⑴ 生物统计学主要学的是啥啊
生物统计学是一门探讨如何从不完整的信息中获取科学可靠的结论从而进一步进行生物学实验研究的设计,取样,分析,资料整理与推论的科学.
⑵ 生物统计平行是什么意思
意思是数量统计时,等级相同,并没有隶属关系。
生物统计,应用于中的数理统计方法。即用数理统计的原理和方法,分析和解释生物界的种种现象和数据资料,以求把握其本质和规律性。最早提出生物统计思想的是比利时数学家L.A.J.凯特莱,他试图把统计学的理论应用于解决生物学、医学和社会学中的问题。
⑶ 什么是生物统计学
生物统计学在我国又称卫生统计学,在学科分类中属于预防医学下的一个二级学科——流行病与卫生统计学。现阶段,我国共有25所大学具有流行病与卫生统计学博士学位授予权,61所大学具有流行病与卫生统计学硕士学位授予权。
但只有南方医科大学一所大学设有生物统计学本科专业。而且流行病与卫生统计学专业的研究生中从事生物统计学的只有1/3,全国每年只有不到200名硕士、50名博士毕业。
近年来,生物医学研究中统计学的应用越来越广泛,理论统计学家不断寻求与生物医学研究者的合作,医学领域的生物统计学者也期待得到来自理论统计学家的帮助。
生物统计学家绝不仅仅是分析数据而已,他们不但要有良好的沟通技巧,深刻理解医学伦理及文化背景对研究带来的影响,还要熟悉政府政策以及法律法规体系,用全球化视野来审视自己所从事的研究。
(3)生物统计什么是水平扩展阅读:
生物统计学是生物数学中最早形成的一大分支,它是在用统计学的原理和方法研究生物学的客观现象及问题的过程中形成的,生物学中的问题又促使生物统计学中大部分基本方法进一步发展。
生物统计学是应用统计学的分支,它将统计方法应用到医学及生物学领域,在此,数理统计学和应用统计学有些重叠。
⑷ 求《生物统计附实验设计》明道绪第四版 课后习题答案
《生物统计附实验设计》(课后习题答案)
第一章 绪论
一、名词解释
1、总体:根据研究目的确定的研究对象的全体称为总体。
2、个体:总体中的一个研究单位称为个体。
3、样本:总体的一部分称为样本。
4、样本含量:样本中所包含的个体数目称为样本含量(容量)或大小。
5、随机样本:从总体中随机抽取的样本称为随机样本,而随机抽取是指总体中的每一个个体都有同等的机会被抽取组成样本。
6、参数:由总体计算的特征数叫参数。
7、统计量:由样本计算的特征数叫统计量。
8、随机误差:也叫抽样误差,是由于许多无法控制的内在和外在的偶然因素所造成,带有偶然性质,影响试验的精确性。
9、系统误差:也叫片面误差,是由于一些能控制但未加控制的因素造成的,其影响试验的准确性。
10、准确性:也叫准确度,指在调查或试验中某一试验指标或性状的观测值与真值接近的程度。
11、精确性:也叫精确度,指调查或试验研究中同一试验指标或性状的重复观测值彼此接近的程度。
二、简答题
1、什么是生物统计?它在畜牧、水产科学研究中有何作用?
答:(1)生物统计是数理统计的原理和方法在生物科学研究中的应用,是一门应用数学。
(2)生物统计在畜牧、水产科学研究中的作用主要体现在两个方面:一是提供试验或调查设计的方法,二是提供整理、分析资料的方法。
2、统计分析的两个特点是什么?
答:统计分析的两个特点是:①通过样本来推断总体。②有很大的可靠性但也有一定的错误率。
3、如何提高试验的准确性与精确性?
答:在调查或试验中应严格按照调查或试验计划进行,准确地进行观察记载,力求避免认为差错,特别要注意试验条件的一致性,即除所研究的各个处理外,供试畜禽的初始条件如品种、性别、年龄、健康状况、饲养条件、管理措施等尽量控制一致,并通过合理的调查或试验设计,努力提高试验的准确性和精确性。
4、如何控制、降低随机误差,避免系统误差?
答:随机误差是由于一些无法控制的偶然因素造成的,难以消除,只能尽量控制和降低;主要是试验动物的初始条件、饲养条件、管理措施等在试验中要力求一致,尽量降低差异。系统误差是由于一些可以控制但未加控制的因素造成的,一般只要试验工作做得精细是可以消除的。避免系统误差的主要措施有:尽量保证试验动物初始条件的一致(年龄、初始重、性别、健康状况等),尽量控制饲料种类、品质、数量、饲养条件等,测量仪器要准确,标准试剂要校正,要避免观测、记载、抄录、计算中的错误。
第二章 资料的整理
一、名词解释
1、数量性状资料:数量性状是指能够以量测或记数的方式表示其特征的象状,观察测定数量性状而获得的数据称为数量性状资料。
2、质量性状资料:质量性状是指能观察到而不能直接测量的性状,观察质量性状而获得的资料称为质量性状资料。
3、半定量(等级)资料:是指将观察单位按所考察的性状或指标的等级顺序分组,然后清点各组观察单位的次数而得到的资料。
4、计数资料:指用计数方式获得的数量性状资料。
5、计量资料:指用量测手段得到的数量性状资料,即用度、量、衡等计量工具直接测定的数量性状资料。
6、全距(极差):是资料中最大值与最小值之差。
7、组中值:分组后每一组的中点值称为组中值,是该组的代表值。
二、简答题
1、资料可以分为哪几类?它们有何区别与联系?
