1. 微生物通路预测中代谢遗传信息处理细胞过程等代表什么
微生物多样研究—16SrRNA基因功能代谢预测
微⽣物多样研究—16SrRNA基因功能代谢预测
1. 16S rRNA基因功能代谢预测
对于微⽣物⽣态学研究,我们最关注的⽆疑是菌群所具备的代谢功能。随着数据分析技术的发展,我们现在已能根据已知的微⽣物基因组数据,对菌群组成的测序数据(典型的如16SrRNA基因的测序结果)进⾏菌群代谢功能的预测,从⽽把物种的“⾝份” 和它们的“功能”对应起来。
根据菌群代谢功能预测结果,⼀⽅⾯能⼀窥菌群功能谱的概貌,发挥菌群多样性组成谱测序性价⽐⾼的优势;另⼀⽅⾯也能帮助指导后续宏基因组Denovo鸟枪法测序的实验设计,更合理地筛选⽤于后续研究的样本。
2. PICRUSt功能预测分析
PICRUSt(PhylogeneticInvestigation of Communities by Reconstruction of Unobserved States)是由美国哈佛⼤学的CurtisHuttenhower课题组开发的菌群代谢功能预测⼯具,通过将现有的16SrRNA基因测序数据与代谢功能已知的微⽣物参考基因组数据库相对⽐,从⽽实现对细菌和古菌代谢功能的预测;预测过程中还考虑了不同物种16SrRNA基因拷贝数的差异,并对原始数据中的物种丰度数据进⾏校正,使预测结果更准确可靠。
分析的总体思路如下:
先根据已测微⽣物基因组的16SrRNA基因全长序列,推断它们的共同祖先的基因功能谱;
对Greengenes 16SrRNA基因全长序列数据库中其它未测物种的基因功能谱进⾏推断,构建古菌和细菌域全谱系的基因功能预测谱;
将测序得到的16S rRNA基因序列数据与Greengenes数据库⽐对,寻找每⼀条测序序列的“参考序列最近邻居”,并归为参考OTU;
根据“参考序列最近邻居”的rRNA基因拷贝数,对获得的OTU丰度矩阵进⾏校正;
最后,将菌群组成数据“映射”到已知的基因功能谱数据库中,实现对菌群代谢功能的预测
PICRUSt能将16SrRNA基因序列在3种功能谱数据库中进⾏预测,即KEGG、COG和Rfam。
代谢(Metabolism)
遗传信息处理(Genetic Information Processing)
环境信息处理(Environmental InformationProcessing)
细胞进程(Cellular Processes)
⽣物体系统(Organismal Systems)
⼈类疾病(Human Diseases)
每⼀类代谢通路⼜被进⼀步划分为多个等级。⽬前,第⼆等级⼀共包括45种代谢通路⼦功能,第三等级即对应代谢通路图,⽽第四等级则对应代谢通路上各个KO(KEGGorthologous groups,KEGG直系同源基因簇)的具体注释信息。
根据PICRUSt的预测结果,可以获得每样本对应于各功能谱数据库的注释信息,以及预测得到的功能类群的丰度矩阵。
KEGG功能预测:
通过OTU聚类分析,得到的OTU代表序列与Greengenes数据库⽐对,得到KEGGpathway 3个层级和丰度表。
COG功能预测:
通过OTU聚类分析,得到的OTU代表序列与Greengenes数据库⽐对,得到COG orthology和function丰度表。
利⽤丰度表信息完成各类可视化结果展⽰。
¥
5
网络文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
微生物多样研究—16SrRNA基因功能代谢预测
微⽣物多样研究—16SrRNA基因功能代谢预测
1. 16S rRNA基因功能代谢预测
对于微⽣物⽣态学研究,我们最关注的⽆疑是菌群所具备的代谢功能。随着数据分析技术的发展,我们现在已能根据已知的微⽣物基因组数据,对菌群组成的测序数据(典型的如16SrRNA基因的测序结果)进⾏菌群代谢功能的预测,从⽽把物种的“⾝份” 和它们的“功能”对应起来。
根据菌群代谢功能预测结果,⼀⽅⾯能⼀窥菌群功能谱的概貌,发挥菌群多样性组成谱测序性价⽐⾼的优势;另⼀⽅⾯也能帮助指导后续宏基因组Denovo鸟枪法测序的实验设计,更合理地筛选⽤于后续研究的样本。
2. 网络药理学中ko和hsa的区别
两者区别如下:
KO的意思:是knockout的简写。相信大家也知道,在拳击比赛中,假如一名拳手把另一名拳手打低,后者倒下,躺在擂台上,在一段指定时间内都无力起身继续比赛的话,则拳证会判后者被“击倒”,这就是knockout或KO了。
HSA是人血浆中的蛋白质。
