‘壹’ 原核生物与真核生物的dna复制过程
DNA复制是指DNA双链在细胞分裂以前进行的复制过程,复制的结果是一条双链变成两条一样的双链(如果复制过程正常的话),每条双链都与原来的双链一样。(排除突变等不定因素)
这个过程是透过名为半保留复制的机制来得以顺利完成的。半保留复制是由华生与克里克所预测,并且由麦赛尔森(Matthew Meselson)和斯特尔(Franklin Stahl)于1958年进行研究而得以证实。
复制可以分为以下几个阶段:
* 起始阶段:DNA解旋酶在局部展开双螺旋结构的DNA分子为单链,引物酶辨认起始位点,以解开的一段DNA为模板,按照5'到3'方向合成RNA短链。形成RNA引物。
* DNA片段的生成:在引物提供了3'-OH末端的基础上,DNA聚合酶催化DNA的两条链同时进行复制过程,由于复制过程只能由5'->3'方向合成,因此一条链能够连续合成,另一条链分段合成,其中每一段短链成为冈崎片段(Okazaki fragments)。
* RNA引物的水解:当DNA合成一定长度后,DNA聚合酶水解RNA引物,补填缺口。
* DNA连接酶将DNA片段连接起来,形成完整的DNA分子。
最后DNA新合成的片段在旋转酶的帮助下重新形成螺旋状。
‘贰’ 真核细胞和原核细胞DNA复制的差异
1、真核细胞和原核细胞DNA复制的相同点:半保留复制;半不连续合成;有复制的起始点与方向;都需要DNA聚合酶,解旋酶等。
在原核生物中复制起始点常位于染色体的一个特定部位,即只有一个起始点。真核生物的染色体在几个特定部位进行DNA复制,有多个复制起点。
2、与原核生物DNA的复制特点相比,真核生物DNA的复制特点即不同处有:
(1)真核生物染色体上DNA复制起始点有多个,因此可以从几个起始点上同时进行复制。原核生物DNA的复制在一个起点复制。
(2)真核生物DNA复制过程中的引物及冈崎片段的长度均小于原核生物。真核长约100-200个核苷酸。原核长约1000-2000个。
(3)真核生物DNA的复制有DNA聚合酶及多种蛋白质因子参与,DNA聚合酶也有多种类型。其中DNA Polα及DNA Polδ在细胞核内DNA的复制中起主要作用。DNAPolδ催化前导链及随从链的合成。PCNA参与其作用。
(2)真核生物什么结构DNA复制扩展阅读:
DNA复制的特点:
半保留复制:DNA在复制时,以亲代DNA的每一个单链作模板,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一个亲代DNA链,这种现象称为DNA的半保留复制。DNA以半保留方式进行复制,是在1958年由M. Meselson 和 F. Stahl 所完成的实验所证明。
有一定的复制起始点:DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸排列顺序的片段,即复制起始点(复制子)。在原核生物中,复制起始点通常为一个,而在真核生物中则为多个。
需要引物:DNA聚合酶必须以一段具有3'端自由羟基(3'-OH)的RNA作为引物,才能开始聚合子代DNA链。RNA引物的大小,在原核生物中通常为50~100个核苷酸,而在真核生物中约为10个核苷酸。
双向复制:DNA复制时,以复制起始点为中心,向两个方向进行复制。但在低等生物中,也可进行单向复制。
‘叁’ 真核生物与原核生物复制的异同点
真核生物与原核生物复制的相同点:
半保留复制,不连续合成,有复制的起始点与方向,都需要DNA聚合酶,解旋酶等。
原核生物与真核生物复制的不同点:
1、真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA聚合酶的移动速度较原核生物慢。原核生物为一般为环形DNA,具有单一复制起始位点。
2、真核生物DNA复制只发生在细胞周期的s期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行。
3、真核生物复制子大小不一且并不同步。
4、原核生物有9-mer和13-mer的重复序列构成的复制起始位点,而真核生物的复制起始位点无固定形式。
(3)真核生物什么结构DNA复制扩展阅读:
真核生物相对于原核生物来说其具有细胞核,且细胞大小相对较大,生长速度快。真核生物通常为异养微生物,在生长繁殖过程中能衍生出多种有机酸,在浸矿过程中易于与金属离子形成配合物,有利于有价金属的浸出。
原核生物细胞能进行有氧呼吸。有的原核生物,如硝化细菌、根瘤菌,虽然没有线粒体,但却含有全套的与有氧呼吸有关的酶,这些酶分布在细胞质基质和细胞膜上,因此,这些细胞是可以进行有氧呼吸的。
有的原核生物如产甲烷杆菌等,没有与有氧呼吸有关的酶,因此,只能进行无氧呼吸。总之,大多数原核生物能进行有氧呼吸。
‘肆’ 真核生物复制起点的结构特征
一般把生物体的复制单位称为复制子(replicon).一个复制子只含一个复制起点.
多复制子:DNA复制时,原核生物一般只有一个起始位点,而真核生物则有多个起始位点,因而在复制时呈现多复制泡,也称为多复制子.
