‘壹’ 基因文库 从基因文库中提取基因
有了基因文库,获取目的基因可以通过下面三种方法.1.可以通过碱基序列人工合成,2.通过特定的限制性内切酶将目的基因剪切下来,3.可以用mRNA通过逆转录合成目的基因.
为了筛选真核生物的某种基因,常从它的转录产物mRNA经反向转录(见中心法则)合成相应的互补DNA(cDNA),再加入用32P标记的核苷三磷酸,用DNA多聚酶切口移位方法制成有同位素标记的探针。把探针DNA和硝酸纤维滤膜上的菌落或噬菌体分别进行变性处理,然后进行分子杂交。再将X光底片覆盖在经过处理的滤膜上以进行放射自显影。在培养皿上找出和X光底片上的黑点相对应的菌落或噬菌斑。这些菌落或噬菌体中便包含着所需要的基因,经过扩增便能得到大量的细菌或噬菌体,从中可以分离出所需基因的DNA片段。
在构建受体细胞载体时需要用到限制酶,在从基因文库中提取时,需要特定限制酶
‘贰’ 如何提取目的基因
1.从基因文库中获取目的基因(俗称:鸟枪法):将含有某种生物的许多dna片段,导入受体菌
的群体中储存,各个受体菌分别含有这种生物不同的基因,称为基因文库。
当需要某一片段时,根据目的基因的有关信息,如根据基因的核苷酸序列、基因的功能、基因
在染色体上的位置、基因的转录产物mrna,以及基因的表达产物蛋白质等特性来获取目的基
因。
2.化学合成法。已知目的基因的核苷酸序列,可用dna合成仪直接合成。
3.用pcr技术扩增技术提取。已知目的基因引物的序列,将整个dna放入合成仪,因为只有当
引物与模板结合后dna热聚合酶才能行使聚合功能,所以只有引物中间的目的基因被大量扩增,
即被提取出来。
‘叁’ 怎么提取虚拟生物的基因
想要提取虚拟生物的基因,这应该是很难达到的,或者是通过专业的器材才能够获得所以一般人是不能做到的
‘肆’ 微生物基因组提取的方法有哪几种
常见的RNA提取方法有苯酚法、阴离子去污剂法、LiCl一尿素法、改良的Gomez法、异硫氢酸胍法、CTAB法、热硼酸法及改良热硼酸法、TRIZOL试剂快速提取法。
RNA提取时,就变性剂的选择来说,CTAB(CTAB法)比异硫氰酸胍(RIZOL试剂法)和SDS(改良热硼酸法)更有效;就CTAB法来说,由于以CTAB为变性剂,同时加入PVP和β一巯基乙醇共同作用变性蛋白、抑制RNase的活性,使用无水乙醇或异丙醇沉淀杂蛋白和总核酸等,然后再选择性地分离出RNA。
‘伍’ 获取目的基因的方法有哪些(详细)
..刚好学到 基因工程流程的第一步就是获得目的DNA片段,如何获得目的DNA片段就成为基因工程的关键问题。所需目的基因的来源,不外乎是分离自然存在的基因或人工合成基因。常用的方法有PCR法、化学合成法、cDNA法及建立基因文库的方法来筛选 直接获取 1.从基因文库中获取 这个没什么就是现成的基因储存在受体菌上你用的时候提取出来就好了(基因组文库法 就是原教材中的用限制性内切酶直接获取。利用λ噬菌体载体构建基因组文库的一般操作程序如下:① 选用特定限制性内切酶, DNA进行部分酶解,得到DNA限制性片段② 选用适当的限制性内切酶酶解λ噬菌体载体DNA。③ 经适当处理,将基因组DNA限制性片段与λ噬菌体载体进行体外重组。④ 利用体外包装系统将重组体包装成完整的颗粒。⑤ 以重组噬菌体颗粒侵染大肠杆菌,形成大量噬菌斑,从而形成含有整个DNA的重组DNA群体,即文库。)经典解释 2.cDNA文库法(即原教材中提到的逆转录法)。cDNA文库,是指汇集以某生物成熟mRNA为模板逆转录而成的cDNA序列的重组DNA群体。虽然可用基因组文库法来获取真核生物的目的基因,但是由于高等真核生物基因组DNA文库比其cDNA文库大得多,相关工作量同样大得多。更为重要的是,在真核生物基因组中合有大量的间隔序列或内含子,但在大肠杆菌等原核生物中没有类似序列的存在,所以大肠杆菌不能从真核生物基因的初级转录本中去除间隔序列,即不能表达真核生物DNA。