导航:首页 > 生物信息 > 蛋白质生物合成的起始信号有哪些

蛋白质生物合成的起始信号有哪些

发布时间:2022-12-10 23:03:28

‘壹’ 什么是蛋白质的生物合成

蛋白质合成体系的重要组分
翻译:蛋白质的生物合成,即翻译,就是将核酸中由
4
种核苷酸序列编码的遗传信息,通过遗传密码破译的方式解读为蛋白质一级结构中20种氨基酸的排列顺序

1.mRNA与遗传密码;
mRNA分子上从5’至3’方向,由AUG开始,每3个核苷酸为一组,决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号,称为三联体密码。
从mRNA
5’端起始密码子AUG到3’端终止密码子之间的核苷酸序列,各个三联体密码连续排列编码一个蛋白质多肽链,称为开放阅读框架(ORF)。
密码子特点:
①阅读方向:5’→3’;②无标点符号;③密码子不重叠;④密码子的简并性;⑤密码子与反密码子的作用;⑥起始密码子AUG,终止密码子UAA,UAG,UGA;⑦密码子的通用性和例外。
2.tRNA
蛋白质合成过程中,起着运输氨基酸的作用。有如下的功能:
①3’末端携带氨基酸;②识别氨基酰-tRNA合成酶的位点;③核糖体识别位点;④反密码子的位点。
3.rRNA与核糖体
⑴.rRNA的主要功能是形成核糖体,是蛋白质合成的场所。
⑵.核糖体的活性中心:
二位点模型:A位(氨酰基部位),氨基酰-tRNA进入部位。
P位(肽基部位),为起始tRNA或正在延伸中的肽酰-tRNA结合部位。
三位点模型:除了A位和P位外,还有E位,空载tRNA离开的位点。
⑶.多核糖体:mRNA同时与若干个核糖体结合形成的念珠状结构,称为多核糖体
4.辅助因子
⑴.起始因子:参与蛋白质生物合成起始的蛋白因子;
⑵.延伸因子:参与蛋白质生物合成过程中肽链延伸的蛋白因子;
⑶.释放因子:作用是与终止密码子结合终止肽链的的合成并使肽链从核糖体上释放出来。
(二)蛋白质的生物合成过程
翻译过程从阅读框架的5´-AUG开始,按mRNA模板三联体密码的顺序延长肽链,直至终止密码出现。
1.氨基酸的活化;
⑴.氨基酰-tRNA合成酶
⑵.过程:
氨基酰-tRNA合成酶
ATP
+
AA
-----------------→
AA-AMP-酶
+
PPi
tRNA
+
AA-AMP-酶
-----------------→
氨基酰-tRNA
+

①氨基酰-tRNA合成酶对底物氨基酸和tRNA都有高度特异性。
②氨基酰-tRNA合成酶具有校正活性。
③氨基酰-tRNA的表示方法:
Ala-tRNAAla
、Ser-tRNASer
、Met-tRNAMet
2.肽链合成的起始

⑴.SD序列和起始因子
SD序列:mRNA
5’翻译起始区富含嘌呤的序列
起始因子:
原核生物:IF-1、IF-2、IF-3
真核生物:eIF-1、eIF-2、eIF-2A、eIF-3等
⑵.起始氨酰-tRNA
真核生物:
Met-tRNAiMet
原核生物:
fMet-
tRNAifMet

‘贰’ 简述原核生物蛋白质的合成过程

原核生物的蛋白质合成分为四个阶段:氨基酸的活化、肽链合成的起始、延伸和终止。

①氨基酸的活化:游离的氨基酸必须经过活化以获得能量,才能参与蛋白质的合成,活化反应由氨酰tRNA合成酶催化,最终氨基酸连接在tRNA3ˊ端AMP的3ˊ-OH上,合成氨酰-tRNA。

②肽链合成的起始:首先IF1和IF3与30S亚基结合,以阻止大亚基的结合;接着,IF2和GTP与小亚基结合,以利于随后的起始tRNA的结合;形成的小亚基复合物经由核糖体结合点附着在mRNA上,起始tRNA和AUG起始密码子配对并释放IF3,并形成30S起始复合物。