所以,ko和hsa的区别:KO的意思:是knockout的简写。相信大家也知道,在拳击比赛中,假如一名拳手把另一名拳手打低,后者倒下,躺在擂台上,在一段指定时间内都无力起身继续比赛的话,则拳证会判后者被“击倒”,这就是knockout或KO了。
3. 在生物实验上的分组中kd或ko或oe是什么意思
在生物学中,kD表示分子量的单位道尔顿,一般写的是Da,kDa就是1000Da;Kd则表示解离平衡常数。
4. ko和wt小鼠是什么意思
“KO小鼠就是先在小鼠的胚胎干细胞上通过基因重组的办法进行基因修饰——就是将胚胎干细胞中的靶向基因改掉,然后将“修饰”后的胚胎干细胞植入小鼠的早期胚胎,生成嵌合体小鼠。这种嵌合体小鼠长大后,体内同时存在被“修饰”过的基因和未被“修饰”的基因医学教育网搜集整理。”
WT是wild type,就是野生型的意思,是没有任何修饰和改造的个体。
5. 分子生物学中KO什么意思有图
knockout?一般文中会有全称,在第一次出现的时候。
6. KO₂是什么的化学式
Ko2 是超氧化钾
7. 高中生物
必修一
一、细胞学说建立过程涉及几个重要科学家
1、虎克:英国人,细胞的发现者和命名者。他用显微镜观察植物的木栓组织,发现由许多规则的小室组成,并把“小室”称为cell——细胞。
2、列文虎克:荷兰人,他用自制的显微镜进行观察,对红细胞和动物精子进行了精确的描述,但没用“细胞”来描述其发现。
3、19世纪30年代,德国植物学家施莱登和动物学家施旺提出了细胞学说,指出细胞是一切动植物结构的基本单位。
4、维尔肖:德国人,他在前人研究成果的基础上,总结出“细胞通过分裂产生新细胞”。
二、生物膜流动镶嵌模型涉及的科学家
5、欧文顿:1895年他曾用500多种化学物质对植物细胞的通透性进行地上万次的试验,发现细胞膜对不同物质的通透性不一样:凡是可以溶于脂质的物质,比不能溶于脂质的物质更容易通过细胞膜进入细胞。于是他提出了膜由脂质组成的假说。
6、罗伯特森:1959年他在电镜下看到了细胞膜清晰的暗-亮-暗的三层结构,结合其他科学家的工作,提出了生物膜结构的“单位膜”模型。
7、桑格和尼克森:在“单位膜”模型的基础上提出“流动镶嵌模型”。强调膜的流动性和膜蛋白分布的不对称性。为多数人所接受
三、与酶的发现有关的科学家
8、斯帕兰札尼:意大利人,生理学家。1783年他通过实验证实胃液具有化学性消化作用。
9、巴斯德:法国人,微生物学家,化学家,提出酿酒中的发酵是由于酵母菌的存在,没有活细胞的参与,糖类是不可能变成酒精。
9、李比希:德国人,化学家。认为引起发酵时酵母细胞中的某些物质,这些物质只有在酵母细胞死亡并裂解后才能发挥作用。
10、毕希纳:德国人,化学家。他从酵母细胞中获得了含有酶的提取液,并用这种提取液成功地进行了酒精发酵。
11、萨姆纳:美国人,化学家。1926年,他从刀豆种子中提取到脲酶的结晶,并用多种方法证明脲酶是蛋白质。荣获1946年诺贝尔化学奖。
12、20世纪80年代, 美国科学家切赫和奥特曼发现少数RNA也有生物催化作用。
四、光合作用的发现涉及的科学家
13、1771年, 英国科学家普里斯特利,通过实验发现植物可以更新空气。
14、1779年,荷兰科学家英格豪斯做普里斯特利的实验,发现只有在阳光照射下才能成功;植物体只有绿叶才能更新污浊的空气。
15、1785年,发现了空气的组成,明确绿叶在光下放出的气体是氧气,吸收的是二氧化碳。
16、1845年,德国科学家梅耶指出植物在进行光合作用时,将光能转换成化学能储存起来。
17、1864年,德国科学家萨克斯,通过实验证明光合作用产生了淀粉。
18、 1880年,美国科学家恩格尔曼,通过实验证明叶绿体释放氧气,是植物进行光合作用的场所。
19、20世纪,30年代,美国科学家鲁宾和卡门用同位素标记法证明光合作用中释放的氧全部来自水。
20、卡尔文:美国人,生物化学家,植物生理学家。在20世纪40年代,他及其合作者开始利用放射性同位素标记法研究光合作用,经9年左右的研究,最终探明了CO2中的碳在光合作用中转化成有机物中的碳的途径,这一途径称为卡尔文循环。
必修二
一、遗传方面的科学家
21、孟德尔:奥地利人,遗传学的奠基人。他进行了长达8年的豌豆杂交实验,通过分析实验结果,发现了生物遗传的规律。1866年他发表论文《植物杂交试验》,提出了遗传学的分离定律、自由组合定律和遗传因子学说。豌豆杂交实验运用假说演绎法。
22、约翰逊:丹麦人,植物学家。1909年给孟德尔的“遗传因子”重新起名为“基因”,并提出表现型和基因型概念。
23、魏斯曼:德国人,动物学家。他预言在精子和卵细胞成熟的过程中存在减数分裂过程,后来被其他科学家的显微镜观察所证实。。
