1. 常见的农药助剂主要有哪些
农药助剂按来源大体可分为:①无机矿物类;②生物来源的天然物质;③有机合成化合物,其中又可分为表面活性物质和非表面活性物质两类。农药助剂的发展日趋精细化。中国已建立一定规模的农药助剂工业。
常用助剂有以下几类:
填料和载体 在剂型加工中用于稀释原药的惰性固体填充物称为填料;能吸附或承载有效成分的填料称为载体。填料不仅起稀释作用,而且还能改善物理性能,有利于原药的粉碎和分散。填料的理化性质与制剂的稳定性有关,应选择使用。粉剂加工多采用中性无机矿物如陶土、高岭土(见粘土)、硅藻土、滑石粉等。浸渍法颗粒剂采用吸油性强的活性白土、膨润土(见粘土)等。包衣法颗粒剂采用非吸油性的粒状硅砂为载体。
乳化剂 一类表面活性剂,能使一种流体以极微小的液珠稳定地分散在另一种与之互不相溶的液体(例如油在水中)中,形成乳浊液。常用的有聚氧乙烯基的酯及醚等非离子表面活性剂和烷基苯磺酸盐等阴离子表面活性剂。一般采用非离子型和阴离子型复合配制的乳化剂,其比例调节到最适宜的亲水亲油平衡值(HLB值),以得到最佳乳化效果。
分散剂 一类表面活性剂,其功能是保持粉粒分散,防止凝聚结团。常用的有烷基芳基磺酸盐及其甲醛缩合物、木质素磺酸盐、烷基酚聚氧乙烯基醚甲醛缩合物、硫酸盐等。
湿润剂 一类表面活性剂,其功能是降低药液的表面张力,使药粒迅速湿润,并使药液容易在施用目标的表面湿润和展布,帮助药剂渗透。常用的有含皂素的皂角粉、茶子饼粉和含木质素的亚硫酸纸浆废液,以及合成的表面活性剂如聚氧乙烯基烷基芳基醚、聚氧乙烯基烷基醚、烷基苯磺酸盐、烷基萘磺酸盐等。
展着剂 一类表面活性剂,其功能为增强药剂在施用目标表面的固着能力,抵抗风雨吹洗,使药效充分发挥,兼有湿展、渗透能力。常用的有非离子或阴离子表面活性剂、木质素磺酸盐、奶酪素等。在某些情况下药液中添加一些矿物油或植物油也可起展着作用。
溶剂 指农药工业生产和应用技术中使用的溶剂、液体稀释剂和/或载体的总称。如苯类、柴油、甲醇、石油醚等。
粘着剂 能增加农药对固体表面粘着性能的助剂。能增加农药对固体表面粘着性能的助剂。可提高耐雨水的冲洗,提高持效性。如矿物油、明胶、聚乙烯醇等。
稳定剂 指具有延缓和阻止农药极其加工制品的化学和物理性能自发劣化趋势的各类助剂总称。稳定剂有两方面的功能:一是保持和增强产品物理和物理化学性能的助剂,包括防结晶、抗絮凝、沉降、抗结快及悬浮助剂等,称物理稳定剂;二是化学稳定剂,包括防分解、抗氧化、防紫外线辐照剂等,它们主要是保持和增强产品化学性能,特别是防止和减缓有效成分的分解。如1,2-丁二醇、异丙基磷酸酯、wgwin D902(用于抑制甲维盐和阿维菌素的分解)等。
增效剂 本身没有生物活性,与某些农药混用时,能显着提高农药毒力和药效的助剂。广泛应用于杀虫剂、杀菌剂、除草剂、叶面肥、植物生长调节剂、微量元素和生物农药等农用化学品的喷雾混合液中,特别适合内吸型药剂。以中联化工荣誉原药胺鲜酯(DA-6)为例证: 一般情况下:杀虫剂:每5克可配药液5~20公斤;杀菌剂:每5克可配药液10~35公斤;除草剂:每5克可配药液3.5~20公斤;可防治和缓解药害;植物生长调节剂:每5克可配药液10~20公斤;叶面肥肥料与微量元素:每5克可配药液5~35公斤。