答:资料一般可以分为数量性状资料、质量性状资料、半定量资料三大类,其中数量性状资料又包括计量资料和计数资料。区别:数量性状资料是能够以量测或计数的方式获得的资料,质量性状资料是只能观察而不能直接测量的资料,半定量资料既有计数资料的特点又有程度或量的不同。联系:三种不同类型的资料有时可根据研究目的和统计方法的要求将一种类型资料转化成另一种类型的资料。
2、为什么要对资料进行整理?对于计量资料,整理的基本步骤怎样?
答:(1)由调查或试验收集来的原始资料往往是零乱的,无规律可循。只有通过统计整理,才能发现其内部的联系和规律性,从而揭示事物的本质。资料整理是进行统计分析的基础。
(2)计量资料整理的基本步骤包括:①求全距,全距即为资料中最大值与最小值之差。②确定组数,一般根据样本含量及资料的变动范围大小确定组数。③确定组距,通常根据等距离分组的原则,组距等于全距除以组数。④确定组限和组中值,各组的最大值为组上限,最小值为组下限;每一组的中点值称为组中值。⑤归组划线计数,作次数分布表。
3、在对计量资料进行整理时,为什么第一组的组中值以接近或等于资料中的最小值为好?
答:在对计量资料进行整理时,第一组的组中值以接近或等于资料中的最小值可以避免第一组中观察值过多的情况,同时也确保资料中最小值不会遗漏。
4、统计表与统计图有何用途?常用统计图有哪些?常用统计表有哪些?列统计表、绘统计图时,应注意什么?
答:(1)统计表用表格形式来表示数量关系;统计图用几何图形来表示数量关 系。用统计表和统计图可以把研究对象的特征、内部构成、相互关系等简明、形象地表达出来,便于比较分析。
(2)常用的统计图有长条图、圆图、线图、直方图和折线图等。
(3)常用的统计表有简单表和复合表两大类。
(4)列统计表的注意事项:①标题要简明扼要、准确地说明表的内容,有时须注明时间、地点。②标目分横标目和纵标目两项,横标目列在表的左侧,用以表示被说明事物的主要标志;纵标目列在表的上端,说明横标目各统计指标内容,并注明计算单位。③数字一律用阿拉伯数字,数字小数点对齐,小数位数一致,无数字的用“—”表示,数字是“0”的须写“0”。④表的上下两条边线略粗,纵、横标目间及合计用细线分开,表的左右边线可以省去,表的左上角一般不用斜线。
(5)绘统计图的注意事项:①标题简明扼要并列于图的下方。②纵、横两轴应有刻度,注明单位。③横轴由左至右,纵轴由上而下,数值由小到大;图形长宽比例约为5:4或6:5。④图中需用不同颜色或线条表示不同事物时应有图例说明。
第三章 平均数、标准差与变异系数
一、名词解释
1、算术平均数:是指资料中各观测值的总和除以观测值个数所得的商,简称平均数或均数。
2、无偏估计:当一个统计量的数学期望等于所估计的总体参数时,则称此统计量为该总体参数的无偏估计。
3、几何均数:n个观测值相乘之积开n次方所得的方根称为几何均数,记为G。
4、中位数:将资料内所有观测值从小到大依次排列,位于中间的那个观测值称为中位数,记为Md。
5、众数:资料中出现次数最多的那个观测值或次数最多一组的组中值称为众数,记为Mo。
6、调和平均数:资料中各观测值倒数的算术平均数的倒数称为调和平均数,记为H。
7、标准差:统计学上把样本方差S2的平方根叫做样本标准差,记做S。
8、方差:统计量Σ(x - )2/(n - 1)称为均方,又称样本方差,记为S2。
9、离均差平方和(平方和):各个观测值与平均数的离差(x - )称为离均差,各个离均差平方再求和即为离均差平方和,简称平方和,记为SS。
10、变异系数:标准差与平均数的比值称为变异系数,是衡量资料中各观测值变异程度的另一个统计量,记做C.V。
二、简答题
1、生物统计中常用的平均数有几种?各在什么情况下应用?
答:生物统计中常用的平均数有算术平均数、几何平均数、调和平均数、中位数和众数。算术平均数较常用,简称平均数,当资料呈正态分布时可用算术平均数描述其中心位置。几何均数主要应用于畜牧、水产业的动态分析,畜禽疾病及药物效价的统计分析,如畜禽、水产养殖的增长率,抗体的滴度,药物的效价,畜禽疾病的潜伏期等。调和均数主要用于反映畜群不同阶段的平均增长率或畜群不同规模的平均规模。当所获得的数据资料呈偏态分布时中位数的代表性优于算术平均数。众数也适用于资料呈偏态分布的情况。
2、算术平均数有哪些基本性质?
答:算术平均数的两个基本性质是:①离均差之和等于零。
②离均差平方和最小。
3、标准差有哪些特性?
答:标准差的特性主要表现在四个方面:
①标准差的大小受资料中每个观测值的影响,若观测值间变异大求得的标准差也大,反之则小。
②在计算标准差时,在各观测值加上或减去一个常数,其数值不变。
③当每个观测值乘以或除以一个常数a,则所得的标准差是原来标准差的a倍或1/a倍。
④在资料服从正态分布的条件下,资料中约有68.26%的观测值在平均数左右1倍标准差 ( ±S)范围内;约有95.43%的观测值在平均数左右2倍标准差 ( ±2S)范围内;约有99.73%的观测值在平均数左右3倍标准差 ( ±3S)范围内。
4、为什么变异系数要与平均数、标准差配合使用?
