Ⅰ 高二生物,怎么求基因型和性状种数,要那种很简捷的方法
首先必须把书中的孟德尔对两对相对性状的豌豆进行杂交,其F1只有一种表现型,F2代出现4种表现型,比例为9:3:3:1,这及个例子弄清楚
2.根据题目所给的信息绘制基因代关系图谱(一般题目能给出),找出特殊的基因类型
3.判断显隐性
4.几种常用方法
4.1棋盘法:(高中生物书中有例)先写出亲代产生的雌、雄配子,然后用棋盘表格写出两性配子结合后的基因组成
4.2分枝法:
一对基因相交时,有6种交配方式。每种交配所产生的子代的基因型和表现型都有所不同。
如果亲代的每一性状的基因型已经知道,而且每对基因与另一对基因都是自由组合的,那么可用分枝法来推测预期子代的基因型和表现型比例。这种方法也可用在两对以上基因的差异,而且双亲不一定时每对基因都是杂合体。不论对数的多少,都可应用分枝法简便的写出杂交子代的基因型合表现型的比例。
1.分枝法的理论依据:基因自由组合定律是建立在分离定律的基础之上的,研究更多对相对性状的遗传规律,两者并不矛盾。
2.具体步骤:1)对各对性状分别进行分析。
2)子代基因型的数量比应该是各对基因型相应比值的乘积,子代表现型的数量比也应该是各种表现型相应比值的乘积。
如:两个亲本杂交,包括3对不同的基因
交配 AAbbCc × aaBbCc
合子基因型 合子表现型
AA×aa bb×Bb Cc×Cc AA×aa bb×Bb Cc×Cc
1CC=1AaBbCC 3C=3ABC
1Bb 1cc=1AaBbcc 1B 1c=1ABc
Aa 2Cc=1AaBbCc 全 A
1CC=1AabbCC 1b 3C=3AbC
1bb 1cc=1Aabbcc 1C=1Abc
2Cc=1AabbCc
上述合子表现型中,A代表A/a基因对的显性表现型(AA或Aa),a代表隐性表现型(aa)。同样的,B和C代表不同的显性表现型,b和c代表不同的隐性表现型。
高效快算法:
用棋盘法和分枝法的优点是思维清晰、条理性强,做题较准确。这两种方法运用熟练后可逐步采取以下方法来高效快算。
如:DdCc × DdCC子代基因型的种类和表现型的种类
Dd × Dd子代3种基因型2种表现型
Cc × CC 子代2种基因型1种表现型
所求基因型种数=3×2;表现型种数=2×1
例题:如果黄色圆粒豌豆(YyRr)甲和绿色圆粒(yyRr)乙杂交,问后代出现基因型YyRR的概率是多少?
分析:分别考虑基因中的每一对基因,单从豌豆的粒色考虑,甲和乙杂交后的概率为:Yy×yy有1/2 Yy、1/2yy;单从豌豆的粒型考虑Rr×Rr,有1/4RR、1/4rr、1/2Rr,因此,甲乙杂交后代基因型YyRR的概率是1/2×1/4。
这种方法可以自由的计算基因型和表现型的概率。
你还可以看看http://wenwen.soso.com/z/q189194307.htm?rq=119121995&ri=1&uid=0&ch=w.xg.llyjj
从子代表现型中判断亲代基因型参考资料:http://wenwen.soso.com/z/q119121995.htm
Ⅱ 生物遗传题经典大题8大题型是什么
生物遗传题经典大题8大题型是:
一、显、隐性的判断
①性状分离,分离出的性状为隐性性状;
②杂交:两相对性状的个体杂交;
③随机交配的群体中,显性性状》隐性性状;
④假设推导:假设某表型为显性,按题干的给出的杂交组合逐代推导,看是否符合;再设该表型为隐性,推导,看是否符合;最后做出判断;
二、纯合子杂合子的判断
①测交:若只有一种表型出现,则为纯合子(体);若出现两种比例相同的表现型,则为杂合体;
②自交:若出现性状分离,则为杂合子;不出现(或者稳定遗传),则为纯合子;
注意:若是动物实验材料,材料适合的时候选择测交;若是植物实验材料,适合的方法是测交和自交,但是最简单的方法为自交;
三、基因分离定律和自由组合定律的验证
①测交:选择杂合(或者双杂合)的个体与隐性个体杂交,若子代出现1:1(或者1:1:1:1),则符合;反之,不符合;
