‘壹’ 生物学中什么叫带放射性
带有放射性的物质标记的生物分子,就叫带有放射性,放射性物质包括一些常见元素的同位素。比如35S(特异标记蛋白质) 32P(标记核酸)氕氘氚等标记有机分子,只要使用含有这些放射性同位素的培养基培养生物材料,就可以让这种材料带上放射性标记。这种方法常用来探测细胞内分子定位,细胞分子互相作用,探究各类分子生物学中的机制,是一个常用的方法。
‘贰’ 放射生物学的细胞存活曲线
细胞经过射线照射后大多数死亡,也有少部分细胞存活,用什么来反应细胞照射后的存活情况呢?
⑴定义:根据不同的剂量和相应的不同生存率绘制出来的曲线,即为细胞存活曲线。这曲线既可以通过体外细胞培养,也可以通过体内试验获得。
⑵细胞存活曲线绘制:由于射线对生物体的损伤是随机的,细胞对射线的敏感度不同,我们可以看到细胞的存活曲线可出现两种情况。细胞的生存曲线是一条直线,说明细胞对射线敏感的表现,也就是说,细胞DNA被一次击中就发生死亡。但是大多数细胞并非这种情形,在低剂量区时,存活曲线有一个肩区,当剂量较大时,才成直线。因此生存曲线是一个二次曲线,我们常用线性二次方程来描述。生存曲线的肩区,是由于细胞受到射线照射后不是就可以导致细胞死亡的这个细胞必须还要受到射线的照射才能死亡,因此在低剂量区时有一个放射损伤的积累过程。
D0平均致死量,代表着这一细胞群的放射敏感性,直线越陡,即D0值越小,杀灭63%细胞所需要的剂量就越小。
N值指细胞内所含的放射敏感区的域数,即靶数。
Dq代表存活的肩宽宽度,在此剂量范围内,细胞表现为非致死损伤的修复,Dq值越大,造成细胞指数死亡所需要的剂量越大。
S2为照射2Gy后细胞的存活率。
需注意细胞存活曲线仅代表细胞水平的,与组织水平的放射生物效应还有一定距离,离体培养的细胞和复杂的人体也有较大的区别。
⑶细胞存活曲线的意义:是一切放射生物学研究的基础。① 研究各种细胞生物效应与放射剂量的定量关系
② 比较各种因素对放射敏感性的影响。
③ 观察有氧和乏氧情况下细胞放射敏感性的变化
④ 比较不同放射分割方案的放射生物学效应。
⑤ 考察各种放射增敏剂的效用
⑥ 比较单纯放疗和放疗综合治疗的作用
⑦ 比较不同LET射线的生物学效应
⑧ 研究细胞的各种放射损伤
‘叁’ 放射生物学的放射生物学基础
为什么射线能够杀死细胞,这和射线的电离特性有关。电离射线通过直接和间接效应对生物体发生作用,使细胞受损或死亡。目前多认为放射损伤的靶细胞是DNA,是由于射线对DNA造成损害,而使细胞分裂受到阻碍,导致细胞分裂失败或细胞损伤。
放射使细胞损伤产生的结局
⑴ 凋亡:凋亡使细胞受到一个较小的剂量照射后就可,如淋巴细胞和精原细胞。
⑵ 流产分裂:流产分裂使由于细胞受到致死剂量照射后,细胞不是立刻死亡,而是进入下一个分裂周期,但是由于DNA受损,DNA双链断裂,以至细胞分裂失败,最后细胞死亡。
⑶ 子代细胞畸变
⑷ 形态学上无任何变化:有一类细胞在受到射线照射后,虽然它们的DNA受损,但是由于这一类细胞使休止期细胞,不进入分裂周期或已丧失了增殖能力,如中枢神经中的神经原细胞和成熟的肝细胞,它们的放射损伤并不能表现出来,在形态上仍正常,并具有原有的功能,如神经 原细胞仍有传导功能,肝细胞仍可以合成蛋白和各种酶的功能,这并不是说放射不能够杀死这些细胞,当照射剂量达到一定程度时,也会出现功能受损和细胞凋亡。
⑸ 有限的分裂而死亡:大多数细胞在受到致死剂量照射后都时表现为有限的分裂死亡。尽管它们的DNA双链断裂,但是仍可勉强分裂成功,但是断裂的DNA在分裂过程中多次复制,损伤在子代细胞中逐渐积累,最终导致细胞死亡。