答:变异系数是标准差与平均数的比值,是衡量资料中各观测值变异程度的另一个统计量。当进行两个或多个资料变异程度的比较时,若度量单位与平均数相同,可以直接利用标准差来比较;若单位和(或)平均数不同时,比较其变异程度就不能采用标准差,而要用变异系数。变异系数可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。
第四章 常用概率分布
一、名词解释
1、必然现象:某类现象是可预言其结果的,即在保持条件不变的情况下,重复进行试验,其结果总是确定的,这类现象称为必然现象。
2、随机现象:某类现象事前不可预言其结果的,即在保持条件不变的情况下,重复进行试验,其结果未必相同,这类现象称为随机现象。
3、随机试验:一个试验若满足下述三个特性则称为随机试验,简称试验:①试验可以在相同条件下多次重复进行。②每次试验的可能结果不止一个,并且事先知道会有哪些可能的结果。③每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪个结果。
4、随机事件:随机试验的每一种可能结果,在一定条件下可能发生,也可能不发生,称为随机事件,简称事件。
5、概率的统计定义:在相同条件下进行n次重复试验,若随机事件A发生的次数为m,那么m/n称为随机事件A的频率;当试验重复数n逐渐增大时,随机事件A的频率越来越稳定地接近某一数值P,那么就把P称为随机事件A的概率。这样定义的概率称为统计概率,也叫后验概率。
6、小概率原理:若随机事件的概率很小,例如小于0.05、0.01、0.001,称之为小概率事件;在统计学上,把小概率事件在一次试验中看成是实际不可能发生的事件称为小概率事件实际不可能性原理,简称小概率原理。
7、随机变量:作一次试验,其结果有多种可能,每一种可能结果都可以用一个数来表示,把这些数作为变量x的取值范围,则试验结果可用随机变量x来表示。
8、离散型随机变量:如果表示试验结果的变量x,其可能取值至多为可数个,且以各种确定的概率取这些不同的值,则称x为离散型随机变量。
9、连续型随机变量:如果表示试验结果的变量x,其可能取值为某范围内的任何数值,且x在其取值范围内的任一区间中取值时,其概率是确定的,则称x为连续型随机变量。
9、标准正态分布:μ = 0,δ2 = 1 的正态分布称为标准正态分布。
10、标准正态变量(标准正态离差):任何一个服从正态分布N(μ,δ2)的随机变量x,都可以通过标准化变换:u = (x –μ)/δ,将其变换为服从标准正态分布的随机变量u,u称为标准正态变量。
11、双侧概率(两尾概率):随机变量x落在平均数μ加减不同倍数标准差δ区间之外的概率称为双侧概率。
12、单侧概率(一尾概率):随即变量x小于μ-kδ或大于μ+kδ的概率称为单侧概率。
13、贝努利试验:对于n次独立的试验,如果每次试验结果出现且只出现对立事件A与A之一,在每次试验中出现A的概率是常数p(0
14、返置抽样:由总体随即抽样时,每次抽出一个个体后,这个个体还返置回原总体,则称为返置抽样。
15、不返置抽样:由总体随即抽样时,每次抽出的个体不返置回原总体,则称为不返置抽样。
16标准误:即平均数抽样总体的标准差,其大小反映样本平均数 的抽样误差的大小,即精确性的高低。
17、样本平均数的抽样总体:样本平均数也是一个随机变量,其概率分布叫做样本平均数的抽样分布,由样本平均数 构成的总体称为样本平均数的抽样总体。
18、中心极限定理:若随机变量x服从正态分布N(μ,δ2),x1,x2,……,xn是由总体得来的随机样本,则统计量 = Σx/n的概率分布也是正态分布,且有μ = μ,δ =δ/ n ,即 服从正态分布N(μ,δ2/n);若随机变量服从平均数是μ,方差是δ2的分布(不是正态分布),x1,x2,……,xn是由总体得来的随机样本,则统计量 = Σx/n的概率分布,当n相当大时逼近正态分布N(μ,δ2/n)。
二、简答题
1、事件的概率具有那些基本性质?
答:事件的概率一般具有以下三个基本性质:
①对于任何事件A,有0≤ P(A) ≤1
②必然事件的概率为1,即P(Ω)=1
③不可能事件的概率为0,即P(Ф)=0
2、离散型随机变量概率分布与连续型随机变量概率分布有何区别?
答:离散型随机变量概率分布常用分布列来表示,其具有Pi ≥0和ΣPi = 1两个基本性质。连续型随机变量的概率分布不能用分布列来表示,其可能取的值是不可数的,一般用随机变量x在某个区间内取值的概率P(a ≤x )
3、标准误与标准差有何联系与区别?
答:样本标准差与样本标准误是既有联系又有区别的两个统计量,二者的联系是:样本标准误等于样本标准差除以根号下样本含量。二者的区别在于:样本标准差是反映样本中各观测值x1,x2,……,xn变异程度大小的一个指标,它的大小说明了 对该样本代表性的强弱。样本标准误是样本平均数 1, 2,…… k的标准差,它是 抽样误差的估计值,其大小说明了样本间变异程度的大小及 精确性的高低。
4、样本平均数抽样总体与原始总体的两个参数间有何联系?