24、萨顿:美国人,细胞学家。1903年,他在研究中发现孟德尔假设的遗传因子的分离与减数分裂过程中同源染色体的分离非常相似,并由此提出了萨顿假说—基因位于染色体上。(类比推理)
25、摩尔根:美国人,遗传学家,胚胎学家。他用果蝇做了大量实验,发现了基因的连锁互换定律,人们称之为遗传学的第三定律。他还证明基因在染色体上呈线性排列,为现代遗传学奠定了细胞学基础。
26、18世纪英国着名的化学家和物理学家道尔顿,第1个发现了色盲症,也是第1个被发现的色盲症患者。
二、DNA是主要的遗传物质
27、1928年,英国科学家格里菲思通过实验推想,已杀死的S型细菌中,含有某种“转化因子”,使R型细菌转化为S型细菌。(体内转化实验)
28、1944年,美国科学家艾弗里和他的同事,通过实验证明上述“转化因子”为DNA,也就是说DNA才是遗传物质。(体外转化实验)
29、1952年,赫尔希和蔡斯,通过噬菌体侵染细菌的实验证明,在噬菌体中,亲代和子代之间具有连续性的物质是DNA,而不是蛋白质。(同位素标记实验 32P35S)三、DNA分子的结构和复制
30、1953年,美国科学家沃森和英国科学家克里克提出DNA分子双螺旋结构模型。1957年克里克提出中心法则.提出DNA半保留复制的假说。(同位素标记法 密度梯度离心)
31、尼伦伯格和马太成功破译了第一个遗传密码。
四、进化:
32、拉马克:法国人,博物学家,生物进化论的先驱。最先提出了生物进化的学说,认为生物是不断进化的,生物进化的原因是用进废退和获得性遗传。
33、达尔文:英国人,博物学家,生物进化论的主要奠基人。1859年,他出版了科学巨着《物种起源》,书中充分论证了生物的进化,并明确提出自然选择学说来说明进化机理。他创立的进化论的影响远远超出了生物学的范围,它给予神创论和物种不变论以致命的打击,为辩证唯物主义世界观提供了有力的武器。
必修三
一、内环境与稳态
34、贝尔纳:法国人, 1857年,他提出“内环境”的概念,并推测内环境的恒定主要依赖于神经系统的调节。
35、坎农:美国人,生理学家。1926年,他提出了“稳态”的的概念,并提出了稳态维持机制的经典解释:内环境稳态是在神经调节和体液调节的共同作用下,通过机体各种器官、系统分工合作、协调统一而实现的。
36、目前普遍认为:神经——体液——免疫调节网络是机体维持稳态的主要调节机制
二、动物激素的调节
37、沃泰默:法国人,生理学家。他通过实验发现,把通向狗的上段小肠的神经切除,只留下血管,向小肠内注入稀盐酸时,仍能促进胰液分泌。但是他却囿于定论,认为这是由于小肠上微小的神经难以剔去干净的缘故。
38、斯他林:英国人,生理学家。1902年,他和贝利斯从小肠黏膜提出液中发现了促使胰液分泌的物质——促胰液素。1905年,他们提出 “激素”这一名称,并提出激素在血液中起化学信使作用。
39、巴甫洛夫:俄国人,生理学家,现代消化生理学的奠基人。1891年开始研究消化生理,在“海登海因小胃”基础上,他制成了保留神经支配的“巴甫洛夫小胃”,并创造了一系列研究消化生理的慢性实验方法,揭示了消化系统活动的一些基本规律。为此,他荣获1904年诺贝尔生理学或医学奖。20世纪初,他的研究重点转到高级神经活动方面,建立了条件反射学说。
三、生长素的发现过程
40、1880年,达尔文通过实验推想,胚芽鞘的尖端可能会产生某种物质,这种物质在单侧光的照射下,对胚芽鞘下面的部分会产生某种影响。
41、詹森:丹麦人,植物生理学家。1910年,他通过实验证明,胚芽鞘顶尖产生的刺激可以透过琼脂片传递给下部。
42、拜尔:匈牙利人,植物生理学家。1914年,他通过实验证明,胚芽鞘的弯曲生长,是因为顶尖产生的刺激在其下部分布不均匀造成的。
43、温特:美籍荷兰人,植物生理学家。1928年,他用实验证明造成胚芽鞘弯曲的刺激是一种化学物质,他认为这可能是和动物激素类似的物质,并把这种物质命名为生长素。
44、1934年,荷兰科学家郭葛等人从植物中提取出吲哚乙酸— — 生长素。
四、种群与生态系统
45、高斯:生态学家。他通过实验发现草履虫种群数量增长的S型曲线。
46、林德曼:美国人,生态学家。他通过对一个结构相对简单的天然湖泊——赛达伯格湖的能量流动进行的定量分析,发现生态系统的能量流动具有单向流动、逐级递减两个特点,能量在相邻两个营养级间的传递效率大约是10%~20%。
选修
47、动物细胞工程 1976年,阿根廷科学家米尔斯坦和德国科学家柯勒,通过细胞融合制备出单克隆抗体。
48、斯图尔得用胡萝卜韧皮部的细胞培养成了胡萝卜植株,证明了高度分化的植物细胞具有全能性。
49、韦尔穆特等在体外条件下将羊体细胞培养成了成熟个体,证明了哺乳动物体细胞核具有全能性。
P.S.