DNA的复制主要是从固定的起始点以双向等速复制方式进行的(图2-18).复制叉以DNA分子上某一特定顺序为起点,向两个方向等速生长前进.
拓扑异构酶I
拓扑异构酶I解开负超螺旋,并与解链酶共同作用,在复制起点处解开双链.参与解链的除一组解链酶外,还有Dna蛋白等.
DNA解链酶(DNA helicase)
DNA解链酶能通过水解ATP获得能量来解开双链DNA.
单链结合蛋白(SSB蛋白 )
SSB蛋白的作用是保证被解链酶解开的单链在复制完成前能保持单链结构,它以四聚体形式存在于复制叉处,待单链复制后才掉下,重新循环.所以,SSB蛋白只保持单链的存在,并不能起解链的作用.
3、DNA的半不连续复制 与冈崎片段
DNA复制时,短时间内合成的约1000个核苷酸左右的小片段,称之为冈崎片段(Okazaki fragment)
DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶连成大分子DNA.现在已知一般原核生物的冈崎片段要长些,真核生物中的要短些.进一步研究还证明,这种前导链的连续复制和滞后链的不连续复制在生物界是有普遍性的,因而称之为双螺旋的半不连续复制.
DNA链的延伸:
DNA复制体(replisome):在复制叉附近,形成了以两套DNA聚合酶Ⅲ全酶分子、引发体和解链酶构成的类似核糖体大小的复合体,称为DNA复制体.
4、滞后链的引发
DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由DNA聚合酶从RNA引物3' 端开始合成新的DNA链.滞后链的引发过程往往由引发体(primosome)来完成.引发体由6种蛋白质n、n'、n''、Dna B、C和I共同组成,只有当引发前体(preprimosome)把这6种蛋白质合在一起并与引发酶(primase)进一步组装后形成引发体,才能发挥其功效.
5、链的终止
当复制叉前移,遇到20bp重复性终止子序列(Ter)时,Ter-Tus复合物能阻挡复制叉的继续前移,等到相反方向的复制叉到达后在DNA拓扑异构酶IV的作用下使复制叉解体,释放子链DNA.
6、复制的几种方式
(1)环状DNA双链的复制
环状双链DNA的复制可分为θ型、滚环型和D-环型几种类型.
(a) θ型
复制的起始点涉及到DNA双链的解旋和松开,形成两个方向相反的复制叉 .前导链DNA开始复制前,复制原点的核酸序列被转录生成短RNA链,作为起始DNA复制的引物.
(b) 滚环型(rolling circle)
这是单向复制的特殊方式.如ΦX174的双链环状DNA复制型(RF)就是以这种方式复制的.DNA的合成由对正链原点的专一性切割开始,所形成的自由5‘ 端被从双链环中置换出来并为单链DNA结合蛋白所覆盖,使其3’—OH端在DNA聚合酶的作用下不断延伸.在这个过程中,单链尾巴的延伸与双链DNA的绕轴旋转同步 .
(c) D-环型(D-loop)
这也是一种单向复制的特殊方式.这种方式首先在动物线粒体DNA的复制中被发现.双链环在固定点解开进行复制.但两条链的合成是高度不对称的,一条链上迅速合成出互补链,另一条链则成为游离的单链环(即D-环).
(2)线性DNA双链的复制
线性DNA复制中RNA引物被切除后,留下5'端部分单链DNA,不能为DNA聚合酶所作用,使子链短于母链.T4和T7噬菌体DNA通过其末端的简并性使不同链的3'端因互补而结合,其缺口被聚合酶作用填满,再经DNA连接酶作用生成二联体.这个过程可重复进行直到生成原长20多倍的多联体,并由噬菌体DNA编码的核酸酶特异切割形成单位长度的DNA分子.
二、原核和真核生物DNA的复制特点
1、原核生物DNA的复制特点
大肠杆菌DNA聚合酶I、II和III的性质比较
原核生物的DNA聚合酶
DNA聚合酶Ⅰ:有3’→5’外切酶活性和5’→3’外切酶活性.保证DNA复制的准确性.
DNA聚合酶Ⅱ :活性低,其3’→5’核酸外切酶活性可起校正作用.主要起修复DNA的作用.
DNA聚合酶Ⅲ:7种亚单位9个亚基.只具3’→5’外切酶活性,主导聚合酶.
Klenow fragment:用枯草杆菌蛋白酶处理大肠杆菌DNA聚合酶,获得两个片段,大片段分子量76000U,称为Klenow 片段.它保留着聚合酶和3’→5’外切酶的活性,广泛使用于DNA序列分析中.
三、真核生物DNA的复制特点
真核生物DNA复制的起始需要起始原点识别复合物(ORC)参与.
真核生物DNA复制叉的移动速度大约只有50bp/秒,还不到大肠杆菌的1/20.
真核生物的染色体在全部完成复制之前,各个起始点上DNA的复制不能再开始.