答:①样本平均数抽样总体的平均数等于原始总体的平均数。
②样本平均数抽样总体的标准差等于与原始总体的标准差除以根号下样本含量。
5、t分布与标准正态分布有何区别与联系?
答:t分布与标准正态分布曲线均以纵轴为对称轴,左右对称。与标准正态分布曲线相比t分布曲线顶部略低,两尾部稍高而平;df越小这种趋势越明显。df越大,t分布越趋近于标准正态分布,当n>30时,t分布与标准正态分布的区别很小;n>100时,t分布基本与标准正态分布相同;n→∞时,t分布与标准正态分布完全一致。
第五章 t检验
一、名词解释
1、假设检验(显着性检验):主要包括提出无效假设和备择假设,再根据小概率实际不可能性原理来否定或接受无效假设,实际上是应用“概率性质的反证法”对试验样本所属总体所做的无效假设的统计推断。
2、无效假设:是显着性检验中被检验的假设,其意义是试验的表面效应是试验误差,处理无效,记作H0。
3、备择假设:显着性检验时在无效假设被否定时准备接受的假设,其意义是试验的表面效应是处理效应,处理有效,记做HA。
4、显着水平:显着性检验中用来确定否定或接受无效假设的概率标准叫显着水平,记做α,在生物学研究中常取α=0.05或α=0.01。
5、Ⅰ型错误:真实情况是H0成立却否定了它,犯了“弃真”错误,称为Ⅰ型错误。
6、Ⅱ型错误:真实情况是H0不成立却接受了它,犯了“纳伪”错误,称为Ⅱ型错误。
7、检验功效(检验力、把握度):犯Ⅱ型错误的概率用β表示,而1-β称为检验功效,其意义是当两总体确有差别(即HA成立)时,按α水平能发现它们有差别的能力。
8、双侧检验(双尾检验):利用两尾概率进行的检验叫双侧检验,tα为双侧检验的临界t值。
9、单侧检验(单尾检验):利用一尾概率进行的检验叫单侧检验,此时tα为单侧检验的临界t值;显然单侧检验的tα=双侧检验的t2α。
10、非配对设计(成组设计):是指当进行只有两个处理的试验时,将试验单位完全随机地分成两组,然后对两组随机施加一个处理,两组的试验单位相互独立,所得的两个样本相互独立,其含量不一定相等。
11、配对设计:是指先根据配对的要求将试验单位两两配对,然后将配成对子的两个试验单位随机地分配到两个处理组中去;配对的要求是配成对子的两个试验单位的初始条件尽量一致,不同对子间试验单位的初始条件允许有差别。
12、自身配对:指同一试验单位在两个不同时间上分别接受前后两次处理,用其前后两次的观测值进行自身对照比较;或同一试验单位的不同部位的观测值或不同方法的观测值进行自身对照比较。
13、同源配对:指将来源相同、性质相同的两个个体配成一对,如将畜别、品种、窝别、性别、年龄、体重相同的两个试验动物配成一对,然后将配对的两个个体随机地实施不同处理。
14、参数估计:是统计推断的一个重要内容,就是用样本统计量来估计总体参数。
15、点估计:将样本统计量直接作为总体相应参数的估计值叫点估计。
16、区间估计:在一定概率的保证下指出总体参数的可能范围叫区间估计。
17、置信区间:区间估计时所给出的可能范围叫置信区间。
18、置信度(置信概率):区间估计时给出的概率保证称为置信度。
二、简答题
1、为什么在分析试验结果时需要进行显着性检验?检验的目的是什么?
答:通过样本来推断总体是生物统计的基本特点,即通过抽样研究用样本信息来推断总体的特征。由一个样本平均数来估计总体平均数时,样本平均数包含抽样误差,用包含抽样误差的样本平均数来推断总体,其结论并不是绝对正确的。所以在分析试验结果时需要进行显着性检验。显着性检验的目的是通过样本对其所在的总体作出符合实际的推断,即分析试验的表面效应是由试验处理效应还是由试验误差引起的,推断试验的处理效应是否存在。
2、什么是统计假设?统计假设有哪几种?各有何含义?
答:统计假设(统计推断)是根据样本和假定模型对总体作出的以概率形式表述的推断。统计假设主要包括假设检验(显着性检验)和参数估计两个内容。假设检验(显着性检验)的含义:提出无效假设和备择假设,再根据小概率实际不可能性原理来否定或接受无效假设,实际上是应用“概率性质的反证法”对试验样本所属总体所做的无效假设的统计推断。参数估计的含义:用样本统计量来估计总体参数。
3、显着性检验的基本步骤是什么?根据什么确定显着水平?
答:1、显着性检验的基本步骤:
(1)首先对试验样本所在的总体作假设。
(2)在无效假设成立的前提下,构成合适的统计量,并研究试验所得统计量的抽样分布,计算无效假设正确的概率。
(3)根据“小概率实际不可能性原理”否定或接受无效假设。
2、确定显着水平的标准通常采用小概率事件的标准,即0.05和0.01。选择显着水平应根据试验的要求或试验结论的重要性而定。若试验中难以控制的因素较多,试验误差可能较大,则显着水平标准可选低些,即α值取大些;反之若试验耗费较大,对精确度的要求较高,不容许反复,或者试验结论的应用事关重大,则所选显着水平标准应高些,即α值取小些。
4、什么是统计推断?为什么统计推断的结论有可能发生错误?有哪两类错误?如何降低两类错误?