高中生物科学研究方法
分离各种细胞器的方法:研究细胞内各种细胞器的组成成分和功能,需要将这些细胞器分离出来。常用的方法是差速离心法:将细胞膜破坏后,形成由各种细胞器和细胞中其他物质组成的匀浆;将匀浆放入离心管中,用高速离心机在不同的转速下进行离心,利用不同的离心速度所产生的不同离心力,就能将各种细胞器分离开。
模型方法:模型是人们为了某种特定目的而对认识对象所作的一种简化的概括性的描述,这种描述可以是定性的,也可以是定量的;有的借助于具体的实物或其他形象化的手段,有的则通过抽象的形式来表达。模型的形式很多,包括物理模型、概念模数学模型等。以实物或图画形式直观地表达认识对象的特征,这种模型就是物理模型。沃森和克里克制作的着名的DNA双螺旋结构模型,就是物理模型,它形象而概括地反映了所有DNA分子结构的共同特征。
提出假说:膜的成分和结构的初步阐明,最初都是先根据实验现象和有关知识,提出假说,而不是通过实验观察直接证实的。假说的提出要有实验和观察的依据,同时还需要严谨的推理和大胆的相像。假说需要通过观察和实验进一步验证和完善。
控制变量:实验过程中可以变化的因素称为变量。其中人为改变的变量称做自变量,上述实验中氯化铁溶液和肝脏研磨液,都属于自变量,随着自变量的变化而变化的变量称做因变量,上述实验中过氧化氢分解速率就是因变量。除自变量外,实验过程中可能还会存在一些可变因素,对实验结果造成影响,这些变量称为无关变量。
除了一个因素以外,其余因素都保持不变的实验叫做对照实验。实验中只有反应条件是改变的,对照实验一般要设置对照组和实验组,在对照实验中,除了要观察的变量外,其他变量都应当始终保持相同。
对比实验:设置两个或两个以上的实验组,通过对结果的比较分析,来探究某种因素与实验对象的关系,这样的实验叫对比实验。
同位素标记法:同位素可用于追踪物质的运行和变化规律。用同位素标记的化合物,化学性质不会改变。科学家通过追踪同位素标记的化合物,可以弄清化学反应的详细过程。这种方法叫做同位素标记法。
孟德尔豌豆杂交实验假说——演绎法 在观察和分析基础上提出问题以后,通过推理和想象提出解释问题的假说,根据假说进行演绎推理,再通过实验检验演绎推理的结论。如果实验结果与预期结论相符,就证明假说是正确的,反之,则说明假说是错误的。这是现代科学研究中常用的一种科学方法,叫做假说——演绎法。想一想,这种方法与传统的归纳法有什么不同?
萨顿假说 类比推理:这是科学研究中常用的方法之一。19世纪物理学家研究光的性质时,曾经将光与声进行类比。声有直线传播、反射和折射等现象,其原因在于它有波动性。后来发现光也有直线传播、反射和折射等现象,因此推测光也可能有波动性。上面介绍的萨顿的推理,也是类比推理。他将看不见的基因与看得见的染色体的行为进行类比,根据其惊人的一致性,提出基因位于染色体上的假说。应当注意的是,类比推理得出的结论并不具有逻辑的必然性,其正确与否,还需要观察和实验的检验。
荧光标记法确定基因在染色体上:现代分子生物学技术能够用特定的分子,与染色体上的某一个基因结合,这个分子又能被带有荧光标记的物质识别,通过荧光显示,就可以知道基因在染色体上的位置。
样方法:估算种群密度最常用的方法之一,在被调查种群的分布范围内,随机选取若干个样方,通过计数每个样方内的个体数,求得每个样方的种群密度,以所有样方种群密度的平均值作为该种群的种群密度估计值。
标志重捕法:在被调查种群的生存环境中,捕获一部分个体,将这些个体进行标志后再放回原来的环境,经过一段时间后进行重捕,根据重捕中标志个体占总捕获数的比例来估计该种群的数量。是种群密度的常用调查方法之
8. ko 小鼠是什么意思
基因敲除小鼠
9. 医学FXN-KO代表什么
你好,我觉得医学上FXN-KO这个指的是寿命。呀
10. 请帮我设计一个基本的结构,谢谢!