⑹ 生存:少数细胞在非致死剂量照射后,细胞能够修复受损的DNA,并能够分裂,在子代细胞中没有或仅留下轻微的改变。
‘肆’ 放射生物学的研究进展
从分子生物学角度来看,目前认为放射主要作用于细胞核DNA(如MAR区域)、细胞膜(如鞘磷脂酶—神经酰胺)和胞浆内一些蛋白(如Apaf-1/IAP等)。DNA损伤主要表现为链断裂(单链和双链),其修复有二条路径:同源重组和非同源末端连接。
放射后肿瘤内部分细胞获得放射阻抗也和一些因激活而致细胞修复能力改变相关。放射后的胞膜和胞浆可启动不同传导路径,通过诱导一些转录因子,来调节细胞因子、生长因子及细胞周期相关基因的表达。除此之外,放射也可改变酪氨酸激酶传导路径。
许多体内外实验显示,在放疗前或放疗后,由于肿瘤细胞生长环境不同于周围正常组织,细胞常处于基因不稳定状态,大多分子靶向治疗都是针对肿瘤内异常表达的基因,通过抑制其活性来关闭该基因的传导路径。 根据46届ASTRO会议上的报告,可将分子靶向治疗大致归纳为主要针对以下几条与放射相关的路径:细胞内传导路径、细胞死亡路径、细胞周期和肿瘤内血管形成及COX2阻断。这些研究结果表明,放射和分子靶向治疗相结合可改变肿瘤细胞放射敏感性。
研究已证实,肿瘤内乏氧细胞比例与肿瘤的侵犯性及治疗结果相关。肿瘤细胞在乏氧的过程中可激活一些基因,HIF-1a是其中之一,它的激活可改变基因稳定性以及血管形成和肿瘤细胞的代谢。另一方面,肿瘤细胞在乏氧状态下,其细胞基因不稳定。 因此,努力探索乏氧细胞的生物标志十分必要。半乳凝素-1被认为是乏氧诱导的蛋白之一,目前研究表明,这种新蛋白和体外细胞及临床头颈鳞癌组织内的氧化程度密切相关,但在患者血浆中检测不到。
随着影像学技术的迅速发展,确定肿瘤内不同亚群细胞具有不同克隆源性氧饱和度、增殖率及放射敏感性的空间分布已成为可能。结合这些数据与逆向治疗计划系统及调强手法,在治疗前预计治疗增益比已提到议事日程上。
此外,本次会议还较大篇幅地报告了放疗结合根据射线的分子靶向遴选的药物试图改变分割放射生物的5R’s,为放射分子生物学研究开拓了一个新的平台。 一、实验动物在放射生物学研究中的作用
进行放射生物学研究是实验医学中最复杂的任务之一。因为在放射生物学实验研究中,不仅要求工作人员遵守相应的措施,免受超允许剂量的照射或沾染,而且还要得到能客观反应辐射与生物对象互相作用真实情况的稳定结果。这就必须同时满足许多条件,其中最重的条件之一,就是要选择适于研究课题需要的动物种类、建立实验模型。
超过一定剂量的高能辐射作用于机体,可引起体一系列全身性综合病症,称为放射病,或称为急性放射综合症(Acute Radiation Syndrome)。这种病在平时极少见到,只有在核战争和核事帮情况下才可见到该病。因此研究这种疾病眩要是在实验室内选择各种实验动物来进行研究的。今天我们对辐射损伤的大部分知识,不是来自方广岛或长畸,也不是来自几个出过事故的反应堆,大量的知识是通过选用各种实验动物进行动物实验积累起来的。关于辐射的远期遗传效应至今只有动物实验的材料。
由于在实验室可以随时选择各种实验动物并使其接受不同剂量的照射,可以复制成病变相似、病例多量的不同类型的放射病或辐射损伤,这就为放射生物学研究提供了极为便利的条件,对放射医学的发展起到了极大的推动作用。
二、实验动物对辐射效应的影响
同样种类和剂量的辐射以相同的方式作用于机体时,所出现的后果往往用动物的种类、年龄、性别、机体状况等而异,即有不同的辐射反应。放射生物学研究中常用放射敏感性(Radiosensitivity)的概念来观察个体组织、细胞的敏感程度。放射敏感性,是指当一切照射条件完全严格一致时,机体或其组织成部分在射线作用下发生的某种变化的程度和速度,若变化大且其发生迅速,则表明其敏感性高,反之,则相反。一般文献资料中多以细胞、组织的形态学损伤或机体的死亡作为判断放射敏感性的依据。下面所指的放射敏感性,都是以此为准的。