答:(1)统计推断是根据样本和假定模型对总体作出以概率形式表述的推断。
(2)统计推断是根据“小概率实际不可能性原理”来否定或接受无效假设的,所以不论是接受还是否定无效假设都没有100%的把握,会发生错误。
(3)在检验无效假设H0时可能犯两种错误,其中真实情况是H0成立却否定了它,犯了“弃真”错误,称为Ⅰ型错误;真实情况是H0不成立却接受了它,犯了“纳伪”错误,称为Ⅱ型错误。
(4)犯Ⅰ型错误的概率用α表示,犯Ⅱ型错误的概率用β表示。α即是显着水平,β的大小与α值的大小有关,所以在选用检验的显着水平时应考虑犯Ⅰ、Ⅱ型错误所产生后果严重性的大小,还应考虑到试验的难以及试验结果的重要程度。降低α值可降低犯Ⅰ型错误的概率但会加大犯Ⅱ型错误的概率(在其他因素确定时,α值越小β值越大)。若一个试验耗费大,可靠性要求高,不允许反复,或试验结论的使用事关重大,容易产生严重后果,α值应取小些;对于一些试验条件不易控制、试验误差较大的试验α值取大些。同时,在提高显着水平即减小α值时,为了减小犯Ⅱ型错误的概率可适当增大样本含量。
5、双侧检验、单侧检验各在什么条件下应用?二者有何关系?
答:(1)选用双侧检验还是单侧检验应根据专业知识及问题的要求在试验设计时确定。一般若事先不知道所比较的两个处理效果谁好谁坏,分析的目的在于推断两个处理效果有无差别,则选用双侧检验;若根据理论知识或试验经验判断甲处理的效果不会比乙处理的效果差(或相反),分析的目的在于推断甲处理是否比乙处理好(或差),则用单侧检验。一般情况下不做特殊说明均用双侧检验。
(2)二者的关系:单侧检验的tα=双侧检验的t2α,可见双侧检验显着单侧检验一定显着,单侧检验显着双侧检验未必显着。
6、进行显着性检验应注意什么问题?如何理解显着性检验结论中的“差异不显着”、“差异显着”、“差异极显着”?
答:(1)显着性检验中应注意的问题:
①为了保证试验结果的可靠及正确,要有严密合理的试验或抽样设计,保证各样本是从相应同质总体中随机抽取的,并且处理要有可比性,即除比较的处理外,其他影响因素应尽可能控制相同或基本接近。
②选用的显着性检验方法应符合其应用条件。
③要正确理解差异显着或极显着的统计意义。
④合理建立统计假设,正确计算检验统计量。
⑤结论不能绝对化。
⑥报告结论时应列出,由样本算得的检验统计量值,注明是单侧检验还是双侧检验,并写出P值的确切范围,如0.01
(2)显着性检验结论中的“差异不显着”表示P>0.05,接受H0,否认HA,处理无效,记作“ns”;“差异显着”表示0.010,接受HA,处理有效,记作“*”;“差异极显着”表示P≤0.01,更加否认H0,接受HA,处理有效,嘉作“**”。
7、配对试验设计与非配对试验设计有何区别?
答:非配对设计(成组设计)是指当进行只有两个处理的试验时,将试验单位完全随机地分成两组,然后对两组随机施加一个处理,两组的试验单位相互独立,所得的两个样本相互独立,其含量不一定相等。配对设计是指先根据配对的要求将试验单位两两配对,然后将配成对子的两个试验单位随机地分配到两个处理组中去。非配对设计要求试验单位尽可能一致,配对设计要求配成对子的两个试验单位的初始条件尽量一致,不同对子间试验单位的初始条件允许有差别。一般说来,相对于非配对设计,配对设计能够提高试验的精确性。
⑸ 什么是生物统计
生物统计(shengwu tongji,biostatistics,biometry,biometrics)含义 应用于中的数理统计方法。即用数理统计的原理和方法,分析和解释生物界的种种现象和数据资料,以求把握其本质和规律性。
发展简况
最早提出生物统计思想的是比利时数学家L.A.J.凯特莱,他试图把统计学的理论应用于解决生物学、医学和社会学中的问题。1866年,揭示了遗传的基本规律,这是最早运用数理统计于生物实验的一个成功的范例(见)。1889年,在《自然的遗传》一书中,通过对人体身高的研究指出,子代的身高不仅与亲代的身高相关,而且有向平均值“回归”的趋势,由此提出了“回归”和“相关”的概念和算法,从而奠定了生物统计的基础。高尔顿的学生K.皮尔逊进一步把统计学应用于生物研究,提出了实际测定数与理论预期数之间的偏离度指数即卡方差()的概念和算法,这在属性的统计分析上起了重要作用。1899年,他创办了《生物统计》杂志,还建立了一所数理统计学校。他的学生W.S.戈塞特对样本标准差作了许多研究,并于1908年以“Student”的笔名将t-检验法发表于《生物统计》杂志上。此后,t-检验法就成了生物统计学中的基本工具之一。英国数学家指出,只注意事后的数据分析是不够的,事先必须作好实验设计。他使实验设计成了生物统计的一个分支。他的学生G.W.斯奈迪格把变异来源不同的均方比值称为F值,并指出当值大于理论上 5%概率水准的值时,该项变异来源的必然性效应就从偶然性变量中分析出来了,这就是“方差分析法”。上述这些方法对于农业科学、生物学特别是的研究,起了重大的推动作用,20世纪20年代以来,各种数理统计方法陆续创立,它们在实验室、田间、饲养和临床实验中得到广泛应用并日益扩大到整个工业界。70年代,随着计算机的普及,使本来由于计算量过大而不得不放弃的统计方法又获得了新的生命力,应用更为广泛,并在现代科技中占有十分重要的地位。