3.4 DO为0.5mg/L搅拌下反硝化反应
在这个阶段,反应器DO维持在0.5mg/L,通过控制曝气率,但确保固-液混合。图4显示反应器R2至R4中COD和反硝化关系。它显示在反应器R2至R4中完全反硝化发生。2h缺氧阶段所有硝酸盐转化为气态氮。在反应器R2至R4实际总氮去除率分别为0.42、0.85、0.91mgNg-1SSmin-1。那些值可以与常规生物处理所得数值进行比较。
3.5 DO为0.8mg/L搅拌下反硝化反应
为了研究DO对微生物颗粒反硝化的影响,通过增加曝气速率将所有反应器中的DO浓度增加到0.8mg/L。图5显示反应器R2至R4中DO浓度0.8mg/L时COD与反硝化的关系。反应器R2至R4氮的去除效率大约为40%,但是所有的反应器排出的水硝酸盐浓度依然很高,与DO浓度0.5mg/L呈现的结果(图4)相比较只发生了部分反硝化。图4和图5显示微生物颗粒中反硝化菌的活性受高浓度DO抑制。显然DO不是它们合成物质抑制剂而是充当反硝化还原酶活性抑制剂,当溶解氧浓度大于1.0mg/L时反硝化可以被忽略。
3.6 异养菌、硝化菌和反硝化菌的活性
氨氮氧化剂和亚硝酸氧化剂各自活性被实际氨氮氧利用率(SOUR)NH4和实际氮氧利用率(SOUR)NO2描述,但是异养菌的活性可以根据它的实际异养菌氧利用率(SOUR)h来量化。不同培养基N/COD比率下好氧颗粒稳态培养的(SOUR)NH4、、(SOUR)NO2和(SOUR)NO2在图6显示。图7显示了(SOUR)NH4、和(SOUR)NO2氮减少速率(qobs)。高浓度DO导致低反硝化活性,从图7中qobs可以知道,好氧颗粒反硝化菌似乎与培养基N/COD比率或者硝化菌量成正比。
[NextPage]
4 讨论
图1显示微生物颗粒在培养基N/COD比率5/100至30/100范围内可以形成。超过95%进水COD在曝气阶段去除,同时氨完全转化为硝酸盐(图2)。在反应器R1至R4中培养的好氧颗粒的沉淀速度大于60m/h,所有反应器中的生物停留量达到9gVSS/L。常规活性污泥沉淀速率小于10m/h。与常规生物絮状比较,满意的好氧颗粒沉降速率可以确保进水生物固体容易有效分离出来,高的生物浓度意味着一个紧密的、小型的好氧颗粒污泥反应器可以研发出来。好氧颗粒污泥反应器2-4星期可以训化好,而厌氧颗粒系统(UASB等)至少需要4个月细心训化才能成熟。在本研究中,好氧颗粒污泥反应器稳定运行一年多,此时试验已经结束了。那些结果显示好氧颗粒的利用可以提高现有的污水处理厂同时去除有机物和氮能力是可行的、有益的。
从图2-6可知异养菌、硝化菌和反硝化菌在不同培养基N/COD比率里培养可以共存。事实上,大多数反硝化菌是特殊细菌,广泛分布于各种各样的生理和分类群体中。在好氧条
件下,它们利用氧作为最终电子受体。图3-5揭示了DO和搅拌对微生物颗粒反硝化效率影响。由于微生物培养的颗粒非常重,如果没有充分搅拌它们将会全部沉淀到反应器底部。结果,颗粒和溶解氮接触非常差,图3可知反硝化不能有效发生。因此在以颗粒为基本生物反应器里为了取得有效反硝化效率,一定量搅拌是必须的,确保颗粒和溶解氮好的接触。在搅拌的条件下,从图4和5可知DO小于0.5mg/L对反硝化非常有利,微生物颗粒反硝化DO浓度0.8mg/L受到抑制。事实上,反硝化酶一旦合成,好氧条件下细菌保持它,但是其功能受高浓度DO的抑制。另一方面广泛地报道在某种程度上溶解氧抑制反硝化地每一步。
图6显示氨氮和亚硝酸氧化菌的活性随着培养基N/COD比率增加而大大提高了,然而在好氧颗粒中异养菌的活性迅速减少了。结果显示当增加培养基N/COD比率少数硝化菌数量会逐渐超过异养菌数量,异养菌的主导地位越来越小了。相似的现象在生物膜反应器也有报道。
图7显示DO和培养基N/COD比率对整个微生物颗粒反硝化菌数量活性影响。早期讨论可知,反硝化细菌对生物反应器中DO浓度非常敏感。在0.5mg/L的DO下,反硝化细菌的活性比在0.8mg/L的DO活性大得多。在DO浓度0.5mg/L下,在反应器R2至R4培养的微生物颗粒的各自实际总氮去除率为0.42、0.85和0.91mgN/(gSS.min),这可以与常规反硝化处理所获得活性数据相比较。我们知道随着培养基N/COD比率增加qobs也增加,图6可知增加培养基N/COD比率导致好氧颗粒中的反硝化菌数量增加,图2显示在反应器中硝酸盐浓度
也增加了。Batchlor(1982)提出了描述DO和硝酸盐浓度对反硝化细菌的影响公式:
(1)
公式中:qNO3表示实际氮还原速率(mgNg-1SSmin-1);