②自交:杂合(或者双杂合)的个体自交,若子代出现3:1(1:2:1)或者9:3:3:1(其他的变式也可),则符合;否则,不符合;
③通过鉴定配子的种类也可以;如:花粉鉴定;再如:通过观察雄峰的表型及比例推测蜂王产生的卵细胞的种类进而验证是否符合分离定律。
四、自交和自由(随机)交配的相关计算
①自交:只要确定一方的基因型,另一方的出现概率为“1”(只要带一个系数即可);
②自由交配:推荐使用分别求出双亲产生的配子的种类及比例,再进行雌雄配子的自由结合得出子代(若双亲都有多种可能的基因型,要讲各自的系数相乘)。
注意:若对自交或者自由交配的后代进行了相应表型的选择之后,注意子代相应比例的改变。
五、遗传现象中的“特殊遗传”
①不完全显性:如Aa表型介于AA和aa之间的现象。判断的依据可以根据分离比1:2:1变化推导得知;
②复等位基因:一对相对性状受受两个以上的等位基因控制(但每个个体依然只含其中的两个)的现象,先根据题干给出的信息确定出不同表型的基因型,再答题。
③一对相对性状受两对或者多对等位基因控制的现象;
⑤致死现象,如某基因纯合时胚胎致死,可以根据子代的分离比的偏离情况分析得出,注意该种情况下得到的子代比例的变化。抑或是发育到某阶段才会出现的致死现象,计算时注意相应比例的变化;
六、遗传图解的规范书写
书写要求:
①亲代的表现型、基因型;
②配子的基因型种类;
③子代的基因型、表现型(包括特殊情况的指明)、比例;
④基因型的规范书写:常染色体上的、X染色体上的(包括同源或者非同源区段)(前常后X),要用题干中提到的字母,不可随意代替;
⑤相关符号的正确书写。
七、常染色体和X染色体上的基因控制的性状遗传的区分和判断
①据子代相应表型在雌雄中的比例是否完全相同判断;
②正反交的结果是否相同,相同则为常染色体上,不同则为X染色体上;
③根据规律判断,即伴性遗传存在女患其父、子必患;男患其母、女必患等等特点;
④设计杂交组合根据子代情况判断:
八、“乘法原理”解决自由组合类的问题
解题思路:对于多对等位基因或者多对相对性状类的遗传问题,先用分离定律单独分析每一对的情况,之后运用“乘法原理”对两种或者多种同时出现的情况进行整合。
九、染色体数、型异常的配子(或者个体)的产生情况分析
结合遗传的细胞学基础部分内容,通过减数分裂过程分析着手,运用简图展现过程。
几种常见的来源:
①减数第一次分裂四分体时期的同源染色体的非姐妹染色单体间交叉互换;
②减数第一次分裂后期之后,某同源染色体未分离,移向某一极;
③减数第二次分裂后期之后,由姐妹染色单体发展形成的两条染色体未分离,移向同一极;
(注意:在分析某异常配子形成时,②与③一般不同时考虑)
十、遗传系谱图类题目的分析思路与考查类型归纳
遗传系谱图是遗传学中的一个重点内容、也是公认的难点,平时练习时要多注意归纳总结,概括出此类题试题的规律和解题思路,从而可以达到从容应对。
2、遗传方式的推导方法
2.1、判断显隐性遗传
①先找典型特征:隐性—父母不患病而孩子患病,即“无中生有为隐性”。显性—父母患病孩子不患病,即“有中生无为显性”。
②没有典型性特征:则两种均有可能。其中代代发病一般最可能为显性,隔代发病最可能为隐性。
2.2.确定遗传病是常染色体遗传病还是X染色体遗传病
①先找典型特征:隐性,女患其父、子必患;显性,男患其母、女必患。只要找到正常的就只能为常染色体上的。没有则两种均有可能
②没有典型特征:若两种都符合,则:男女发病率不同为伴X遗传。男女发病率相同为常染色体遗传。
③如果按以上方式推导,几种假设都符合,则几种都有可能。
还可以选择假设--推导的方法(反证法):先假设在X染色体上,代入进行推导,若不符合,则在常染色体上;若符合再假设在常染色体上,一般都是符合的,则两种情况都可能不能确定,此时只有结合题干的相关信息进一步的预测或确定。
3、子代某表现型概率的计算
①多对性状同时考查,单独考虑每一对的情况;
②确定亲代的基因型的种类和比例;
(结合亲本的性状,联系亲本的“上代”、“同代”、“下代”的情况去综合考虑亲本的可能基因型,时刻注意比例的变化。)