⑹ 生物统计中***p 代表什么
P 值即概率,反映某一事件发生的可能性大小,即一种在原假设为真的前提下出现观察样本以及更极端情况的概率。
⑺ 生物统计的参数
一个观测对象(如一个7岁男孩)的某些性状(如身高等)的量度结果,称为一个个体。来源相同的各个个体(如各个 7岁男孩的身高值)之间的差异称为个体变异。总体是通过统计所欲了解的对象,其中的个体可以是有限的也可以是无限的。观测数据可以是计数的(离散的)(如单位面积中的昆虫数),也可以是计量的(如身高、体重、血压、肺活量等)。总体最基本的参数有两类:表示水平的称为位置参数或型值,如平均数、中位数、率等;反映个体差异大小的称为分散度参数,如标准差、极差等。总体参数是一个客观存在但通常却又是未知的常数。只能用样本去估计它。这样做自然会有误差。样本平均数,即
[1432-01]其中表示第 个个体的观测值;为样本中的个体数,称为样本大小;∑为求和号,∑表示的合计凡是从样本计算出来的数值都称为统计量,它是对相应的总体值的一种估计例如是总体均数的一种估计。若总体均数正好等于,则称为 的无偏估计,意谓用估计虽有误差但平均来说是无偏的。此时又称 为 的期望,记作[1432-02]。
⑻ 生物统计 三因素三水平怎么描述结果
都用L9,(3,4)交表! 点该交表4素列用进行3素试验空列空列用考察(交互作用+纯误差)用进行4素试验由于留空列所没估计交互作用 仍通每处理设置重复考察纯误
⑼ 什么是生物统计
生物统计学是一门探讨如何从事生物学实验研究的设计,取样,分析,资料整理与推论的科学.
应用数理统计学来处理生物现象的学问。与其说是生物学的一个分科不如看作是生物学的方法论。与生物测量学大致具有同一涵义,但前者几乎尚没有深入到现象的统计处理机制,因此生物测量学作为稍狭义的东西,有时也与生物统计学有所区别。在物理学的测量中,测量误差是重要问题,与此相应在生物学的研究中必须应用统计处理,其首要原因是变异。有意识地将数理统计学引入到生物学以及人类学领域的先驱者是克韦泰来特(L.A.J.Quetelet),随后由高尔顿(F.Galton)的工作巩固了生物测量学和优生学的基础。数学家泊松(K.Pearson)继承了他们的研究工作,进行了回归和相关特别是复相关、泊松型分布数、频率累加法、X2测验等数理统计学的研究,并制成了很多统计数值表。他们把人们观测的或能得到手的资料的全部作为对象,把平均值和离差作为问题,来考查其中的数学规律。数理统计学方法已适用于生物学和农业科学的实验或试验领域,但也是以整个资料或比试验资料更大的抽象资料为依据的,因此人们开始意识到,在其现实是一种不能以其一部分作为研究对象的局面。于是就提出母集团和样本的区别和关联,以及从少数资料进行正确有效的推论的问题,这些问题被戈塞特[笔名(Student)]和费希尔(W.S.Gosset和R.A.Fisher)解决了。费希尔的工作指出,统计方法的目的在于得到资料的要点,为此,其分布法则是要以较少的母集团中的数目为特征推想到无限的母集团,而实际的资料就是从它们之中随机抽出的样本。基于此点,在母集团数的统计上的无偏性、一致性、有效性、充分性的概念,构成了解消假设的验定,最优法等的理论。这就是费希尔派的数理统计学,也特称推计学。
⑽ 生物统计学结合单因素和多因素试验的不同比较处理和水平
第二节试验方案
一、试验因素与水平
如上节所述,试验方案是根据试验目的和要求所拟进行比较的一组试验处理(treatment)的总称。农业与生物学研究中,不论农作物还是微生物,其生长、发育以及最终所表现的产量受多种因素的影响,其中有些属自然的因素,如光、温、湿、气、土、病、虫等,有些是属于栽培条件的,如肥料、水分、生长素、农药、除草剂等。进行科学试验时,必须在固定大多数因素的条件下才能研究一个或几个因素的作用,从变动这一个或几个因子的不同处理中比较鉴别出最佳的一个或几个处理。这里被固定的因子在全试验中保持一致,组成了相对一致的试验条件;被变动并设有待比较的一组处理的因子称为试验因素,简称因素或因子(factor),试验因素的量的不同级别或质的不同状态称为水平(level)。试验因素水平可以是定性的,如供试的不同品种,具有质的区别,称为质量水平;也可以是定量的,如喷施生长素的不同浓度,具有量的差异,称为数量水平。数量水平不同级别间的差异可以等间距,也可以不等间距。所以试验方案是由试验因素与其相应的水平组成的,其中包括有比较的标准水平。
试验方案按其供试因子数的多少可以区分为以下3类:
(1) 单因素试验(single-factor
experiment)单因素试验是指整个试验中只变更、比较一个试验因素的不同水平,其他作为试验条件的因素均严格控制一致的试验。这是一种最基本的、最简单的试验方案。例如在育种试验中,将新育成的若干品种与原有品种进行比较以测定其改良的程度,此时,品种是试验的唯一因素,各育成品种与原有品种即为各个处理水平,在试验过程中,除品种不同外,其它环境条件和栽培管理措施都应严格控制一致。又例如为了明确某一品种的耐肥程度,施肥量就是试验因素,试验中的处理水平就是几种不同的施肥量,品种及其它栽培管理措施都相同。