qNO3.MAX表示最大实际氮还原速率;
SNO3表示NO3-N浓度,mg/L;
Se表示有机培养基半反应速率常数,mg/L;
KO表示氧半反应速率常数,mg/L;
根据这个模型,增加硝酸盐浓度将导致实际硝酸盐减少速率变大,但是增加DO将会使实际硝酸盐减少速率减少。这个试验数据和这个模型预期效果相吻合。结果,从本课题可知异养菌、硝化菌和反硝化菌可以在微生物颗粒相共存,一个新型高效率基于颗粒生物反应器被希望 5 结论
微生物颗粒在反应器SBRS不同培养基N/COD比率培养有能力同时去除有机物和氮。可知异养菌、硝化菌和反硝化菌在颗粒中能共存,在颗粒微生物数量变化与培养基N/COD比率有很大的关系。微生物颗粒在高培养基N/COD比率培养可以提高硝化和反硝化活性,同时颗粒中异养细菌的活性有降低的趋势。这就是微生物颗粒比常规活性污泥更有优势的原因,不同菌种可以在同一微生物模型共存,这提供细菌协作作用的平台。在这种情况下,一个去除有机碳和氮的更紧凑的生物反应器阿可以实现。DO浓度和搅拌两个因素影响微生物颗粒反硝化的效率。完全反硝化在DO浓度0.5mg/L可以取得,同时搅拌为了确保颗粒和溶解氮足够接触是有必要的,否则微生物颗粒反硝化非常缓慢,这篇论文打开了环境工程者进一步研发去除污水中的有机物和氮两种物质的新颖的、紧凑的和高效率基于颗粒生物处理工艺。
实际生长率,以及在该系统两种菌种的比率关系。
3.3 在没有搅拌无DO条件下的反硝化
图3显示在厌氧条件下反应器R2至R4中COD和反硝化关系。可以看到反应器中少量的反硝化反应发生。反应器R2至R4总的氮去除率分别为21、24和26%,但是COD去除率在这个运行条件下非常低。由于好氧颗粒对照水里有更高的实际重力,没有充分的搅拌情况下他们将沉淀到反应器底部。这将导致颗粒与培养基溶液接触不充分,结果,由于缺乏搅拌物质传质受到限制,这就是观察到反硝化效率低的原因(图3)。
3.4 DO为0.5mg/L搅拌下反硝化反应
在这个阶段,反应器DO维持在0.5mg/L,通过控制曝气率,但确保固-液混合。图4显示反应器R2至R4中COD和反硝化关系。它显示在反应器R2至R4中完全反硝化发生。2h缺氧阶段所有硝酸盐转化为气态氮。在反应器R2至R4实际总氮去除率分别为0.42、0.85、0.91mgNg-1SSmin-1。那些值可以与常规生物处理所得数值进行比较。
3.5 DO为0.8mg/L搅拌下反硝化反应
为了研究DO对微生物颗粒反硝化的影响,通过增加曝气速率将所有反应器中的DO浓度增加到0.8mg/L。图5显示反应器R2至R4中DO浓度0.8mg/L时COD与反硝化的关系。反应器R2至R4氮的去除效率大约为40%,但是所有的反应器排出的水硝酸盐浓度依然很高,与DO浓度0.5mg/L呈现的结果(图4)相比较只发生了部分反硝化。图4和图5显示微生物颗粒中反硝化菌的活性受高浓度DO抑制。显然DO不是它们合成物质抑制剂而是充当反硝化还原酶活性抑制剂,当溶解氧浓度大于1.0mg/L时反硝化可以被忽略。
3.6 异养菌、硝化菌和反硝化菌的活性
氨氮氧化剂和亚硝酸氧化剂各自活性被实际氨氮氧利用率(SOUR)NH4和实际氮氧利用率(SOUR)NO2描述,但是异养菌的活性可以根据它的实际异养菌氧利用率(SOUR)h来量化。不同培养基N/COD比率下好氧颗粒稳态培养的(SOUR)NH4、、(SOUR)NO2和(SOUR)NO2在图6显示。图7显示了(SOUR)NH4、和(SOUR)NO2氮减少速率(qobs)。高浓度DO导致低反硝化活性,从图7中qobs可以知道,好氧颗粒反硝化菌似乎与培养基N/COD比率或者硝化菌量成正比。
[NextPage]
4 讨论
图1显示微生物颗粒在培养基N/COD比率5/100至30/100范围内可以形成。超过95%进水COD在曝气阶段去除,同时氨完全转化为硝酸盐(图2)。在反应器R1至R4中培养的好氧颗粒的沉淀速度大于60m/h,所有反应器中的生物停留量达到9gVSS/L。常规活性污泥沉淀速率小于10m/h。与常规生物絮状比较,满意的好氧颗粒沉降速率可以确保进水生物固体容易有效分离出来,高的生物浓度意味着一个紧密的、小型的好氧颗粒污泥反应器可以研发出来。好氧颗粒污泥反应器2-4星期可以训化好,而厌氧颗粒系统(UASB等)至少需要4个月细心训化才能成熟。在本研究中,好氧颗粒污泥反应器稳定运行一年多,此时试验已经结束了。那些结果显示好氧颗粒的利用可以提高现有的污水处理厂同时去除有机物和氮能力是可行的、有益的。
从图2-6可知异养菌、硝化菌和反硝化菌在不同培养基N/COD比率里培养可以共存。事实上,大多数反硝化菌是特殊细菌,广泛分布于各种各样的生理和分类群体中。在好氧条