‘伍’ 真核细胞在哪里进行DNA复制
真核细胞有细胞核,DNA复制主要是在细胞核中进行。但是,由于有些细胞器,例如叶绿体,线粒体中也会有DNA,所以,它们也会进行DNA的复制。因为这些细胞器在细胞质中,属于细胞质DNA,所以,真核细胞的DNA复制也会在细胞质中进行。
‘陆’ 真核生物和原核生物dna都是边解旋边复制吗
是的。
DNA双螺旋结构没法复制,要想复制必须解螺旋,使之变为单链之后在按照碱基互补配对的原则进行复制。真核原核生物都是如此。
‘柒’ 真核生物和原核生物DNA复制的异同点
相同点:真核生物和原核生物的DNA复制都是半保留复制,半不连续合成;有复制的起始点与方向。
与原核生物DNA的复制特点相比,真核生物
DNA的复制特点(即不同处)有:
(1)真核生物中复制进行的速度约为50个核苷酸/秒,仅为原核生物的1/10,但真核生物染色体上DNA复制起始点有多个,因此可以从几个起始点上同时进行复制。
(2)真核生物DNA复制过程中的引物及冈崎片段的长度均小于原核生物。真核长约100-200个核苷酸,原核长约1000-2000个。
(3)其真生物DNA的复制有DNA聚合酶及多种蛋白质因子参与,DNA聚合酶也有多种类型。其中DNA
Polα及DNA
Polδ在细胞核内DNA的复制中起主要作用。DNAPolδ催化前导链及随从链的合成,PCNA参与其作用。
脱氧核糖核酸(英语:Deoxyribonucleic
acid,缩写为DNA)又称去氧核糖核酸,是一种分子,双链结构,由脱氧核糖核苷酸(成分为:脱氧核糖及四种含氮碱基)组成。可组成遗传指令,引导生物发育与生命机能运作。
主要功能是长期性的资讯储存,可比喻为“蓝图”或“食谱”。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与RNA所需。
带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。
‘捌’ dna复制的主要方式是
DNA分子在生物体内的合成有三种方式:(1)DNA指导的DNA合成,也称复制,是细胞内DNA最主要的合成方式。遗传信息储存在DNA分子中,细胞增殖时,DNA通过复制使遗传信息从亲代传递到子代。(2)修复合成,即DNA受到损伤(突变)后进行修复,需要进行局部的DNA的合成,用以保证遗传信息的稳定遗传。(3)RNA指导的DNA合成,即反转录合成,是RNA病毒的复制形式,以RNA为模板,由逆转录酶催化合成DNA。
DNA的双螺旋结构是复制的结构基础。DNA复制的实质为酶催化的脱氧核糖核苷酸的聚合反应。复制开始时,亲代双链DNA分子解开,分别作为模板,在DNA依赖的DNA聚合酶催化下,按照碱基配对的原则,将四种脱氧核苷酸连接成DNA大分子,合成产物的碱基序列与模板DNA的碱基序列是互补的,子代DNA双链分子中,一条来自亲代的模板链,另一条为新合成的链,故称半保留复制,是生物体最主要的DNA合成方式;合成过程中,自5’3’连续合成一条领头链,不连续地合成一些片断,而后连成一条随从链,所以DNA合成是半不连续合成。反应过程复杂,首先螺旋松弛,双链打开,形成复制叉,然后复制的引发,包括合成引物,形成引发体,最后是DNA链的延长与终止。每一阶段需要有许多酶和蛋白因子参与,包括拓扑异构酶,用于理顺解链过程中造成的链的盘绕、打结等现象;解螺旋酶在蛋白因子的辅助下结合于复制起始点,并打开双链,由单链结合蛋白稳定解开的两股单链;引物酶及其它辅助蛋白因子在打开的双链上催化合成引物,由引物提供3’-OH,与原料dNTP的5’-P形成磷酸二酯键,然后DNA聚合酶催化这一聚合反应的进行,而DNA连接酶将复制中的不连续片段连接成完整的链。真核生物的复制与原核生物相比,为多个起始点、5种DNA聚合酶以及有端粒复制等特点。
‘玖’ 真核生物和原核生物的DNA复制有什么区别
1真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA聚合酶的移动速度较原核生物慢.原核生物为一般为环形DNA,具有单一复制起始位点.
2真核生物DNA复制只发生在细胞周期的S期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行.
3真核生物复制子大小不一且并不同步.
4原核生物有9-mer和13-mer的重复序列构成的复制起始位点,而真核生物的复制起始位点无固定形式.
5真核生物有五种DNA聚合酶,需要Mg+.主要复制酶为DNA聚合酶δ(ε),引物由DNA聚合酶α合成.原核生物只有三种,主要复制酶为DNA聚合酶III.
6真核生物末端靠端粒酶补齐,而原核生物以多联体的形式补齐.
7真核生物冈崎片段间的RNA引物由核酸外切酶MF1去除,而原核生物冈崎片段由DNA聚合酶I去除.8真核生物DNA聚合酶γ负责线粒体DNA合成.9真核生物DNA聚合酶δ的高前进能力来自于RF-C蛋白与PCNA蛋白的互相作用.原核生物DNA聚合酶III的前进能力来自与γ复合体(夹钳装载机)与β亚基二聚体(β夹钳)的相互作用。