③运用相乘、相加得出子代的表现型或者基因型情况。
Ⅲ 高中生物基因对性状的控制类型的题应该怎样做
这个不难吧 可以先读懂题目意思之后 写出所有的已知基因型弄明白他们是亲本还是子代 注意显隐性 然后用分配定律和自由组合定律画遗传图解 之后就差不多完事了 不管题目中让你求基因型 表现型 还是有关概率问题都可以求出来 PS如果遇到题目非常变态的老师讲也听不懂的 干脆别理他 先从基础做起 一步一步的来
Ⅳ 解答高中生物遗传题的一般步骤是什么有没有什么技巧
遗传类题目一般解题顺序
先据子代表现判断显隐性,
再据相关条件(子代数量、表现型比例)判断性状遗传规律(由常染色体控制还是由性染色体控制)以及亲代基因型,
再由此推算子代的性状概率、比例等
做遗传题的技巧首先要把两个遗传规律弄懂,把子代比例一对基因的F2有3:1,两对基因F2有9:3:3:1等理解吃透,做题是没问题的
Ⅳ 怎样学好生物,例如基因控制性状的题该怎么做
首先要彻底的理解一对基因的分离定律和两对基因时同时发生的分离及自由组合定律的本质。可以问老师、学习好同学、看参考书。然后可以做题,在最初的时候建议每一道题都写出其基因的亲代F1F2之类的基因型表现型及比例等信息,方便做题。熟练后可以直接使用分支法或棋盘法(2对)进行分析。
其实写遗传图谱是很有用的方法,足够你应付高中所有的相关题。这绝不是大话。亲测有效。有时有题不会做,不是方法不行,而是我们思路不通罢了。
Ⅵ 高中生物遗传题解题方法
遗传题知识基础建立在自由组合定律和分离定律上。高中学生在解答这类生物题型时,需要讲究一定的解题 方法 和技巧。下面我为高中生整理生物遗传题解题方法,希望对大家有所帮助!
高中生物遗传题解题方法介绍
遗传题主要包括:基本概念题;性状遗传方式判断题;基因型推导题;有关种类、概率、比例计算题;遗传中的特殊情况;遗传系谱图题。
一、基本概念题、性状遗传方式判断题、基因型推导题及有关种类、概率、比例计算题。
此类试题建立在基因分离定律和自由组合定律基础上,应先明确性状、基因、合子、杂交四方面概念及相对应的方法。
(一)性状
1.概念。相对性状——同种生物同一性状不同表现类型;相同性状——同种生物同一性状相同表现类型;显性性状——杂种F1显现出来的性状;性状分离——相同性状杂交,后代出现新的性状。
2.方法。根据概念对相关基因型进行判断。
(1)显隐性判断
1→2法:相同性状杂交,F1出现新的性状;2→1法:一对相对性状杂交,F1只有一种性状。
(2)表达式或基因型。显性表达式:A_____隐性表达式:aa
(3)依据性状分离比判断。A_____×aa→(1∶0为显性纯合;1∶1为杂合)
A_____×A_____→(3∶1双亲为杂合;1∶0双亲有一方为显性纯合;2∶1显纯致死)
(二)基因
1.概念。显性基因、隐性基因、基因型、表现型。
2.基因型和表现型之间的关系。表现型=基因型(内因)+环境(外因)。
(1)白化病——主要由内因决定。
(2)从性遗传——由常染色体上基因控制的性状,在表现型上受个体性别影响。不属质遗传。
(3)环境影响——海龟蛋根据温度决定性别,30℃以上性别不同,30℃以下性别相同。爬行类大多不存在性染色体,但有性别决定基因。
(三)合子
1.概念。纯合子——基因组成相同的配子→合子(受精卵)→个体;杂合子——基因组成不同的配子→合子(受精卵)→个体。
2.方法。合子判断方法:体细胞中有无等位基因;纯合子概率计算:一对等位基因自交:P■=1-1/2■。
(四)杂交
1.杂交——两个体间的交配(一般发生在同种生物不同个体间)。如:杂交育种(集优)。
2.自交——基因型相同的个体杂交。植物——自交;动物——子代间相互交配,可看成自交。
(1)判断显性是否纯合;(2)获取纯合体。
(3)测交——隐性纯合子(隐性性状)×显性性状。检测亲本产生配子的种类及比例;判断显性是否纯合。
测交是一种检测F1基因型的重要方法,是获得隐性纯合的重要方法。