‘伍’ 有放射生物学硕士专业吗
有的。
放射医学研究方向主要有医学物理、放射化学、放射生物学、生物物理学、辐射血液学、辐射免疫学、放射遗传学、放射毒理学、辐射剂量学、辐射流行病学。
‘陆’ 放射生物学知识点讲解
一、辐射生物效应原理△
(一)电离辐射的种类
⒈电磁辐射:x射线、γ射线
⒉粒子辐射
⑴α粒子:质量大,运动慢,短距离引起较多电离。
⑵β粒子或电子:质量小,易偏转,深部组织电离作用。
⑶中子:不带电荷的粒子,高传能线密度射线。
⑷负π介子:大小介于电子和质子之间,可以带+、-或不带电。
⑸重离子:某些原子被剥去外围电子后,形成带正电荷的原子核。
(二)直接作用和间接作用
1.直接作用(P52)
当X射线、γ射线、带电粒子或不带电粒子在生物介质中被吸收时,射线有可能直接与细胞中的靶分子作用,使靶分子的原子电离或激发,导致一系列的后果,引起生物学变化。
2.间接作用(P52)
射线通过与细胞中的非靶原子或分子(特别是水分子)作用,产生自由基,后者可以扩散一定距离达到一个关键的靶并造成靶分子损伤。
(三)辐射对生物作用的机制(P53)
(四)不同类型细胞的放射敏感性(P53)
⒈B-T定律:∝繁殖能力/分化程度
⒉cAMP:∝1/cAMP(淋巴细胞、卵细胞)
⒊间期染色体体积:∝体积
⒋线粒体数量:∝1/线粒体数量
(五)传能线密度与相对生物效应
⒈传能线密度(linearenergytransfer,LET)
传能线密度是指次级粒子径迹单位长度上的能量转换,表明物质对具有一定电荷核一定速度的带电粒子的阻止本领,也就是带电粒子传给其径迹物质上的能量。常用用千电子伏特/微米表示(keV/μm)表示,也可用焦耳/米表示。单位换算为:
1keV/μm=1.602×10-10J/m
⒉辐射生物效应与传能线密度的关系
⑴射线的LET值愈大,在相同的吸收剂量下其生物效应愈大;
⑵LET与电离密度成正比,高LET射线的电离密度较大,低LET射线的电离密度较小。其中,电离密度是单位长度径迹上形成的离子数;
⑶根据LET,射线可分为高LET射线和低LET射线。
低LET射线:X射线、γ射线、电子线等;
高LET射线:中子、质子、α粒子、碳离子等。
⒊剂量分布与传能线密度的关系
⒋相对生物效应(relativebiologicaleffect,RBE)
⑴定义:X射线(250kv)引起某一生物效应所需要剂量与所观察的辐射引起同一生物效应所需要剂量的比值。
⑵LET与RBE的关系
RBE的变化是LET的函数。
①LET<10keV/μm,当LET增加时,RBE缓慢增加。
②LET>10keV/μm,当LET增加时,RBE上升加快。
③LET=100keV/μm,RBE达到最大值。④LET>100keV/μm,RBE反而下降。
二、细胞存活曲线△
一概念(P54)
⒈细胞存活
细胞具有无限增殖的能力。
⒉“死亡”细胞
细胞失去增殖能力,即使照射后细胞的形态仍然保持完整,有能力制造蛋白质,有能力合成DNA,甚至还能再经过一次或两次有丝分裂,产生一些子细胞,但最后不能继续传代者称为“死亡”细胞。
⒊克隆(集落)
在离体培养的细胞中,一个存活的细胞可分裂增殖成一个细胞群体。
二细胞存活曲线的绘制
三细胞存活曲线的参数及临床意义
⒈指数存活曲线
对高LET射线如α粒子、中子等,细胞存活曲线在半对数坐标上是一条直线。其特点是:只有一个生物学参数,即斜率或D0值。(一次照射能杀灭63%的细胞的剂量,即斜率的倒数),公式表示为:
SF=e-αD
在剂量D0作用下,细胞存活率SF=e-1=63%,即细胞群受剂量D0照射后,其中63%的靶细胞受到致死剂量的击中,而有37%的细胞幸免死亡,在此情况下,可将D0写成D37,通常成为失活剂量或平均致死剂量。
⒉带肩的细胞存活曲线的参数:
D0:平均致死剂量,表示直线部分的斜率K的倒数。代表细胞群体的放射敏感性,即照射后余37%细胞所需要的放射线剂量。
N值:细胞内所含的放射敏感区域数,即靶数,也是表示放射敏感性相关的参数,是存活曲线直线部分的'延长线与纵轴相交处的数值。
Dq值:准阈剂量,代表存活的肩段宽度,也称浪费的放射剂量。肩宽表示从开始照射到细胞呈指数性死亡所“浪费”的剂量。在此剂量范围内,细胞表现为非致死损伤的修复,Dq值越大,说明造成细胞指数性死亡所需的剂量越大。
⒊细胞存活曲线的临床意义(P56-57)
⑴各种细胞与放射剂量的定量研究;
⑵比较各种因素对细胞放射敏感性的影像;
⑶观察有氧与乏氧状态下细胞放射敏感性的变化;
⑷比较不同分割照射方案的放射生物学效应,并为其提供理论依据;
⑸考察各种放射增敏剂的效果;
⑹比较单纯放疗或放疗加化疗或/和加温疗法的作用;
⑺比较不同能量射线的生物学效应;
⑻研究细胞的各种放射损伤以及损伤修复的放射生物学理论问题。
三.线性二次方程(L-Q)公式(P56)
1.L-Q公式的定义:
S=e—(αD+βD2)
S:存活比例
e:自然对数
D:分次照射的剂量
α、β:系数
上述公式表明,某一剂量造成的细胞杀伤可由直接致死效应和间接致死效应组成,即α型和β型细胞杀伤。
①公式中e—αD产生的生物效应与剂量成反比,表示DNA单击双键断裂,在细胞存活曲线上与剂量表现为线性关系。α表示单击生物效应系数。
②公式中e—βD2产生的生物效应与剂量平方成正比,表示DNA多击单键断裂,与可修复的损伤累积有关,存活曲线表现为连续弯曲,β表示多击生物效应系数。
当单次照射引起上述两种效应相等时,α/β值即为两种效应相等时的剂量。
e—αD=e—βD2
α/β=D
正常早期反应组织具有较高的α/β值(10Gy左右),说明直接坐标效应相对明显,存活曲线表现的弯曲程度较小。
正常晚期反应组织的α/β值较低(约3Gy),表明直接杀伤要比早反应组织少,可修复损伤累积引起的杀伤相对较多。
早期反应组织是机体内分裂、增殖活跃并对放射线早期反应强烈的组织,如上皮、粘膜、骨髓、精原细胞等。
相对而言,机体内那些无再增殖能力,损伤后仅以修复代偿其正常功能的细胞组织,称为晚反应组织,如脊髓、肾、肺、肝、骨和脉管系统等。
2.L-Q公式设计最佳分次照射方案的一般原则
⑴为使正常组织的晚期损伤相对低于对肿瘤的杀灭,每次量应低于1.8~2.0Gy;⑵每天照射的分次总剂量应小于4.8~5.0Gy;
⑶每分次的间隔时间应大于6小时;
⑷在不致引起严重急性反应的前提下,尽量缩短总治疗时间;
⑸最高总剂量应确定不会引起照射野内正常组织的晚期反应。两周内给予的总剂量不能超过55Gy。
第三章临床放射生物学基础(2)
一、细胞存活与修复△
一放射损伤的分类★
⒈致死损伤(lethaldamage,LD)
⒉亚致死损伤(sublethaldamage,SLD)
⒊潜在致死损伤(potentialdamage,PLD)
这部分损伤受照射后受环境的影响,或能修复,或走向死亡。
二潜在致死损伤与修复
按正常情况细胞将死亡,但一旦照射后环境有所变化,而且存活率又有提高,则考虑是由于潜在致死损伤的修复。
三亚致死损伤与修复