喷雾助剂 指喷雾施药时应用的助剂总称。应用喷雾助剂的原因是因为现今施药技术,特别是喷雾施药技术中,普遍存在农药有效利用率低的问题。有人对杀虫剂在田间喷施后药剂的分布作典型调查后指出,真正达到害虫体的药量不到施药量的1%,即99%以上的农药不仅没有发挥作用,而是变成污染源,引起人们越来越强烈的关注。如今,在美、日、西欧各国,喷雾助剂已成为助剂领域非常活跃的领域。在美国喷施除草剂时几乎总要用助剂,高效和超高效除草剂都有这种情形。
助剂类型
①有助于农药有效成分的分散。包括分散剂、乳化剂、溶剂、载体、填料等。②有助于发挥药效或延长药效。包括稳定剂、控制释放助剂、增效剂等。③有助于防治对象接触或吸收农药有效成分。包括湿润剂、渗透剂、粘着剂等。④增加安全性及使用方便。包括防漂移剂、安全剂、解毒剂、消泡剂、警戒色等。
2. 表面活性剂的种类有哪些
表面活性剂的种类有:
1、阴离子表面活性剂
此类活性剂多见的有直链烷基苯磺酸钠和α-烯基磺酸钠。直链烷基苯磺酸钠别号LAS或ABS,为白色或淡黄色粉状或片状固体,可溶于水,虽然在较低温度下水溶性较差,常温下在水中的溶解度是3以下,但在复配表面活性剂体系中溶解性极好。
2、高档脂肪醇硫酸酯类
乳化性很强,且较安稳,较耐酸和钙、镁盐。在药剂学上可与一些高分子阳离子药物发生堆积,对粘膜有一定影响性,用作外用软膏的乳化剂,也用于片剂等固体制剂的湿润或增溶。当乳液膏霜被涂到肌肤上时,这些胶束就会决裂(破乳),并释放出包裹在内的油脂颗粒,这些油脂颗粒会在肌肤外表构成一层薄薄的油脂膜来维护肌肤里的水分免于丢失,当然其间的活性成分也会被肌肤吸收。
3、磺酸化物
合成洗涤剂是表面活性剂花费大的商场之一,商品包含洗衣粉、液体洗涤剂、餐具洗涤剂和各种家庭用清洗商品及自个维护用品如:洗发香波、护发素、发乳、发胶脂、润肤乳液、爽肤液和洗面奶等。工业用表面活性剂是民用表面活性剂以外用于各工业范畴的表面活性剂总和,其运用范畴包含纺织工业,金属工业,涂料、油漆、颜料工业,食品工业,造纸工业,塑料树脂工业,皮革工业,石油发掘,建材工业,采矿业,能源工业等。以下就几个方面进行叙说。
4、非离子表面活性剂
在水中的溶度是因为分子中具有强亲水性的官能团,非离子表面活性剂在数量上仅次于阴离子表面活性剂,是一类很多运用的首要种类,跟着石油工业的开展,所用质料环氧乙烷本钱的不断降低,它的产值还会不断提高。
(2)生物质聚氧烷基醚是什么扩展阅读
表面活性剂的分类
1、阴离子表面活性剂:硬脂酸,十二烷基苯磺酸钠
2、阳离子表面活性剂:季铵化物
3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型
4、非离子表面活性剂:烷基葡糖苷(APG),脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温)
3. 非离子表面活性剂的产品分类
非离子表面活性剂按亲水基团分类,有聚氧乙烯型和多元醇型两类。 这种类型的表面活性剂又称聚乙二醇型,是环氧乙烷与含有活泼氢的化合物进行加成反应的产物;
⑴烷基酚聚氧乙烯醚