而在真核生物成熟mRNA中已不存在间隔序列(已在拼接过程中被去除),所以可以以真核生物成熟mRNA为模板,逆转录而成的cDNA可被大肠杆菌表达。因此,在基因工程中,cDNA文库法是从真核生物细胞中分离目的基因的常用方法。 3.直接分离基因最常用的方法是“鸟枪法”,又叫“散弹射击法”。这种方法有如用猎枪发射的散弹打鸟,无论哪一颗弹粒击中目标,都能把鸟打下来。鸟枪法的具体做法是:用限制酶(即限制性内切酶)将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞所提供的DNA(外源DNA)的所有片段分别在受体细胞中大量复制(在遗传学中叫做扩增),从中找出含有目的基因的细胞,再用一定的方法吧带有目的基因的DNA片段分离出来。如许多抗虫,抗病毒的基因都可以用上述方法获得。 用“鸟枪法”获取目的基因的优点是操作简便,缺点是工作量大,具有一定的盲目性。 人工合成 1.(主要是序列已知的基因)。主要是通过DNA自动合成仪,通过固相亚磷酸酰胺法合成,具体过程可以网上查询,反正是可以按照已知序列将核苷酸一个一个连接上去成为核苷酸序列,一般适于分子较小而不易获得的基因。对于大的基因一般是先用化学合成法合成引物,再利用引物获得目的基因。 2.聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术。它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究 的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断;可从一根毛发、一滴血、甚至一个细胞中扩增出足量的DNA供分析研 究和检测鉴定。过去几天几星期才能做到的事情,用PCR几小时便可完成。PCR技术是生物医学领域中的一项革命性创举和里程碑 他只是给目的基因的扩增 好累~....
‘陆’ DNA怎么提取
就那植物来说吧!原理是一致的。方法不同。
1植物组织提取基因组DNA
一、材料
幼嫩叶子。
二、设备
移液器,冷冻高速离心机,台式高速离心机,水浴锅,陶瓷研钵,50ml离心管(有盖)及5ml和1.5ml离心管,弯成钩状的小玻棒。
三、试剂
1、提取缓冲液Ⅰ:100mmol/L
Tris·Cl,
pH8.0,
20mmol/L
EDTA,
500mmol/L
NaCl,
1.5%
SDS。
2、提取缓冲液Ⅱ:18.6g葡萄糖,6.9g二乙基二硫代碳酸钠,6.0gPVP,240ul巯基乙醇,加水至300ml。
3、80:4:16/氯仿:戊醇:乙醇
4、
RnaseA母液
5、其它试剂:液氮、异丙醇、TE缓冲液,无水乙醇、70%乙醇、3mol/L
NaAc。
四、操作步骤:
1.
在50ml离心管中加入20ml提取缓冲液Ⅰ,
60℃水浴预热。
2.
幼苗或叶子5-10g,
剪碎,
在研钵中加液氮磨成粉状后立即倒入预热的离心管中,
剧烈摇动混匀,
60℃水浴保温30-60分钟(时间长,DNA产量高),
不时摇动。
3.
加入20ml氯仿/戊醇/乙醇溶液,
颠倒混匀(需带手套,
防止损伤皮肤),室温下静置5-10分钟,
使水相和有机相分层(必要时可重新混匀)。
4.
室温下5000rpm离心5分钟。
5.
仔细移取上清液至另一50ml离心管,加入1倍体积异丙醇,混匀,室温放置片刻即出现絮状DNA沉淀。
6.
在1.5ml
eppendorf中加入1ml
TE。用钩状玻璃棒捞出DNA絮团,在干净吸水纸上吸干,转入含TE的离心管中,DNA很快溶解于TE。
7.
如DNA不形成絮状沉淀,则可用5000rpm离心5分钟,
再将沉淀移入TE管中。这样收集的沉淀,往往难溶解于TE,可在60℃水浴放置15分钟以上,以帮助溶解。
8.