大亚基与30S起始复合物结合,替换IF1和IF2+GDP,形成70S起始复合物。这样在mRNA正确部位组装成完整的核糖体。

③肽链的延伸:延伸分三步进行,进位:负载tRNA与EF-Tu和GTP形成的复合物被运送至核糖体,GTP水解,EF-TuGDP释放出来,在EF-Ts和GTP的作用下,EF-Tu GDP可以再次利用。转肽:肽酰转移酶将相邻的两个氨基酸相连形成肽键,该过程不需要能量的输入。

移位:移位酶(EF-G)利用GTP水解释放的能量,使核糖体沿mRNA移动一个密码子,释放出空载的tRNA并将新生肽链运至P位点。

④肽链的终止与释放:释放因子(RF1或RP2)识别终止密码子,并在RP3的作用下,促使肽酰转移酶在肽链上加上一个水分子并释放肽链。核糖体释放因子有助于核糖体亚基从mRNA上解离。



原核生物特点:

① 核质与细胞质之间无核膜因而无成形的细胞核(拟核或类核);RNA转录和翻译同时进行。

② 遗传物质是一条不与组蛋白结合的环状双螺旋脱氧核糖核酸(DNA)丝,不构成染色体(有的原核生物在其主基因组外还有更小的能进出细胞的质粒DNA)。

③ 以简单二分裂方式繁殖,不存在有丝分裂或减数分裂。

④ 没有性行为,有的种类有时有通过接合、转化或转导,将部分基因组从一个细胞传递到另一个细胞的准性行为。

⑤ 没有由肌球、肌动蛋白构成的微纤维系统,故细胞质不能流动,也没有形成伪足、吞噬作用等现象。

⑥鞭毛并非由微管构成,更无“9+2”的结构,仅由几条螺旋或平行的蛋白质丝构成。

⑦ 细胞质内仅有核糖体而没有线粒体、高尔基体、内质网、溶酶体、液泡和质体(植物)、中心粒(低等植物和动物)等细胞器。

‘叁’ 高中生物进:蛋白质合成的全过程.从氨基酸开始

蛋白质生物合成可分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放、蛋白质合成后的加工修饰。

(一)氨基酸

在进行合成多肽链之前,必须先经过活化,然后再与其特异的tRNA结合,带到mRNA相应的位置上,这个过程靠氨基酰tRNA合成酶催化,此酶催化特定的氨基酸与特异的tRNA相结合,生成各种氨基酰tRNA.每种氨基酸都靠其特有合成酶催化,使之和相对应的tRNA结合,在氨基酰tRNA合成酶催化下,利用ATP供能,在氨基酸羧基上进行活化,形成氨基酰-AMP,再与氨基酰tRNA合成酶结合形成三联复合物,此复合物再与特异的tRNA作用,将氨基酰转移到tRNA的氨基酸臂(即3'-末端CCA-OH)上原核细胞中起始氨基酸活化后,还要甲酰化,形成甲酰蛋氨酸tRNA,由N10甲酰四氢叶酸提供甲酰基。而真核细胞没有此过程。

前面讲过运载同一种氨基酸的一组不同tRNA称为同功tRNA。一组同功tRNA由同一种氨酰基tRNA合成酶催化。氨基酰tRNA合成酶对tRNA和氨基酸两者具有专一性,它对氨基酸的识别特异性很高,而对tRNA识别的特异性较低。

氨基酰tRNA合成酶是如何选择正确的氨基酸和tRNA呢?按照一般原理,酶和底物的正确结合是由二者相嵌的几何形状所决定的,只有适合的氨基酸和适合的tRNA进入合成酶的相应位点,才能合成正确的氨酰基tRNA。现在已经知道合成酶与L形tRNA的内侧面结合,结合点包括接近臂,DHU臂和反密码子臂D柄、反密码子和可变环与酶反应

乍看起来,反密码子似乎应该与氨基酸的正确负载有关,对于某些tRNA也确实如此,然而对于大多数tRNA来说,情况并非如此,人们早就知道,当某些tRNA上的反密码子突变后,但它们所携带的氨工酸却没有改变。1988年,候稚明和Schimmel的实验证明丙氨酸tRNA酸分子的氨基酸臂上G3:U70这两个碱基发生突变时则影响到丙氨酰tRNA合成酶的正确识别,说明G3:U70是丙氨酸tRNA分子决定其本质的主要因素。tRNA分子上决定其携带氨基酸的区域叫做副密码子。一种氨基酰tRNA合成酶可以识别以一组同功tRNA,这说明它们具有共同特征。例如三种丙氨酸tRNA(tRNAAlm/CUA,tRNAAim/GGC,tRNAAin/UGC都具有G3:U70副密码子。)但没有充分的证据说明其它氨基酰tRNA合成酶也识别同功tRNA组中相同的副密码子。另外副密码子也没有固定的位置,也可能并不止一个碱基对。