件下,它们利用氧作为最终电子受体。图3-5揭示了DO和搅拌对微生物颗粒反硝化效率影响。由于微生物培养的颗粒非常重,如果没有充分搅拌它们将会全部沉淀到反应器底部。结果,颗粒和溶解氮接触非常差,图3可知反硝化不能有效发生。因此在以颗粒为基本生物反应器里为了取得有效反硝化效率,一定量搅拌是必须的,确保颗粒和溶解氮好的接触。在搅拌的条件下,从图4和5可知DO小于0.5mg/L对反硝化非常有利,微生物颗粒反硝化DO浓度0.8mg/L受到抑制。事实上,反硝化酶一旦合成,好氧条件下细菌保持它,但是其功能受高浓度DO的抑制。另一方面广泛地报道在某种程度上溶解氧抑制反硝化地每一步。
图6显示氨氮和亚硝酸氧化菌的活性随着培养基N/COD比率增加而大大提高了,然而在好氧颗粒中异养菌的活性迅速减少了。结果显示当增加培养基N/COD比率少数硝化菌数量会逐渐超过异养菌数量,异养菌的主导地位越来越小了。相似的现象在生物膜反应器也有报道。
图7显示DO和培养基N/COD比率对整个微生物颗粒反硝化菌数量活性影响。早期讨论可知,反硝化细菌对生物反应器中DO浓度非常敏感。在0.5mg/L的DO下,反硝化细菌的活性比在0.8mg/L的DO活性大得多。在DO浓度0.5mg/L下,在反应器R2至R4培养的微生物颗粒的各自实际总氮去除率为0.42、0.85和0.91mgN/(gSS.min),这可以与常规反硝化处理所获得活性数据相比较。我们知道随着培养基N/COD比率增加qobs也增加,图6可知增加培养基N/COD比率导致好氧颗粒中的反硝化菌数量增加,图2显示在反应器中硝酸盐浓度
也增加了。Batchlor(1982)提出了描述DO和硝酸盐浓度对反硝化细菌的影响公式:
(1)
公式中:qNO3表示实际氮还原速率(mgNg-1SSmin-1);
qNO3.MAX表示最大实际氮还原速率;
SNO3表示NO3-N浓度,mg/L;
Se表示有机培养基半反应速率常数,mg/L;
KO表示氧半反应速率常数,mg/L;
根据这个模型,增加硝酸盐浓度将导致实际硝酸盐减少速率变大,但是增加DO将会使实际硝酸盐减少速率减少。这个试验数据和这个模型预期效果相吻合。结果,从本课题可知异养菌、硝化菌和反硝化菌可以在微生物颗粒相共存,一个新型高效率基于颗粒生物反应器被希望用
摘要:在序批式反应器(SBR)中微生物在不同N/COD比率的培养基中培养。结果,显示异养型细菌、硝化细菌和反硝化细菌可以在微生物颗粒中和平共处,然而增加培养基N/COD比率导致颗粒中三种菌种的数量重大变化。在高N/COD比率的培养基驯化提高了颗粒中硝化和反硝化菌种的活性,然而增加培养基的N/COD比率颗粒中的异养菌的数量减少。发现溶解氧[DO]浓度对微生物颗粒反硝化效率有着显着的影响。同时结果也显示提供可靠的混合动力确保在反硝化时液体和颗粒大量的迁移。它可以证明在基于SBR单一颗粒可以高效稳定去除全部的有机物和氮。第一个研究显示微生物颗粒有能力同时去除废水中的有机碳和氮。
关键词:微生物颗粒 N/COD 有机物去除 硝化反应 反硝化反应
1、介绍
随着更严格的环境规定的实施,在废水中氮去除中高级的、经济有效的技术变得越来越来重要了。从废水去除氮的许多改进和方法被发展和实施。基本上,去除氮的那些工艺可以分类为悬浮污泥和固定膜培养。那些悬浮污泥系统有污泥膨胀。大容积的缺点,对负荷冲击很敏感,然而固定膜系统有生物膜相关的堵塞和脱落等等问题。同时由于硝化菌对环境的敏感型以及低生长速率,它非常困难在常规悬浮和固定培养废水处理系统中获得和维持足够的硝化生物量,然而硝化是反硝化的第一步,反硝化是转化亚硝酸盐和硝酸盐为氮气。
在污水处理中好氧颗粒是一个最近描述的现象和在积极的调查中潜在的生物代名词。对照常规污水处理系统,颗粒系统有几个优点。例如更大密度和更结实的微生物结构、好的沉淀能力、和高的生物量停留时间,和有能力抵抗高有机负荷率。好氧颗粒技术似乎有潜在的挑战废水氨氮的去除。因此,非常希望混合好氧颗粒有能力同时去除有机碳和氮,因为废水经常存在有机物和氮。完全氮去除包括硝化和反硝化。硝化成的亚硝酸盐和硝酸盐要求通过反硝化生成 氮气。众所周知反硝化是一个厌氧过程,它受到溶解氧[DO]影响。到目前为此,非常少的资料关于微生物颗粒同时去除有机物和氮。因此,本课题主要研究好氧颗粒在不同底物N/COD比率的发展,在单一的颗粒生物反应器同时去除有机物和氮的可行性,以及 [DO]和混合程度对微生物颗粒反硝化效率的影响。
2 材料和方法
2.1 反应器的建立和运行