4.正反交。判断是质遗传/核遗传:后代始终和母本性状相同——质遗传(母系遗传);后代一样——核遗传。若为核遗传,未知显隐性。后代相同即为常,后代不同即为性(X)。
二、遗传中的特殊情况,可结合分析遗传定律的特殊情况。
(一)自由组合定律中9∶3∶3∶1的变式
①9∶7:双显基因同时出现为一种表现型,其余为另一种表现型。
②9∶3∶4:存在aa(或bb)表现为隐性性状,其余正常表现。
③15∶1:只要有显性基因表现为同一性状,其余为另一种表现型。
④9∶6∶1:单显为一种性状。
⑤12∶3∶1:双显和一种单显表现为同一性状。
⑥13∶3:双显、双隐、一种单显表现为同一性状。
⑦1∶4∶6∶4∶1:基因叠加(显性基因越多,效果越强)。
(二)致死基因对配子的影响
(三)XY染色体个区段的基因型
三、遗传系谱图题解题思路,以例题的形式进行归纳。
右图表示某遗传病系谱,两种致病基因位于非同源染色体上。下列有关判断错误的是(B)
A.如果2号不携带甲病基因,则甲病基因在X染色体上
B.如果2号不带甲病基因,4号是杂合子的概率为2/3
C.如果2号携带甲病基因,则4号与1号基因型相同的概率是4/9
D.经检查,1、2号均不带乙病基因,则5号致病基因来源于基因突变
思维方向:信息源——关键字“遗传病系谱”“两对非同源染色体”,思考遗传病推断,用自由组合定律进行相关概率计算。
相关知识:遗传病推断方法(三步骤):(1)判断显、隐性:①有中生无,有为隐;②无中生有,有为显;③无上述情况,但每一代都有患者,最可能为显,“假说演绎”进行推理。
(2)判断致病基因位置:①隐性:母病子必病,一定为X隐;母病子无病,一定为常隐;无上述情况,但男明显多于女,最可能为X隐,“假说演绎”进行推理。②显性:父病女必病,一定为X显;父病女无病,一定为常显;无上述情况,但女明显多于男,最可能为X显,“假说演绎”进行推理。(3)完善基因型:写出已知基因型——显性遗传病:男性和正常个体;隐性遗传病:男性和患者。(4)如无上述情况,则运用“假说演绎法”进行判断。
相关方法:(1)两种病同时存在时,单因子法。(2)若存在多种情况,使用假说演绎法。
遗传题知识基础是建立在自由组合定律和分离定律上,解答时一定要做到繁化简、用减不易加。教师应善于从试题中归纳相关方法,这种能力必须贯穿于学生的解题过程。生物题解题思路,从思维方向、相关知识、相关方法三方面入手。思维方向引导学生对试题信息源准确定位;相关知识使学生对之前复习内容重现和巩固;运用相关方法使学生学会 总结 解题方法,总结不同题型下同一考点的应对 措施 ,实现从解一题到一类题的过渡。
高中生物遗传规律知识点
1、基因的分离定律
相对性状:同种生物同一性状的不同表现类型,叫做相对性状。
显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做显性性状。
隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。
性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做性状分离。
显性基因:控制显性性状的基因,叫做显性基因。一般用大写字母表示,豌豆高茎基因用D表示。
隐性基因:控制隐性性状的基因,叫做隐性基因。一般用小写字母表示,豌豆矮茎基因用d表示。
等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做等位基因。(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。D∶d=1∶1;两种雌配子D∶d=1∶1。)
非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。
表现型:是指生物个体所表现出来的性状。
基因型:是指与表现型有关系的基因组成。
纯合体:由含有相同基因的配子结合成的合子发育而成的个体。可稳定遗传。
杂合体:由含有不同基因的配子结合成的合子发育而成的个体。不能稳定遗传,后代会发生性状分离。