(二)多肽链合成的起始

核蛋白体大小亚基,mRNA起始tRNA和起始因子共同参与肽链合成的起始。

1、大肠杆菌细胞翻译起始复合物形成的过程:

(1)核糖体30S小亚基附着于mRNA起始信号部位:原核生物中每一个mRNA都具有其核糖体结合位点,它是位于AUG上游8-13个核苷酸处的一个短片段叫做SD序列。这段序列正好与30S小亚基中的16S rRNA3’端一部分序列互补,因此SD序列也叫做核糖体结合序列,这种互补就意味着核糖体能选择mRNA上AUG的正确位置来起始肽链的合成,该结合反应由起始因子3(IF-3)介导,另外IF-1促进IF-3与小亚基的结合,故先形成IF3-30S亚基-mRNA三元复合物。

(2)30S前起始复合物的形成:在起始因子2作用下,甲酰蛋氨酰起 始tRNA与mRNA分子中的AUG相结合,即密码子与反密码子配对,同时IF3从三元复合物中脱落,形成30S前起始复合物,即IF2-3S亚基-mRNA-fMet-tRNAfmet复合物,此步需要GTP和Mg2+参与。

(3)70S起始复合物的形成:50S亚基上述的30S前起始复合物结合,同时IF2脱落,形成70S起始复合物,即30S亚基-mRNA-50S亚基-mRNA-fMet-tRNAfmet复合物。此时fMet-tRNAfmet占据着50S亚基的肽酰位。而A位则空着有待于对应mRNA中第二个密码的相应氨基酰tRNA进入,从而进入延长阶段,2、真核细胞蛋白质合成的起始

真核细胞蛋白质合成起始复合物的形成中需要更多的起始因子参与,因此起始过程也更复杂。

(1)需要特异的起始tRNA即,-tRNAfmet,并且不需要N端甲酰化。已发现的真核起始因子有近10种(eukaryote Initiation factor,eIF)

(2)起始复合物形成在mRNA5’端AUG上游的帽子结构,(除某些病毒mRNA外)

(3)ATP水解为ADP供给mRNA结合所需要的能量。真核细胞起始复合物的形成过程是:翻译起始也是由eIF-3结合在40S小亚基上而促进80S核糖体解离出60S大亚基开始,同时eIF-2在辅eIF-2作用下,与Met-tRNAfmet及GTP结合,再通过eIF-3及eIF-4C的作用,先结合到40S小亚基,然后再与mRNA结合。

mRNA结合到40S小亚基时,除了eIF-3参加外,还需要eIF-1、eIF-4A及eIF-4B并由ATP小解为ADP及Pi来供能,通过帽结合因子与mRNA的帽结合而转移到小亚基上。但是在mRNA5’端并未发现能与小亚基18SRNA配对的S-D序列。目前认为通过帽结合后,mRNA在小亚基上向下游移动而进行扫描,可使mRNA上的起始密码AUG在Met-tRNAfmet的反密码位置固定下来,进行翻译起始。

通过eIF-5的作用,可使结合Met-tRNAfmet·GTP及mRNAR40S小亚基与60S大亚基结合,形成80S复合物。eIF-5具有GTP酶活性,催化GTP水解为GDP及Pi,并有利于其它起始因子从40S小亚基表面脱落,从而有利于40S与60S两个亚基结合起来,最后经eIF-4D激活而成为具有活性的80SMet-tRNAfmet· mRNA起始复合物。
(三)多肽链的延长

在多肽链上每增加一个氨基酸都需要经过进位,转肽和移位三个步骤。

(1)为密码子所特定的氨基酸tRNA结合到核蛋白体的A位,称为进位。氨基酰tRNA在进位前需要有三种延长因子的作用,即,热不稳定的EF(Unstable temperature,EF)EF-Tu,热稳定的EF(stable temperature EF,EF-Ts)以及依赖GTP的转位因子。EF-Tu首先与GTP结合,然后再与氨基酰tRNA结合成三元复合物,这样的三元复合物才能进入A位。此时GTP水解成GDP,EF-Tu和GDP与结合在A位上的氨基酰tRNA分离
肽键的形成

