学家合成了有生物活性的胰岛素,首先实现了蛋白质的人工合成。 另一方面,M.德尔布吕克小组从1938年起选择噬菌体为对象开始探索基因之谜。噬菌体感染寄主后半小时内就复制出几百个同样的子代噬菌体颗粒,因此是研究生物体自我复制的理想材料。1940年G.W.比德尔和E.L.塔特姆提出了“一个基因,一个酶”的假设,即基因的功能在于决定酶的结构,且一个基因仅决定一个酶的结构。但在当时基因的本质并不清楚。1944年O.T.埃弗里等研究细菌中的蛋白质工程转化现象,证明了DNA是遗传物质。1953年J.D.沃森和F.H.C.克里克提出了DNA的双螺旋结构,开创了分子生物学的新纪元。在此基础上提出的中心法则,描述了遗传信息从基因到蛋白质结构的流动。遗传密码的阐明则揭示了生物体内遗传信息的贮存方式。1961年F.雅各布和J.莫诺提出了操纵子的概念,解释了原核基因表达的调控。到20世纪60年代中期,关于DNA自我复制和转录生成RNA的一般性质已基本清楚,基因的奥秘也随之而开始解开了。 仅仅30年左右的时间,分子生物学经历了从大胆的科学假说,到经过大量的实验研究,从而建立了本学科的理论基础。进入70年代,由于重组DNA研究的突破,基因工程已经在实际应用中开花结果,根据人的意愿改造蛋白质结构的蛋白质工程也已经成为现实。
[编辑本段]基本内容
蛋白质体系 蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。 蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。 蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 1972年提出的流动镶嵌模型概括了生物膜的基本特征:其基本骨架是脂双层结构。膜蛋白分为表在蛋白质和嵌入蛋白质。膜脂和膜蛋白均处于不停的运动状态。 生物膜在结构与功能上都具有两侧不对称性。以物质传送为例,某些物质能以很高速度通过膜,另一些则不能。象海带能从海水中把碘浓缩 3万倍。生物膜的选择生物膜的流动镶嵌模型性通透使细胞内pH和离子组成相对稳定,保持了产生神经、肌肉兴奋所必需的离子梯度,保证了细胞浓缩营养物和排除废物的功能。 生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。对于这两种能量转换的机制,P.米切尔提出的化学渗透学说得到了越来越多的证据。生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟将会对人类更有效地利用能量作出贡献。 生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。 对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。
[编辑本段]理论意义和应用
分子生物学的成就说明:生命活动的根本规律在形形色色的生物体中都是统一的。例如,不论在何种生物体中,都由同样的氨基酸和核苷酸分别组成其蛋白质和核酸。遗传物质,除某些病毒外,都是DNA,并且在所有的细胞中都以同样的生化机制进行复制。分子遗传学的中心法则和遗传密码,除个别例外,在绝大多数情况下也都是通用的。 物理学的成就证明,一切物质的原子都由为数不多的基本粒子根据相同的规律所组成,说明了物质世界结构上的高度一致,揭示了物质世界的本质,从而带动了整个物理学科的发展。分子生物学则在分子水平上揭示了生命世界的基本结构和生命活动的根本规律的高度一致,揭示了生命现象的本质。和过去基本粒子的研究带动物理学的发展一样,分子生物学的概念和观点也已经渗入到基础和应用生物学的每一个分支领域,带动了整个生物学的发展,使之提高到一个崭新的水平。 过去生物进化的研究,主要依靠对不同种属间形态和解剖方面的比较来决定亲缘关系。随着蛋白质和核酸结构测定方法的进展,比较不同种属的蛋白质或核酸的化学结构,即可根据差异的程度,来断定它们的亲缘关系。由此得出的系统进化树,与用经典方法得到的是基本符合的。采用分子生物学的方法研究分类与进化有特别的优越性。首先,构成生物体的基本生物大分子的结构反映了生命活动中更为本质的方面。其次,根据结构上的差异程度可以对亲缘关系给出一个定量的,因而也是更准确的概念。第三,对于形态结构非常简单的微生物的进化,则只有用这种方法才能得到可靠结果。 高等动物的高级神经活动是极其复杂的生命现象,过去多是在细胞乃至整体水平上研究,近年来深入到分子水平研究的结果充分说明高级神经活动也同样是以生物大分子的活动为基础的。例如,在高等动物学习与记忆的过程中,大脑中RNA和蛋白质的组成发生明显的变化,并且一些影响生物体合成蛋白质的药物也显着地影响学习与记忆的能力。又如,“生物钟”是一种熟知的生物现象。用鸡进行的实验发现,有一种重要的神经传递介质(5-羟色胺)和一种激素(褪黑激素)以及控制它们变化的一种酶,在鸡脑中的含量呈24小时的周期性变化。正是这种变化构成了鸡的“生物钟”的物质基础。 在应用方面,生物膜能量转换原理的阐明,将有助于解决全球性的能源问题。了解酶的催化原理就能更有针对性地进行酶的人工模拟,设计出化学工业上广泛使用的新催化剂,从而给化学工业带来一场革命。基因工程分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肽激素和疫苗等。基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。 从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。
[编辑本段]分子生物学的应用
1,亲子鉴定 近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑megabace dna分析系统事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。 2、分子生物学作为现代科学的一种综合科学,其意义不止提现在纯粹的科学价值上;更为重要的是它的发展关系到人类自身的方方面面。分子生物学有可以细致的划分为大分子生物与电子生物学两种。上面提到的关于在刑侦方面的应用以及包括但不限于亲自鉴定、及婴儿男女鉴定方面的内容,大体为大分子分子内容的实际用途。而电子生物生物学则是从比大分子更细致的小分子及原子角度来解释生命的基本要素和构成,有着更多未解的谜题和更为广阔的科学前景。目前的克隆技术基本上只是此项课题的一个入门阶段的应用。可以想象未来随着研究的深入以及物理学的进一步发展。人类有可能成为创造另类生物的“上帝”。