2、基因的自由组合定律
基因的自由组合规律:在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这一规律就叫基因的自由组合规律。
对自由组合现象解释的验证:F1(YyRr)X隐性(yyrr)→(1YR、1Yr、1yR、1yr)Xyr→F2:1YyRr:1Yyrr:1yyRr:1yyrr。
基因自由组合定律在实践中的应用:基因重组使后代出现了新的基因型而产生变异,是生物变异的一个重要来源;通过基因间的重新组合,产生人们需要的具有两个或多个亲本优良性状的新品种。
孟德尔获得成功的原因:1)正确地选择了实验材料。2)在分析生物性状时,采用了先从一对相对性状入手再循序渐进的方法(由单一因素到多因素的研究方法)。3)在实验中注意对不同世代的不同性状进行记载和分析,并运用了统计学的方法处理实验结果。4)科学设计了试验程序。
基因的分离规律和基因的自由组合规律的比较:
① 相对性状数:基因的分离规律是1对,基因的自由组合规律是2对或多对;
② 等位基因数:基因的分离规律是1对,基因的自由组合规律是2对或多对;
③ 等位基因与染色体的关系:基因的分离规律位于一对同源染色体上,基因的自由组合规律位于不同对的同源染色体上;
④ 细胞学基础:基因的分离规律是在减I分裂后期同源染色体分离,基因的自由组合规律是在减I分裂后期同源染色体分离的同时,非同源染色体自由组合;
⑤ 实质:基因的分离规律是等位基因随同源染色体的分开而分离,基因的自由组合规律是在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。
高中 生物 学习方法
①预习
预习是在老师讲课前,先浏览一遍讲课内容,在浏览时,应用笔将自己认为是重点的内容划出来,将自己看不懂的内容标出来,将浏览后产生的问题记下来,有能力、有条件的还可以自己做出预习笔记。通过这样的预习,为下一步听讲奠定基础,使自己的听讲更加有的放矢,听讲时就可以对自己已经弄懂的或重点知识重新加深印象,并比较一下老师的理解与自己的理解有什么差距,如果自己理解得不深,则可以进一步加深理解。对于自己预习时还不懂的问题,则是听讲的重要内容,一定要当堂弄清楚。对于在预习中产生的问题,如果老师讲到了,则要听懂,如果老师没有讲到,一定要向老师问清楚。预习也为将来的自学能力打下了良好的基础.
② 听讲
很多优秀学生的 经验 都说明了一个共同点,即学生的主要功夫应下在课堂上。我们的学习过程,实际上是解决一种矛盾,即已知与未知的矛盾,通过学习把未知转化为已知,然后又有新的未知的出现,我们再来完成这个转化过程。而由未知转化为已知的过程是在课堂上,在老师的指导下完成的,因此应该是很顺利的。有很多学生就是课上认真听讲,在45分钟的时间里完成学习任务。但是,总有些人,课堂上不认真完成由未知向已知的转化,白白浪费掉45分钟,反而在课下再花时间去完成转化,此时已没有老师的指导,只有课本上的内容,显然是不会有好效果的。如此花双倍或更多的时间,去完成效果不好的学习任务,就是常说的事倍功半。只要我们把主要功夫下在课上,那么,课下的负担也就会减轻,而且学习效果也会提高,时间上也会更加充裕,这就是常说的事半功倍。所以,听讲这一步骤是极为关键的。
③复习和作业
Ⅶ 生物伴性遗传的题该怎么做
和性别有关的遗传病属于伴性遗传。对于人类来说,有XY两种性染色体,一般做题时我们要分三大步走:1、排除伴Y遗传。主要看是否代代男性都发病,若无则可排除,进入下一步。2、确认致病基因的显隐性。记口诀:有中生无为隐性,无中生有为显性,即双亲无病生出一个有病的孩子,则该病为隐性遗传病,反之为显性遗传病。3、确认该病是伴X遗传病而不是常染色体遗传病。记口诀:隐性看女病(女患者),女病男(女患者的父亲或儿子)病为伴性。显性看男(男患者)病,男病女(男患者的女儿或母亲)为伴性。在确定遗传方式后写出基因型,再画出遗传图谱就行了。不懂的欢迎追问。
Ⅷ 生物竞赛中基因连锁与互换的题怎么做有啥规律没特别是双交换的,谢谢!!!