(2) 多因素试验(multiple-factor or factorial
experiment)多因素试验是指在同一试验方案中包含2个或2个以上的试验因素,各个因素都分为不同水平,其他试验条件均应严格控制一致的试验。各因素不同水平的组合称为处理组合(treatment
combination)。处理组合数是各供试因素水平数的乘积。这种试验的目的一般在于明确各试验因素的相对重要性和相互作用,并从中评选出1个或几个最优处理组合。如进行甲、乙、丙3个品种与高、中、低3种施肥量的2因素试验,共有甲高、甲中、甲低、乙高、乙中、乙低、丙高、丙中、丙低等3×3=9个处理组合。这样的试验,除了可以明确2个试验因素分别的作用外,还可以检测出3个品种对各种施肥量是否有不同反应并从中选出最优处理组合。生物体生长受到许多因素的综合作用,采用多因素试验,有利于探究并明确对生物体生长有关的几个因素的效应及其相互作用,能够较全面地说明问题。多因素试验的效率常高于单因素试验。
(3) 综合性试验(comprehensive
experiment)这也是一种多因素试验,但与上述多因素试验不同。综合性试验中各因素的各水平不构成平衡的处理组合,而是将若干因素的某些水平结合在一起形成少数几个处理组合。这种试验方案的目的在于探讨一系列供试因素某些处理组合的综合作用,而不在于检测因素的单独效应和相互作用。单因素试验和多因素试验常是分析性的试验;综合性试验则是在对于起主导作用的那些因素及其相互关系已基本清楚的基础上设置的试验。它的处理组合就是一系列经过实践初步证实的优良水平的配套。例如选择一种或几种适合当地条件的综合性丰产技术作为试验处理与当地常规技术作比较,从中选出较优的综合性处理。
二、试验指标与效应
用于衡量试验效果的指示性状称试验指标(experimental
indicator)。一个试验中可以选用单指标,也可以选用多指标,这由专业知识对试验的要求确定。例如农作物品种比较试验中,衡量品种的优劣、适用或不适用,围绕育种目标需要考察生育期(早熟性)、丰产性、抗病性、抗虫性、耐逆性等多种指标。当然一般田间试验中最主要的常常是产量这个指标。各种专业领域的研究对象不同,试验指标各异。例如研究杀虫剂的作用时,试验指标不仅要看防治后植物受害程度的反应,还要看昆虫群体及其生育对杀虫剂的反应。在设计试验时要合理地选用试验指标,它决定了观测记载的工作量。过简则难以全面准确地评价试验结果,功亏一篑;过繁琐又增加许多不必要的浪费。试验指标较多时还要分清主次,以便抓住主要方面。
试验因素对试验指标所起的增加或减少的作用称为试验效应(experimental
effect)。例如,某水稻品种施肥量试验,每亩施氮10kg,亩产量为350kg,每亩施氮15kg,亩产量为450kg;则在每亩施氮10kg的基础上增施5kg的效应即为450-350=100(kg/亩)。这一试验属单因素试验,在同一因素内两种水平间试验指标的相差属简单效应(simple
effect)。在多因素试验中,不但可以了解各供试因素的简单效应,还可以了解各因素的平均效应和因素间的交互作用。表1.1为某豆科植物施用氮(N)、磷(P)的2×2=4种处理组合(N1P1,N1P2,N2P1,N2P2)试验结果的假定数据,用以说明各种效应。(1)一个因素的水平相同,另一因素不同水平间的产量差异仍属简单效应。如表1.1Ⅱ中18-10=8就是同一N1水平时P2与P1间的简单效应;28-16=12为在同一N2水平时P2与P1间的简单效应;16-10=6为同一P1水平时N2与N1间的简单效应;28-18=10为同一P2水平时N2与N1间的简单效应。(2)一个因素内各简单效应的平均数称平均效应,亦称主要效应(main
effect),简称主效。如表1.1Ⅱ中N的主效为(6+10)/2=8,这个值也是二个氮肥水平平均数的差数,即22-14=8;P的主效为(8+12)/2=10,也是二个磷肥水平平均数的差数,即23-13=10。(3)两个因素简单效应间的平均差异称为交互作用效应(interaction
effect),简称互作。它反映一个因素的各水平在另一因素的不同水平中反应不一致的现象。将表1.1以图1.1表示,可以明确看到,Ⅰ中的二直线平行,反应一致,表现没有互作。交互作用的具体计算为(8-8)/2=0,或(6-6)/2=0。图1.1Ⅱ中P2-P1在N2时比在N1时增产幅度大,直线上升快,表现有互作,交互作用为(12-8)/2=2,或为(10-6)/2=2,这种互作称为正互作。图1.1Ⅲ和Ⅳ中,P2-P1在N2时比在N1时增产幅度表现减少或大大减产,直线上升缓慢,甚至下落成交叉状,这是有负互作。Ⅲ中的交互作用为(4-8)/2=-2,Ⅳ中为(-2-8)/2=-5。
表1.12×2试验数据(解释各种效应)
试验
因素
N
Ⅰ
P
水平
N1
N2
平均
N2-N1
P1
10
16
13
6
P2
18
24
21
6
平均
14
20
6
P2-P1