烷基酚聚氧乙烯醚(APEO) 主要产品包括辛基酚聚氧乙烯醚, 和壬基酚聚氧乙烯醚。作为洗涤剂,分子中加成的环氧乙烷数n=9~12。由于亲水基是由羟基和醚键构成的,而且只在分子的端基存在一个羟基,亲水性很小,要使分子有足够的亲水性,必须增加环氧乙烷加成的分子数n,即含的醚键越多,亲水性越好。因此可通过结合不同的环氧乙烷分子数目来调节亲水性。一般得到的环氧乙烷加成产物都是具有不同分子数(n)的混合物,通常n是一个平均值。
壬基酚聚氧乙烯醚向加成环氧乙烷分字产物的HLB值,HLB值越大亲水性越好。
对于聚乙二醇型非离子表面活性剂,一个突出的性质表现为具有浊点,这是由它的结构特点所决定的。在无水状态下,聚乙二醇型非离子表面活性剂中的聚氧乙烯链呈锯齿形状态,溶于水后醚键上的氧原子与水中的氢原子形成微弱的氢键,分子链呈曲折状,亲水性的氧原子位于链的外侧,而次乙基 (—CH2CH2—)位于链的内侧,因而链周围恰似一个亲水的整体。
形成氢键的反应是放热的,而且这种氢键结合力较弱,所以聚氧乙烯型非离子表面活性剂水溶液在温度升高时,由于结合的氢键被破坏,使其亲水性减弱,因而由原来的透明溶液变成白色混浊的乳浊液。而这种变化是可逆的,当温度降低时溶液又恢复透明。将聚氧乙烯型非离子表面活性剂的透明水溶液缓慢加热时,溶液开始呈现白·色混浊的温度称为它的“浊点”。浊点反映非离子表面活性剂亲水性大小,亲水性越大的,浊点也越高。为保证非离子表面活性剂处于良好的溶解状态,一般应控制在其浊点以下使用,HLB值以及使用性能都与非离子表面活性剂分子中加成的环氧乙烷分子数(n)有一定关系。例如壬基酚与n=9的环氧乙烷反应加成物,当其质量分数为0.2%~10%时的浊点为53℃,HLB值为12,这种产物的渗透力和去污力都很好,乳化力也相当强,因此用途广泛,是洗涤剂的争主要成分;而当环氧乙烷的加成数达到12扩时,HLB值上升到14,浊点上升到70℃,这种产品虽然去污力有所提高,但渗透力稍差;当加成的环氧乙烷n>15时,浊点超过i00℃,渗透力和去污力都很差,只能做特殊用途的乳化分散剂。因此要根据实际需要控制环氧乙烷的加成数。
水合后(与水松弛结合)成为曲折型聚氧乙烯链的非离子表面活性剂(水溶液中状态)
当加入无机盐或阴离子表面活性剂与 非离子表面活性剂复配时,对它的浊点会有影响。由于无机盐的存在不利于非离子表面活性剂中聚氧乙烯链与水之间氢键形成而造成脱水现象,所以会降低非离子表面活性剂在水中溶解度和浊点i而加入阴离子表面活性剂与之复配时,由于协同作用会使非离子表面活性剂浊点上升,扩大了它的使用温度范围。这些在实际应用中都应注意。
浊点的测定方法,称取试样1g,溶解后配成1%水溶液,倒人大试管内(直径26mm,高200mm),使管内液面高为SOmm,然后将大试管在甘油浴中缓缓升温,仔细观察透明度的变化,边加热边用搅拌器上下搅动,当试液变成混浊时,此时管内温度计读数,即为浊点。然后将大试管取出降温,并记下恢复透明时的温度,以资比较。浊点高于100℃的在封闭管内测定,对于很低的浊点,可置于丁基二乙二醇或乙醇液内进行。对于特别低的浊点产品,可测定其浊点滴定值,即将1g表面活性剂溶液约在10mL丙醇内,在(30土1)℃缓缓滴加蒸馏水至出现混浊为止。