四个有效容积为2.4L的圆柱(8厘米高,6厘米直径)用作序批式反应器(SBR),和每一个有相同的几何结构。反应器运行了一年多。340天前,反应器1-4(R1至R4)被供应空气流量2.4L/min,相当于表面上升空气速度2.4cm/min。在这个时间里,反应器中的DO浓度超过2.0mg/L。所有反应器运行一个周期为4h,以一个有顺序的方式:4分钟进水,230分钟曝气,2分钟沉淀和4分钟排水。排水端口在圆柱反应器的中部。340天以后,为了观察在不同底物N/COD比率培养的微生物颗粒的反硝化性能,SBR的循环时间增加到6h,即进水4分钟,230分钟曝气,2h厌氧或缺氧阶段,2分钟沉淀,和4分钟排水。做以下三 个试验:⑴342天后,所有反应器的DO浓度降低到0.8mg/L,通过减少空气流量至1.0L/min;⑵350天后,反应器DO进一步降低至0.5 mg/L,通过降低曝气量至0.5L/min;⑶355天后,所有的反应器停止曝气,创造一个无DO的环境。在厌氧或缺氧阶段,在反硝化阶段乙醇作为外加碳源加入反应器,其浓度为600mg/L。
2.2 媒介物
反应器1-4接种650ml新鲜活性污泥(相当于3000mg/L的悬浮固体),来自于当地市政污水处理厂的污泥。反应器初始生物量浓度为每升2000mg干重。人工底物主要是作为单一碳源的乙醇,氯化铵,重碳酸钠,和其它必要元素。乙醇化学需氧氧量固定为500mg/L,而在R1至R4中氨氮浓度从25变化到150mg/L,各自底物N/COD比率分别为5/100-30/100。为了满足硝化菌生长要求,所有反应器中的重碳酸盐与氨氮的比值保持常数值8.0mg/mg。在人工废水中微量元素在别处可以发现。反应器的pH降低到8.2-7.5的范围。试验温度控制在25℃。
2.3 分析方法
2.3.1 溶液中氨氮和氮的浓度
氨,亚硝酸盐,和硝酸盐浓度用一个流量注射分析器测量(),而COD浓度用标准方法测量。
2.3.2 生物种的氧利用率
异氧细菌的生物种氧利用率(SOUR)h和氨氮氧化菌及亚硝酸盐氧化菌的氨氮与亚硝酸生物种氧利用率((SOUR)NH4和(SOUR)NO2),可以通过标准方法进行测量(APHA,1998.)。一定数量颗粒样本用自来水小心洗干净,然后放进干净的BOD瓶。接着,BOD瓶加满预先曝气的营养物和培养基溶液,带有搅拌机置的氧传感的探针立即插入BOD瓶中。间隔15S记录DO的减少量。根据整个过程中DO浓度记录可以计算出生物种的氧利用率。生物量、COD、NH4-N和NO2-N浓度分别保持为500、400、20和20mg/L常数,乙醇、NH4Cl和NaNO2各个培养基确定SOUR)h、((SOUR)NH4和(SOUR)NO2)。SOUR试验在25℃进行。
2.3.3 颗粒的物理性质
用激光粒子尺寸分析系统(Malvern Mastersizer series 2600)或者图象分析仪(Quantimner 500 image Analyzer,Lecia Cambridge Insttuments)。悬浮固体(SS)和挥发性悬浮固体(VSS)用标准方法测量(APHA,1998).
3 结果
3.1 不同培养基N/COD比率的好氧颗粒
接种污泥平均絮状尺寸为90υm。运行20天后,4个反应器的好氧颗粒形成了。好氧颗粒尺寸逐渐稳定下来。40天后,R1、R2、R3和R4的平均直径分别为1.9mm、1.5mm、0.5mm、0.4mm。在稳定状态下反应器里的生物量浓度增加超过了10gSS/L。当培养基N/COD比率从5/100增加到30/100,VSS/SS比率从0.94降到0.79。微生物观察显示4个反应器中好氧颗粒结构紧密,与接种污泥对比其外部形状有明显的球形。
3.2 好氧条件下COD和硝化反应关系
图2显示反应器R1至R4运行一个4h循环时间时COD和硝化反应关系。数据跳跃的点是:⑴几乎所有流入COD在开始30分钟去除;⑵培养基N/COD比率为5/100时反应器R1没有亚硝酸盐和硝酸盐产生,可以观察到在各个培养基N/COD比率10/100、20/100和30/100时COD和硝化反应关系;⑶COD去除后在反应器R2至R4中完全硝化反应发生;⑷在循环时间前30分钟氨氮去除是微生物生长需求氮源替代了硝化反应,因为在这个阶段既没有亚硝酸盐产生也没有硝酸盐产生;⑸就亚硝酸盐形成来说不能看到缓慢硝酸盐产物;实际上,硝化反应主要由两类细菌来完成,氨氮氧化菌负责亚硝酸盐形成,亚硝酸氧化菌转化亚硝酸盐为硝酸盐。在正常培养条件下,至少有两个因素影响硝化反应效率,在微生物种群中氨氮氧化菌与亚硝酸氧化菌的