给你一些材料,好好看看,希望对你有帮助
(七)、基因的连锁和互换及基因定位
引言:前面我们学了豌豆的杂交,现在我们来温习一下,它的二对等位基因的自由组合遗传。黄色圆粒X绿色皱粒→黄色圆粒测交→1黄色圆粒:1黄色皱粒:1绿色圆粒:1绿色皱粒
2.完全连锁的发现。美国科学家摩尔根,用果蝇做杂交实验:纯种的灰身长翅与黑身残翅杂交, F1代为灰身长翅,所以,灰身长翅为显性,黑身残翅为隐性,对 F1代中的雄性个体测交,测交后代的表现型是1灰身长翅:1黑身残翅,与F1代完全相同。(遗传图式)
比较豌豆的测交与果蝇测交的遗传图式,可以看出:
①二组杂交的P代与 F1代情况相同。
②豌豆的测交后代与果蝇的测交后代不同,果蝇测交后代只有二种表现型,豌豆有四种,所以,果蝇的测交结果无法用基因的自由组合来解释。
3.完全连锁的原理。我们知道人体有十万个基因,这些基因线性分布在23对同源染色体上,可见,每对同源染色体上,有许多对等位基因。
果蝇也是这样,它的灰身长翅基因位于同一条染色体上,用来表示,我们把B与V串在一条染色体上的这种hv情况叫连锁,同样,它的同源染色体上的,也是连锁。
由于B(b)与V(v)完全连锁,所以果蝇F1代中的雄性个体,减数分裂时产生的配子只有两种:和而且相等。
果蝇的杂交遗传图式,详细写出来就应该是这样,这就可以圆满地解释,果蝇的测交后代中为什么只有两种表现型,而且相等。即理论分析与测交结果完全吻合。
4.完全连锁与自由组合的本质区别。
豌豆的黄色(Y)与绿色(y),圆粒(R)与皱粒(r)二对等位基因分别位于二对同源染色体上,由于Y(y)与R(r)没有连锁,减数分裂时Y与y,R与r分离的同时,Y(y)与R(r)自由组合。即:
豌豆的测交遗传图式,详细写出来就应该是这样,这就可以圆满地解释,豌豆的测交后代中有四种表现型,而且相等。即理论分析与测交结果完全吻合。
5.小结。
(1)自由组合是分析分别位于二对同源染色体上的二对等位基因的遗传规律,A(a)与B(b)由于自由组合,产生四种数量相等的配子。表达式为AaBb→1AB:1Ab:1aB:1ab。
(2)完全连锁是分析共同位于一对同源染色体上的二对等位基因的遗传规律,A(a)与B(b)由于完全连锁,所以,产生两种数量相等的配子。表达式为AaBb→1AB:1ab或)1Ab:
1aB。
6.判别自由组合与完全连锁的方法。
(1)如果AaBbxaabb→1:1:l:1,则为自由组合。
(2)如果AaBbxaabb→1:1,则为完全连锁。
不完全连锁遗传
1.不完全连锁杂交实例。
摩尔根用果蝇做了另一组杂交实验,所用果蝇的性状和基因型与完全连锁的相同,但结果不同,请看具体过程。
BBVV X bbvv→F1BbVv
选择F1中的雌性BbVv测交:
BbVv X bbvv→BbVv bbvv Bbvv bbVv
42% 42% 8% 8%
2.比较完全连锁与不完全连锁的异同。
(1)相同点:二组杂交的P代与F1代情况相同。
(2)不同点:完全连锁的测交后代只有两种基因型,与亲本相同,数量比1:1。不完全连锁的测交后代有四种基因型,其中亲本基因型(与其亲本相同的基因型)各占42%,重组基因型(与其亲本不同的基因型)各占8%。
3.连锁着的两个基因是可以改变的。
例如果蝇的卵原细胞,减数分裂过程中,同源染色体联会形成四分体,此时,同源染色体之间的染色单体交叉互换,就有可能改变B(b)与V(v)之间的连锁关系。
如果交叉互换点在B(b)与V(v)之间,就会改变连锁关系(如n路径),产生四种配子;如果交叉互换点在B(b)与V(v)之外,或者没有实现交叉互换,则不会改变连锁关系(如m路径),产生两种配子。
事实上,果蝇F1代的卵原细胞减数分裂时,走m路径的细胞多,走n路径的细胞少,所以,总体上产生BV与bv连锁型的配子就多,产生Bv与bV重组型的配子就少。这样,就可以圆满地解释果蝇的不完全连锁。
4.完全连锁是不完全连锁的特殊情况。
从生物界的总体情况来看,连锁关系的改变与否,取决于连锁着的二个基因()之间的距离,如果A(a)与B(b)
之间的距离长,则互换的可能性大,产生的重组型配子就多;如果A(a)与B(b)之间的距离短,则互换的可能性小,产生的重组型配子就少;如果A(a)与B(b)之间没有发生互换,则不产生重组型配子,即表现为完全连锁。
所以,不完全连锁产生的四种配子,数量上没有固定的比值,只有连锁型配子多,重组型配子少的规律。当重组型配子少到零时,即为完全连锁、
5.判别完全连锁、不完全连锁与自由组合遗传的方法。
(1)自由组合
AaBb x aabb→1AaBb:1aabb:1Aabb:laaBb
特点:后代有四种基因型,且比值1:1:l:1。
(2)完全连锁
AaBb x aabb→1AaBb:1aabb
AaBb x aabb→1Aabb:1aaBb