当一个特定的照射分为间隔一定时间段的两次给予后,能观察到细胞存活率的增加。两次照射之间分别在室温、正常温度:
⒈室温下培养
室温培养,可防止细胞在照射间隙的细胞周期内改变时相,证实未受细胞周期时相变化影响的亚致死损伤修复现象。
⒉正常的温度下培养
在前几个小时可见快速的亚致死损伤修复,但当两次分割的间隔更长时,细胞存活率再次下降。解释如下:
①放射敏感时相细胞被杀灭,存活细胞群趋于集中于放射抗拒周期内。
②6小时后第二次照射。细胞群在周期内行进,达到G2或M时相。放射敏感程度超过亚致死损伤效应修复的效应,细胞存活率下降。三种过程同步存在的综合。
①亚致死放射损伤的快速修复;(Repair)②在分次照射期间细胞在周期内的行进,称之为细胞的
再分布;(Redistribution)
③如两个分次照射的间隔是10~12h,超过了这些快速生长细胞的细胞周期时间,由于细胞分裂或再群体化,又出现细胞存活率增加。(Regeneration)
再氧合(Reoxygenation)
四影响细胞放射损伤与修复的因素
⒈射线种类
⑴细胞放射损伤随射线LET的增大而加大;
⑵重离子、中子、粒子照射后,细胞基本不存在潜在致死损伤的修复;
⑶辐射种类对亚致死损伤修复的影响可以从照射后剂量存活曲线曲线的肩区大小反应出来。X线照射者肩区最宽,粒子照射没有肩区,中子照射肩区极小。
⒉剂量率
总剂量一定时,剂量率越低,照射时间越长,生物效应就越轻。
⒊氧效应
⑴完全氧合的细胞比低氧细胞对辐射更加敏感;
⑵低LET的X射线或γ射线,其OER值约为2.5~3.5,
重粒子的OER为1,中子的OER值为1.6;
⑶氧效应
⒋辐射增敏剂和防护剂
⑴增敏剂:氧、卤代嘧啶类化合物、亲电子性化合物、中药、乏氧细胞毒性化合物等。主要作用是降低细胞积累亚致死性损伤的能力,细胞存活曲线上表现为肩区和斜率的明显改变。
⑵防护剂:作用机制涉及自由基清除与氧有关的修复反应以及对细胞的防护保护作用等。要求对肿瘤细胞无保护作用,而对大多数正常组织均有防护作用。
⒌加热
⑴方法:包括热水浴、短波透热、超声和射频等;
⑵效应特点:41.5℃~46.5℃,温度升高,持续越久,细胞杀伤作用越显着;
⑶细胞存活曲线:开始出现“肩区”,随后出现指数杀灭部分;
⑷机理:热对膜的损伤增加了细胞死亡的机率;
⑸影响因素:PH值、细胞营养条件和氧、细胞周期等。
二、分次放疗中的4“R”原则△
一放射损伤的修复(Repair)
以上提到的亚致死性损伤的修复和潜在致死性损伤的修复。
二周期内细胞的再分布(Redistribution)
细胞的放射敏感性因所处的时相不同而不同。总的倾向是处于S期的细胞是最耐受的,处于G2期和M期的细胞是最具放射敏感性。
研究发现,分次放射治疗中存在着处于相对放射抗拒时相的细胞向放射敏感时相移动的再分布现象。这有助于提高放射线对肿瘤的杀伤效应。但如果未能进行有效的细胞周期时相再分
布,则可能成为放射抗拒的机制之一。
在分次照射期间细胞在周期内的行进,称之为细胞的再分布。
三氧效应和乏氧细胞的再氧合(Reoxygenation)
⒈氧效应
在有氧的情况下,氧能与自由基(R)作用形成有机过氧基(RO2),它是靶物质的不可逆形式,于是损伤被化学固定下来,因此认为氧对照射的损伤起了“固定”作用,称之为“氧固定学说”。氧效应就是氧在放射线和生物体相互作用中所起的影响。
⒉乏氧细胞的再氧合
实验表明,直径<1cm的肿瘤是充分氧合的,超过这个大小就会出现乏氧。如果用大剂量单次照射,肿瘤内大多数放射敏感的氧合好的细胞将被杀死,剩下的那些活细胞是乏氧的。因此,照射后即刻的乏氧分数将会接近100%,然后逐渐下降并接近初始值,这种现象称为再氧合。