①核蛋白体“给位”上携甲酰蛋氨酰 基(或肽酰)的tRNA

②核蛋白体“受体”上新进入的氨基酰tRNA;

③失去甲酰蛋氨酰基(或肽酰)后,即将从核蛋白体脱落的tRNA;

④接受甲酰蛋氨酰基(或肽酰)后已增长一个氨基酸残基的肽键

(2)转肽--肽键的形成(peptide bond formation)

在70S起始复合物形成过程中,核糖核蛋白体的P位上已结合了起始型甲酰蛋氨酸tRNA,当进位后,P位和A位上各结合了一个氨基酰tRNA,两个氨基酸之间在核糖体转肽酶作用下,P位上的氨基酸提供α-COOH基,与A位上的氨基酸的α-NH2形成肽键,从而使P位上的氨基酸连接到A位氨基酸的氨基上,这就是转肽。转肽后,在A位上形成了一个二肽酰tRNA(图18-13)。

(3)移位(Translocation)

转肽作用发生后,氨基酸都位于A位,P位上无负荷氨基酸的tRNA就此脱落,核蛋白体沿着mRNA向3’端方向移动一组密码子,使得原来结合二肽酰tRNA的A位转变成了P位,而A位空出,可以接受下一个新的氨基酰tRNA进入,移位过程需要EF-2,GTP和Mg2+的参加(图18-14)。

以后,肽链上每增加一个氨基酸残基,即重复上述进位,转肽,移位的步骤,直至所需的长度,实验证明mRNA上的信息阅读是从5’端向3’端进行,而肽链的延伸是从氮基端到羧基端。所以多肽链合成的方向是N端到C端
(四)翻译的终止及多肽链的释放

无论原核生物还是真核生物都有三种终止密码子UAG,UAA和UGA。没有一个tRNA能够与终止密码子作用,而是靠特殊的蛋白质因子促成终止作用。这类蛋白质因子叫做释放因子,原核生物有三种释放因子:RF1,RF2T RF3。RF1识别UAA和UAG,RF2识别UAA和UGA。RF3的作用还不明确。真核生物中只有一种释放因子eRF,它可以识别三种终止密码子。

不管原核生物还是真核生物,释放因子都作用于A位点,使转肽酶活性变为水介酶活性,将肽链从结合在核糖体上的tRNA的CCA末凋上水介下来,然后mRNA与核糖体分离,最后一个tRNA脱落,核糖体在IF-3作用下,解离出大、小亚基。解离后的大小亚基又重新参加新的肽链的合成,循环往复,所以多肽链在核糖体上的合成过程又称核糖体循环(ribosome cycle)(图18-16)。

(五)多核糖体循环

上述只是单个核糖体的翻译过程,事实上在细胞内一条mRNA链上结合着多个核糖体,甚至可多到几百个。蛋白质开始合成时,第一个核糖体在mRNA的起始部位结合,引入第一个蛋氨酸,然后核糖体向mRNA的3’端移动一定距离后,第二个核糖体又在mRNA的起始部位结合,现向前移动一定的距离后,在起始部位又结合第三个核糖体,依次下去,直至终止。两个核糖体之间有一定的长度间隔,每个核糖体都独立完成一条多肽链的合成,所以这种多核糖体可以在一条mRNA链上同时合成多条相同的多肽链,这就大大提高了翻译的效
多聚核糖体的核糖体个数,与模板mRNA的长度有关,例如血红蛋白的多肽链mNRA编码区有450个核苷酸组成,长约150nm 。上面串连有5-6个核糖核蛋白体形成多核糖体。而肌凝蛋白的重链mRNA由5400个核苷酸组成,它由60多个核糖体构成多核糖体完成多肽链的合成