特点:后代只有两种基因型,且比值1:1。
(3)不完全连锁
AaBb x aabb→AaBb多:aabb多:Aabb少:aabb少
AaBb x aabb→AaBb少:aabb少:Aabb多:aaBb多
特点:后代有四种基因型,其中亲本基因型多,重组基因型少。
总而言之, AaBbXaabb的测交:
①如果后代为1:1:1:1,则A(a)与B(b)自由组合。
②如果后代为1:1,则A(a)与B(b)完全连锁。
③如果后代为多:多:少:少,则A(a)与B(b)不完全连锁。
3.基因定位与连锁图
基因定位就是确定基因在染色体上的位置,其主要内容是确定基因之间的距离和顺序。只要准确地估算出连锁基因的交换值,就能确定基因之间的遗传距离。根据紧密连锁的多个基因之间的距离,可以决定它们之间的相对顺序。将生物已知基因的相对位置标记在染色体上,绘制成图,称为连锁图或遗传学图。两点测验和三点测验是经典遗传学中基因定位的主要方法。
(1)两点测验:
两点测验又称两点测交,是基因定位最基本的一种方法。两点测验首先进行杂交获得双基因杂种(F1),然后对F1进行测交,以判断这两对基因是否连锁。如果是连锁的,根据其交换值确定它们在同一染色体上的遗传距离。前面提到的果蝇测交试验就是一次两点测验。根据测交结果,b和v之间的交换值:
RF(b—v)=(4+4)/(21+21+4+4)×100%=16%
因此b-v之间的遗传距离为16cM(图距单位)。
如果对紧密连锁的三个基因a、b、c分别进行三次两点测验,每两个基因之间的距离分别是:a-b为5cM,b-c为10cM,a-c为15cM,那么,连锁基因a、b、c在同一染色体上的连锁如右图。
(2)三点测验:
根据连锁的三个非等位基因的交换行为确定它们在同一染色体上相对位置的杂交试验称为三点测验,又称三点测交。它是基因定位最常用的方法。三点测验的主要过程是:通过杂交获得三对基因杂种(F1),再使F1与三隐性基因纯合体测交,通过对测交后代(Ft)表现型及其数目的分析,分别计算三个连锁基因之间的交换值,从而确定这三个基因在同一染色体上的顺序和距离。通过一次三点测验可以同时确定三个连锁基因的位置,即相当于进行三次两点测验,而且能在试验中检测到所发生的双交换。此外,三点测验中得到的三个交换值是在相同的遗传背景和环境条件下取得的,因此使估算的交换值更加准确。现在以玉米籽粒的饱满(Sh)与凹陷(sh),非糯性(Wx)与糯性(wx),有色(C)与无色(c)三对性状的杂交为例,说明三点测验的具体步骤。为了方便起见,以“+’代表各显性基因,其对应的隐性基因仍分别以sh,wx和c表示。
三点测验的主要步骤:
(1)通过杂交和测交获得 F1的测交后代(Ft),其过程如下所示:
(2)根据F1确定连锁基因的顺序:
从上述测交后代(Ft)的资料可以看出,在群体中亲型个体①和②数目最多(2708+2538),无疑是两种亲型配子(sh++和+wx c)受精产生的。⑦和⑧两种个体数目最少(4+2),是双交换型配子受精的结果。所谓双交换型配子,是在三个连锁基因所在区域内同时发生二次交换所产生的配子。例如下图所示:
+b+和a+c就是双交换型配子。
根据两个杂交亲本的表现型推测,F1中三个连锁基因的顺序有三种可能:一是 wx在sh和c之间,即: ;二是sh在wx和c之间,即: ;三是c在sh和wx之间,即: 。这三者之中,只有第二种情况才能产生+++和sh wx c。两种双交换型配子,其他两种情况都不可能产生。据此可以确定三个连锁基因在染色体上的次序是sh位于 wx和c之间,即:。
(3)计算交换值,确定基因距离:
首先分别计算wx–sh和sh–c的交换值,确定它们之间的遗传距离。
在杂交亲本产生的亲型配子中,sh与wx之间的连锁状态是sh+和+wx,即相斥相,但是F1产生的③、④、⑦、⑧四种配子中这两个基因是++和sh wx,即相引相,可见它们是上sh–wx之间发生交换形成的重组型配子。因此,sh–wx之间的交换值是:
RF(sh–wx)=(③+④+⑦+⑧)/ 总配子数×100%=(626+601+4+2)/ 6708×100%=18.4%
同理,sh–c之间发生交换的重组型配子是⑤、⑥、⑦、⑧,那么sh–c 的交换值是:
RF(sh–wx)=(⑤+⑥+⑦+⑧)/ 总配子数×100%=(113+116+4+2)/ 6708×100%=3.5%
根据基因在染色体上呈直线排列的原理,
RF(wx–c)=18.4%+3.5%=21.9%
基因之间的距离分别是:wx–sh为18.4cM,sh–c为3.5cM,wx–c为21.9cM。这三个基因的连锁图表示如右图所示。
【解题指导】
例1 在玉米中,AB/ab与AB/ab杂交后代中双隐性类型的数目为全部子代的16%,这两个基因间的遗传图距是多少?