8
8
8
0,0/2=0
Ⅱ
P
水平
N1
N2
平均
N2-N1
P1
10
16
13
6
P2
18
28
23
10
平均
14
22
8
P2-P1
8
12
10
4,4/2=2
Ⅲ
P
水平
N1
N2
平均
N2-N1
P1
10
16
13
6
P2
18
20
19
2
平均
14
18
4
P2-P1
8
4
6
-4,-4/2=-2
Ⅳ
P
水平
N1
N2
平均
N2-N1
P1
10
16
13
6
P2
18
14
16
-4
平均
14
15
1
P2-P1
8
-2
3
-10,-10/2=-5
因素间的交互作用只有在多因素试验中才能反映出来。互作显着与否关系到主效的实用性。若交互作用不显着,则各因素的效应可以累加,主效就代表了各个简单效应。在正互作时,从各因素的最佳水平推论最优组合,估计值要偏低些,但仍有应用价值。若为负互作,则根据互作的大小程度而有不同情况。Ⅲ中由单增施氮(N2P1)及单增施磷(N1P2)来估计氮、磷肥皆增施(N2P2)的效果会估计过高,但N2P2还是最优组合,还有一定的应用价值。而Ⅳ中N2P2反而减产,如从各因素的最佳水平推论最优组合将得出错误的结论。
Ⅰ
Ⅱ
Ⅲ
Ⅳ
图1.12×2试验的图示(解释交互作用)
两个因素间的互作称为一级互作(first order
interaction)。一级互作易于理解,实际意义明确。三个因素间的互作称二级互作(second order
interaction),余类推。二级以上的高级互作较难理解,实际意义不大,一般不予考察。
三、制订试验方案的要点
拟订一个正确有效的试验方案,以下几方面供参考:
1.
拟订试验方案前应通过回顾以往研究的进展、调查交流、文献探索等明确试验的目的,形成对所研究主题及其外延的设想,使待拟订的试验方案能针对主题确切而有效地解决问题。
2.
根据试验目的确定供试因素及其水平。供试因素一般不宜过多,应该抓住1~2个或少数几个主要因素解决关键性问题。每因素的水平数目也不宜过多,且各水平间距要适当,使各水平能有明确区分,并把最佳水平范围包括在内。例如通过喷施矮壮素以控制某种植物生长,其浓度试验设置50、100、150、200、250ppm等5个水平,其间距为50ppm。若间距缩小至10ppm便须增加许多处理,若处理数不多,参试浓度的范围窄,会遗漏最佳水平范围,而且由于水平间差距过小,其效应因受误差干扰而不易有规律性地显示出来。如果涉及试验因素多,一时难以取舍,或者对各因素最佳水平的可能范围难以作出估计,这时可以将试验分为两阶段进行,即先做单因素的预备试验,通过拉大幅度进行初步观察,然后根据预备试验结果再精细选取因素和水平进行正规试验。预备试验常采用较多的处理数,较少或不设重复;正规试验则精选因素和水平,设置较多的重复。为不使试验规模过大而失控,试验方案原则上应力求简单,单因素试验可解决的就不一定采用多因素试验。
3.
试验方案中应包括有对照水平或处理,简称对照(check,符号CK)。品种比较试验中常统一规定同一生态区域内使用的标准(对照)种,以便作为各试验单位共同的比较标准。
4.
试验方案中应注意比较间的唯一差异原则,以便正确地解析出试验因素的效应。例如根外喷施磷肥的试验方案中如果设喷磷(A)与不喷磷(B)两个处理,则两者间的差异含有磷的作用,也有水的作用,这时磷和水的作用混杂在一起解析不出来,若加进喷水(C)的处理,则磷和水的作用可分别从A与C及B与C的比较中解析出来,因而可进一步明确磷和水的相对重要性。
5.
拟订试验方案时必须正确处理试验因素及试验条件间的关系。一个试验中只有供试因素的水平在变动,其他因素都保持一致,固定在某一个水平上。根据交互作用的概念,在一种条件下某试验因子的最优水平,换了一种条件,便可能不再是最优水平,反之亦然。这在品种试验中最明显。例如在生产上大面积推广的扬麦1号小麦品种、农垦58号水稻品种,在品比试验甚至区域试验阶段都没有显示出它们突出的优越性,而是在生产上应用后,倒过来使主管部门重新认识其潜力而得到广泛推广的。这说明在某种试验条件下限制了其潜力的表现,而在另一种试验条件下则激发了其潜力的表现。因而在拟订试验方案时必须做好试验条件的安排,绝对不要以为强调了试验条件的一致性就可以获得正确的试验结果。例如品种比较试验时要安排好密度、肥料水平等一系列试验条件,使之具有代表性和典型性。由于单因子试验时试验条件必然有局限性,可以考虑将某些与试验因素可能有互作(特别负互作)的条件作为试验因素一起进行多因素试验,或者同一单因素试验在多种条件下分别进行试验。
6.
多因素试验提供了比单因素试验更多的效应估计,具有单因素试验无可比拟的优越性。但当试验因素增多时,处理组合数迅速增加,要对全部处理组合进行全面试验(称全面实施)规模过大,往往难以实施,因而以往多因素试验的应用常受到限制。解决这一难题的方法就是利用本书后文将介绍的正交试验法,通过抽取部分处理组合(称部分实施)用以代表全部处理组合以缩小试验规模。这种方法牺牲了高级交互作用效应的估计,但仍能估计出因素的简单效应、主要效应和低级交互作用效应,因而促进了多因素试验的应用。