将DNA溶液3000rpm离心5分钟,
上清液倒入干净的5ml离心管。
9.
加入5μl
RNaseA(10μg/μl),
37℃
10分钟,
除去RNA(RNA对DNA的操作、分析一般无影响,可省略该步骤)。
10.
加入1/10体积的3mol/L
NaAc及2×体积的冰乙醇,混匀,-20℃放置20分钟左右,DNA形成絮状沉淀。
11.
用玻棒捞出DNA沉淀,70%乙醇漂洗,再在干净吸水纸上吸干。
12.
将DNA重溶解于1ml
TE,
-20贮存。
13.
取2μl
DNA样品在0.7%
Agarose胶上电泳,
检测DNA的分子大小。同时取15μl稀释20倍,
测定OD260/OD280,
检测DNA含量及质量。
[注意]
5g样品可保证获得500μg
DNA,
足供RFLP、PCR等分析之用。
‘柒’ 从生物体克隆目的基因的方法有哪些
1.PCR扩增克隆法
PCR扩增克隆法是在已知植物基因序列的基础上,进行基因序列克隆的一种方法。先从基因文库(genebank)中找到有关基因序列,据此合成一对寡聚核苷酸引物,从植物中提取染色体DNA或RNA,进行PCR扩增。扩增的片段纯化后插入合适的质粒载体上,用酶切分析和序列分析检测重组子,并与已知基因序列比较,以获得目的基因。
2.功能克隆法
功能克隆(functionalcloning)是根据性状的基本生化特征,在鉴定已知基因功能后进行克隆。该法在纯化相应的编码蛋白质后,构建cDNA文库或基因组文库。然后从文库中用下述两种方法进行基因筛选,其一是将纯化的蛋白质进行氨基酸测序,据此合成寡核苷酸探针,从cDNA文库或基因组文库中筛选编码基因;其二是将编码蛋白质制成相应抗体探针,从cDNA载体表达文库中筛选相应克隆。实行功能克隆的关键步骤是分离出高纯度蛋白质。对于产物不明的基因,不能利用这一方法进行克隆。
3.定位(图位)克隆法
定位(图位)克隆法(positionalcloning)根据目的基因在染色体上的位置,进而通过染色体步移(chromosomewalking)进行克隆。需预先建立具有目的基因的适宜遗传分离群体(近等基因系或分离群体),将目的基因精确定位在染色体特定的位置之后,用目的基因两侧紧密连锁的分子标记(RFLP标记)为探针,筛选基因组文库,得到阳性克隆,然后以阳性克隆的末端作为探针,获得含有目标基因的大片段克隆,然后以这些新的DNA为探针,获得更趋近目的基因的DNA片段,不断缩小筛选区域,逐步向目的基因靠近,最终克隆到该基因。
4.转座子标记法
转座子(transposon)是可从一个基因位置转移到另一位置的DNA片段,而原来位置的DNA片段(转座子)并未消失,发生转移的只是转座子的拷贝。基因转座可引起插入突变,使插入位置的基因失活,并诱导产生突变型。通过标记基因就可以检测出突变基因的位置,进而克隆该突变基因。这样将转座子作为基因定位的标记,并通过转座子在染色体上的插入和嵌合来克隆基因称为转座子标记法(transposontagging)。para>5.减法杂交法
该法根据植物表现型差异或基因在不同组织或器官的表达差异来克隆植物基因。特异性表达的基因,其mRNA表现不同。分别从表达特异性基因的植物组织和无特异性基因的组织中提取mRNA,反转录为cDNA,两者杂交。在两种组织中都表达的基因产物形成杂交分子,而特异mRNA转录的cDNA仍保持单链状态,将这种单链cDNA分离出来即为差异表达的基因,这一策略被称作减法杂。
6.mRNA差异显示法
该法可有效鉴别并克隆差异表达的基因。提取不同的mRNA后可用共同的引物反转录成cDNA,进行PCR扩增,获得差异表达的cDNA序列,作为探针,在cDNA文库或基因组文库中筛选基因,并作功能分析。该法可直观筛选差异表达的基因,比减法杂交操作方便、迅速,需要总RNA量少,效率高,短期内可完成cDNA的扩增、鉴定和克隆。