工业上使用的烷基酚聚氧乙烯醚商品主要有OP系列和TX系列产品。如OP—10分子结构为 是一种纺织业常用的扩散、匀染、乳化润湿剂。TX—10的分子结构为 属于辛基酚聚氧乙烯醚中的一种。TX后面的数字随环氧乙,烷加成数而改变。由于合成这类化合物时环氧乙烷加成数是可以根据工艺条件调节的。随着分子中环氧乙烷加成数的增加,表面活性剂从亲油向亲水逐渐变化,随着HLB值的变化,可做成乳化剂、润湿剂、洗涤剂、增溶剂等多种不同用途的品种。烷基碳链含8~12个碳原子的烷基酚加成九个环氧乙烷分子得到的产物的洗涤性能良好是常用的洗涤剂产品。
⑵高碳脂肪醇聚氧乙烯醚
高碳脂肪醇聚氧乙烯醚(AEO) 上面介绍的烷基酚聚氧乙烯醚是一种用途广泛的非离子表面活性图7—13 浊点的测定剂,但由于它的生物降解性差,已有减少使用的趋势,而主要改用生物降解性能好的碳脂肪醇聚氧乙烯醚。
高碳脂肪醇聚氧乙烯醚的水溶性受醇结构中碳原子数和加成的环氧乙烷分子数的影响很大。通常使用的脂肪醇含碳原子数在12一18之间,如果饱和十元醇的碳原子数比加成的环氧乙烷分子数多三个的话,一般在常温下都是可溶于水的,例如月桂醇(十二碳醇)加成9个增环氧乙烷分子的产物,鲸蜡醇(十六碳醇)加成13个环氧乙烷分子的产物都是常温下水溶性很好的,但鲸蜡醇加成11个环氧乙烷分子的产物水溶性较差,要加热到较高温度才能有较好的洗净能力。
而含有碳数为18的高碳不饱和醇,十八碳—9—烯醇(油醇)受不饱和基团的影响,加成12个环氧乙烷的产物水溶性很好,并有较好的洗净能力而它的15~20个环氧乙烷加成物、去污力和渗透力虽较差,但却适合作乳化剂、分散剂以及和碱合用的洗涤剂。
由于高碳脂肪醇聚氧乙烯醚在低于它浊点的温度下有良好的洗涤去污能力,所以甩它配I制的洗涤剂能满足低温低泡耐硬水的要求。
AEO产品的最大特点是化学稳定性好在热稀碱、酸及氧化剂中均稳定。工业上使用的这类产品商品名为平平加O(C18H35O (CH2CH2O)15H)、匀染剂O(C12H250 (CH2CH20)22H)渗透剂JFC(C7~9H15~19O (CH2CH20)5H)等。以脂肪醇烷基链链含12~14个碳原子加成10个左右环氧乙烷的产物洗涤去污能力最好,是常用的洗涤剂成分。
⑶脂肪酸聚氧乙烯酯
脂肪酸聚氧乙烯酯(AE) 脂肪酸在催化剂的作用下可以与环氧乙烷加成,形成亲I水基与疏水基由酯键连接的聚氧乙烯型非离子表面活性剂。但与上述两类以醚键结合的非离子表面活性剂不同,由于醚键易于水解,所以这类化合物在强碱溶液中使用时会水解变成肥皂。这类化合物与高级醇或烷基酚的环氧乙烷加成物相比,一般渗透力、去污力都差些,因此不适合做洗涤剂,主要做乳化剂、分散剂、,染色助剂等。工业上使用的这类化合物如柔软剂。
⑷脂肪酸甲酯乙氧基化物
脂肪酸甲酯乙氧基化物(FMEE),由脂肪酸甲酯在催化剂作用下,与环氧乙烷加成,与脂肪酸的聚氧乙烯醚相比,酯基更加稳定,特别是在耐酸耐碱性能上有较大提高。
FMEE的原料为脂肪酸甲酯,脂肪酸甲酯本身为一类消泡剂,乙氧基化后的脂肪酸甲酯仍然具有低泡沫的特点。FMEE主要作为一种高效的净洗剂,具有低泡沫、高浊点、净洗性能优异,特别是具有出色的分散性能,良好的分散性在工业生产中非常重要,在工作液浴比越来越小的发展趋势下,能够有效防止工作液中的污垢聚集成团,甚至反沾污设备或加工的物料 。