⒊氧效应对细胞存活曲线的影响
大剂量分次照射氧合好的细胞和乏氧细胞的效应。如果没有再氧合的发生,则每分次剂量照射后只能期望杀死极小数量的乏氧细胞。存活曲线区域平坦。在疗程后期,乏氧细胞群体的效应将占主要地位。如果分次间有氧合发生,则放射对初始乏氧细胞的杀灭作用会增大,从而使乏氧细胞的负面效应减少。
⒋氧增强比(oxygenenhancementratio,OER)
⑴定义:在缺氧条件下,引起一定效应所需放射剂量与有氧条件下引起同样效应所需放射剂量的比值,常用来衡量氧效应的大小。
⑵不同射线的OER值
低LET射线:有氧条件下放射损伤严重,反之则损伤较轻。如:X射线、γ射线的OER值一般为2.5~3。
高LET射线:放射敏感性对细胞中含氧状态的依赖性较小。
如:α粒子OER为1,即没有氧效应。
四再增殖或再群体化(Regeneration)
1.正常组织
损伤之后,组织的干细胞及子代细胞在机体调节机制作用下,增殖、分化、恢复组织原来形态的过程称做再群体化。
⒉肿瘤组织
照射后可启动肿瘤内存活的克隆源细胞,使之比照射或用药以前分裂更快,称为加速再群体化。换言之,临床进行分次照射时,每次照射剂量不可能达到破坏全部肿瘤细胞的目的,在此期间,肿瘤细胞的再生或再群体化是不可避免的。
五内在敏感性(intrinsicRadio-sensitivity)
不同细胞照射后细胞存活比例不同,尤其在低剂量率时更加明显。这些反映出其内在的敏感性有差异。
三、放射增敏△
一放射源的选择
理想的剂量分别应该是放射线能在肿瘤深度达到高剂量,而在肿瘤前后的正常组织剂量较低,旁向散射较少。
γ射线、X射线:合理射野后肿瘤前后组织仍受到较大剂量的照射。
医用加速器电子束:治疗表现部位的肿瘤而保护肿瘤后面的正常组织。
高LET射线:肿瘤前后的正常组织受量均相对较低。
二选择合适的剂量
‘柒’ 放射生物学的核辐射
核辐射是原子核从一种结构或一种能量状态转变为另一种结构或另一种能量状态过程中所释放出来的微观粒子流或能量。辐射源有天然的和人造的两类。而辐射分为两大类:电磁辐射和离子辐射,电磁波穿过空间而传递能量叫电磁辐射。γ射线:来自核的转变,能量范围≥0.1Mev;X射线:来自核外电子的相互作用,包括轫致辐射和特征X射线,能量范围1Kev~0.1Mev;紫外线:能量比X射线和γ射线低得多,能量范围1ev~0.1Kev。离子辐射又分为带电粒子辐射和不带电离子辐射。
‘捌’ 放射生物学的放射生物学简介
放射(或辐射)生物学是一门边缘学科,主要研究放射线对生物体的作用,观察不同质的放射线照射后的各种生物效应以及不同内、外因素对生物效应的影响。范围涉及放射线对生物体作用的原初反应及其以后一系列的物理、化学和生物学方面的改变,临床放射生物学或肿瘤放射生物学是放射生物学的一个分支,它又是放射肿瘤学(放射治疗学)的四大支柱(肿瘤学、放射物理学、放射生物学和放射治疗学)之一。因此,世界上绝大多数国家在对放射治疗医生进行培训、资格考核或晋级都要求有临床放射生物学的内容。
临床放射生物学是在辐射生物学基本理论的基础上,结合对临床放射治疗时肿瘤及正常组织的放射生物特性以及治疗中和以后诸因素发生变化的研究,以及在以上认识的基础上,利用结合放射生物行为特点从分子、细胞、组织直至整体水平实验研究的独特手段,探讨提高放疗疗效的办法或手段,以达到不断提高肿瘤治疗效果和病人生存质量的目的。
随着生命科学的迅速发展,临床放射生物学的研究内容和技术也不断的得到发展、充实和更新。毫无疑问,深入理解临床放射生物学的基础知识和概念,掌握临床放射生物学研究动态并加以运用,对肿瘤放射治疗的改进和提高肿瘤治疗效果有极重要的意义。