析 进行杂交的雌雄个体因交换率相等,分别产生的雌、雄配子各有四种,它们是AB、ab、aB、Ab。双隐性类型个体(aabb)是由雌配子ab和雄配子ab受精结合成合子而发育来的个体,aabb个体在全部子代中的比例应是雌配子ab和雄配子ab各占雌、雄配子总数比例的乘积。因此,ab雌雄配子的比例均为 =4/10=40/100,由此推出:雌雄四种配子的比例应为AB=40%,ab=40%,aB=10%,Ab=10%,其中aB和Ab为重组型配子,交换率=(10+10)/100×100%=20%,去掉“%”即为遗传图距。故答案应为20。
例2 具有 TtGg(T=高度,G=颜色)基因型的 2个个体交配,其后代只有一种显性性状的概率是多少?
A 9/16 B 7/16 C 6/16 D 3/16
析 根据题意,首先明确一种显性性状是指T-gg和ttG-两种表型。产生 T-gg的概率是3/4T-×1/4gg=3/16T-gg;产生ttG-的概率也是1/4tt×3/4G-=3/16ttG-。而现在提出的问题是后代只有一种显性性状的概率是多少?显然,上述两种表型是两个互斥事件,故此,只有一种显性性状的概率应是两个互斥事件的概率之和,即3/16+3/16=6/16。故答案选C。
Ⅸ 生物遗传题经典大题8大题型是什么
题型很多,有答题共性,首先,无中生有是隐形,然后判断伴性遗传,伴x隐,是母病子必病,女病父必病,x显,父病女必病,子病母必病。最后上下带互相推,推出每个人的基因型。
遗传系谱图的判断,两种遗传病概率的计算,常染色体和性染色体上子代表现型或基因型推亲代基因型或表现型,交配过程中淘汰个体的计算,伴性遗传中的致死效应。
(9)生物基因型题型怎么做扩展阅读:
DNA是使R型细菌产生稳定的遗传变化(即R型细菌转化是S型细菌)的物质,而噬菌体的各种性状也是通过DNA传递给后代的,这两个实验证明了DNA 是遗传物质。
现代科学研究证明,遗传物质除DNA以外还有RNA。因是绝大多数生物(如所有的原核生物、真核生物及部分病毒)的遗传物质是DNA,只有少数生物(如部分病毒等)的遗传物质是RNA,所以说DNA是主要的遗传物质。
Ⅹ 高考生物的遗传图解题有什么解题技巧
同源概念书上有,我不啰嗦。
我讲判断技巧
1 在图形题中,除x,y外,同源一般形态大小相同,注意找(很容易的)。另外,同源必须分别来自父母双方,而不是同一方,所以注意跟姐妹单体因为着丝点分开形成的两条子染色体区分,姐妹单体因为着丝点分开形成的两条子染色体在图形题中会化成同样颜色,而同源会一黑一白。
2 在基因型题中,根据成对基因分别在同源相同位置上的原理,决定某一性状的基因出现几次,就有几条同源(注意不分显隐性,也就是不分大小写字母),同理就可分为几个染色体组。
如基因型ABCD, AaBb,AaaBBb的同源分别是1,2,3条,也就是各自对应1,2,3个染色体组。
至于遗传题解题技巧,仔细去理解下面这段顺口溜:
无中生有为隐形,隐性遗传看女病,父正子正非伴性
有中生无为显形,显性遗传看男病,母正女正非伴性
以此为依据判断是什么遗传后,再根据分离定律分别计算每种遗传概率,再乘起来就行。