‘肆’ 原核生物蛋白质合成体系由哪些物质组成各起什么作用

一)蛋白质合成体系的重要组分
翻译:蛋白质的生物合成,即翻译,就是将核酸中由 4 种核苷酸序列编码的遗传信息,通过遗传密码破译的方式解读为蛋白质一级结构中20种氨基酸的排列顺序 .
1.mRNA与遗传密码;
mRNA分子上从5’至3’方向,由AUG开始,每3个核苷酸为一组,决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号,称为三联体密码.
从mRNA 5’端起始密码子AUG到3’端终止密码子之间的核苷酸序列,各个三联体密码连续排列编码一个蛋白质多肽链,称为开放阅读框架(ORF).
密码子特点:
①阅读方向:5’→3’;②无标点符号;③密码子不重叠;④密码子的简并性;⑤密码子与反密码子的作用;⑥起始密码子AUG,终止密码子UAA,UAG,UGA;⑦密码子的通用性和例外.
2.tRNA
蛋白质合成过程中,起着运输氨基酸的作用.有如下的功能:
①3’末端携带氨基酸;②识别氨基酰-tRNA合成酶的位点;③核糖体识别位点;④反密码子的位点.
3.rRNA与核糖体
⑴.rRNA的主要功能是形成核糖体,是蛋白质合成的场所.
⑵.核糖体的活性中心:
二位点模型:A位(氨酰基部位),氨基酰-tRNA进入部位.
P位(肽基部位),为起始tRNA或正在延伸中的肽酰-tRNA结合部位.
三位点模型:除了A位和P位外,还有E位,空载tRNA离开的位点.
⑶.多核糖体:mRNA同时与若干个核糖体结合形成的念珠状结构,称为多核糖体
4.辅助因子
⑴.起始因子:参与蛋白质生物合成起始的蛋白因子;
⑵.延伸因子:参与蛋白质生物合成过程中肽链延伸的蛋白因子;
⑶.释放因子:作用是与终止密码子结合终止肽链的的合成并使肽链从核糖体上释放出来.
(二)蛋白质的生物合成过程
翻译过程从阅读框架的5´-AUG开始,按mRNA模板三联体密码的顺序延长肽链,直至终止密码出现.
1.氨基酸的活化;
⑴.氨基酰-tRNA合成酶
⑵.过程:
氨基酰-tRNA合成酶
ATP + AA -----------------→ AA-AMP-酶 + PPi
tRNA + AA-AMP-酶 -----------------→ 氨基酰-tRNA + 酶
①氨基酰-tRNA合成酶对底物氨基酸和tRNA都有高度特异性.
②氨基酰-tRNA合成酶具有校正活性.
③氨基酰-tRNA的表示方法:
Ala-tRNAAla 、Ser-tRNASer 、Met-tRNAMet
2.肽链合成的起始 :
⑴.SD序列和起始因子
SD序列:mRNA 5’翻译起始区富含嘌呤的序列
起始因子:
原核生物:IF-1、IF-2、IF-3
真核生物:eIF-1、eIF-2、eIF-2A、eIF-3等
⑵.起始氨酰-tRNA
真核生物: Met-tRNAiMet
原核生物: fMet- tRNAifMet
⑶.起始复合物的形成
①核蛋白体大小亚基分离;
②mRNA在小亚基定位结合;
③起始氨基酰-tRNA的结合;
④核蛋白体大亚基结合.
3.肽链的延伸:
⑴.延伸过程所需蛋白因子称为延长因子;
原核生物:EF-T(EF-Tu, EF-Ts)、EF-G
真核生物:EF-1 、EF-2
⑵.过程
进位:指根据mRNA下一组遗传密码指导,使相应氨基酰-tRNA进入核蛋白体A位,消耗1分子ATP;
转肽:是由转肽酶催化的肽键形成过程;
移位:肽酰-tRNA由A位→P位的过程,消耗1分子ATP;
4.肽链合成的终止和释放
⑴.原核生物释放因子:RF-1,RF-2,RF-3
真核生物释放因子:eRF
⑵.释放因子的功能:
一是识别终止密码,如RF-1特异识别UAA、UAG;而RF-2可识别UAA、UGA.
二是诱导转肽酶改变为酯酶活性,相当于催化肽酰基转移到水分子-OH上,使肽链从核蛋白体上释放.
5.GTP在蛋白质的生物合成中的作用
蛋白质合成过程是一个大量消耗能量的过程.除去氨基酸活化是消耗ATP外,此外消耗的都是GTP.原因是GTP使一些蛋白质因子与tRNA或核糖体易于以非共价键结合.
(三)肽链合成后的加工与定向运输
从核蛋白体释放出的新生多肽链不具备蛋白质生物活性,必需经过不同的翻译后复杂加工过程才转变为天然构象的功能蛋白.
⑴.加工的方式:
①多肽链折叠为天然的三维结构:新生肽链的折叠在肽链合成中、合成后完成,新生肽链N端在核蛋白体上一出现,肽链的折叠即开始.可能随着序列的不断延伸肽链逐步折叠,产生正确的二级结构、模序、结构域到形成完整空间构象;一般认为,多肽链自身氨基酸顺序储存着蛋白质折叠的信息,即一级结构是空间构象的基础;细胞中大多数天然蛋白质折叠都不是自动完成,而需要其他酶、蛋白辅助.
几种有促进蛋白折叠功能的大分子:
a.分子伴侣:分子伴侣是细胞一类保守蛋白质,可识别肽链的非天然构象,促进各功能域和整体蛋白质的正确折叠.
b. 蛋白二硫键异构酶:多肽链内或肽链之间二硫键的正确形成对稳定分泌蛋白、膜蛋白等的天然构象十分重要,这一过程主要在细胞内质网进行.
二硫键异构酶在内质网腔活性很高,可在较大区段肽链中催化错配二硫键断裂并形成正确二硫键连接,最终使蛋白质形成热力学最稳定的天然构象.
c.肽-脯氨酰顺反异构酶:多肽链中肽酰-脯氨酸间形成的肽键有顺反两种异构体,空间构象明显差别.
肽酰-脯氨酰顺反异构酶可促进上述顺反两种异构体之间的转换.
肽酰-脯氨酰顺反异构酶是蛋白质三维构象形成的限速酶,在肽链合成需形成顺式构型时,可使多肽在各脯氨酸弯折处形成准确折叠.
②肽链一级结构的修饰
a.肽链N端的修饰
b.个别氨基酸的修饰
c.多肽链的水解修饰
③高级结构修饰.
a.亚基聚合
b.辅基连接
c.疏水脂链的共价连接
⑵.运输
①蛋白质合成后需要经过复杂机制,定向输送到最终发挥生物功能的细胞靶部位,这一过程称为蛋白质的靶向输送.
②所有靶向输送的蛋白质结构中存在分选信号,主要为N末端特异氨基酸序列,可引导蛋白质转移到细胞的适当靶部位,这一序列称为信号序列 .
③各种新生分泌蛋白的N端有保守的氨基酸序列称信号肽.
输送的方式有两种:“翻译转运同步机制”和“翻译后转运机制”
详情见:
http://www.foodmate.net/lesson/48/14.php
otwCVps 2014-11-05
相关问题
1.蛋白质的生物合成体系包括哪些物质及各物质的作用?举例说明蛋白质合成的抑制与临床的关系.2014-10-31
原核生物蛋白质体系包括那些重要成分?其合成过程分几段?这些阶段名称及合成蛋白质的原料是什么2014-12-05
泰医参与蛋白质生物合成体系的组分有哪些?它们具有什么功能2014-11-21
RNA主要有哪几种?他们在蛋白质生物合成过程中各有什么功能?2014-12-15
GTP在蛋白质生物合成中的作用

阅读全文

与蛋白质生物合成的起始信号有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:739
乙酸乙酯化学式怎么算 浏览:1404
沈阳初中的数学是什么版本的 浏览:1350
华为手机家人共享如何查看地理位置 浏览:1042
一氧化碳还原氧化铝化学方程式怎么配平 浏览:884
数学c什么意思是什么意思是什么 浏览:1408
中考初中地理如何补 浏览:1299
360浏览器历史在哪里下载迅雷下载 浏览:701
数学奥数卡怎么办 浏览:1387
如何回答地理是什么 浏览:1023
win7如何删除电脑文件浏览历史 浏览:1055
大学物理实验干什么用的到 浏览:1484
二年级上册数学框框怎么填 浏览:1699
西安瑞禧生物科技有限公司怎么样 浏览:971
武大的分析化学怎么样 浏览:1247
ige电化学发光偏高怎么办 浏览:1337
学而思初中英语和语文怎么样 浏览:1650
下列哪个水飞蓟素化学结构 浏览:1423
化学理学哪些专业好 浏览:1486
数学中的棱的意思是什么 浏览:1057