商品化的FMEE为7mol的EO加成数,属于亲水性表面活性剂,FMEE无法获得低于7mol的EO加成数产品如FMEE的3EO、5EO等产品,限制了FMEE作为亲油性表面活性剂在乳化领域的应用。
⑸聚丙二醇的环氧乙烷加成物
聚丙二醇的环氧乙烷加成物(聚醚型非离子表面活性剂)、这是由环氧丙烷通过加成聚合反应生成聚丙二醇,它是相对分子质量为1000—2500的化合物,由于分子中甲基的空间障碍,它的水溶性很小而适合作表面活性剂的亲油基原料。当聚丙二醇与环氧乙烷加成或与环氧乙烷和环氧丙烷共聚时形成聚氧乙烯、聚氧丙烯相嵌的共聚物高分子表面活性剂,这类产品称为聚醚型非离子表面活性剂,通式为RO(C3H60)m(C2H4O)nH。
此表面活性剂的亲油性(疏水性)和亲水性的大小可通过调节聚氧乙烯和聚氧丙烯的比例加以控制。不同比例和不同聚合方式得到各种不同性能的表面活性剂。聚醚型非离子表面活性剂在很低浓度时就有降低界面张力的能力可以做W/O型及O/W型乳状液的乳化剂,对硬水中钙皂有分散作用并有良好的增溶作用,有的可做消泡剂、抑泡剂。
聚醚型非离子表面活性剂具有无臭、无毒、无刺激性的特点,对化学试剂有良好的稳定性是一种新型的非离子表面活性剂。
(6)聚氧乙烯化的离子型表面活性剂
聚氧乙烯化的离子型表面活性剂 脂肪醇聚氧乙烯醚或烷基酚聚氧乙烯醚分子端基上的羟基可与硫酸或磷酸发生酯化反应,因此可以制成醇醚硫酸盐或醇醚磷酸盐等非离子—阴离子混合表面活性剂;
醇醚硫酸盐(AES)比硫酸酯盐型阴离子表面活性剂(AS)在常温下有更好的水溶性,也不像脂肪醇聚氧乙烯醚(AE)存在浊点在高温下会从水中析出,所以是一种在水中有着很好溶解性,对钙皂有较好分散能力,有较好起泡能力、抗硬水、抗无机盐能力的优良表面活性剂。
醇醚磷酸盐的洗净去污能力比磷酸酯盐阴离子表面活性剂有明显提高并具有净洗能力高、低泡、耐碱、耐硬水和电解质以及耐高温等特性。把脂肪醇聚氧乙烯醚磺化并中和则可得到醇醚磺酸盐型非离子—阴离子混合表面活性剂,
SO2Cl2 Na2SO3
R(OCH2CH2)nOH————>R(0CH2CH2)nC1————>R(OCH2CH2)nSO3Na
80~86℃ 155℃,1MPa
产品对酸、碱、无机盐的稳定性都很好。
用高级脂肪胺的环氧乙烷加成物季铵化可以得到非离子—阳离子的混合型表面活性剂,其结构如 ,这种产物具有阳离子和非离子表面活性剂的特点,可作抗静电剂、乳化剂、分散剂等。 多元醇型非离子表面活性剂是乙二醇、甘油季戊四醇、失水山梨醇和蔗糖等含有多个羟基的有机物与高级脂肪酸形成的酯。其分子中的亲水基是羟基,由于羟基亲水性弱所以多做乳化剂使用。这类产物来源于天然产品,具有易生物降解、低毒性的特点,因此多用于禽磁涸医药等部门,其中应用较多的是失水山梨醇酯。
⑴失水山梨醇酯
失水山梨醇酯 山梨醇是由葡萄糖加氢制得的多元醇,分子中有六个羟基。山梨醇在适当条件下可脱水生成失水山梨醇和二失水山梨醇。
失水山梨醇分子中剩余的羟基与高级脂肪酸发生酯化反应得到失水山梨醇酯是多元醇表面活性剂。产物实际上是单酯,双酯和三酯的混合物;脂肪酸可采用月桂酸,棕榈酸,脂肪酸和油酸,其相应单酯的商品代号分别叫Span(司盘)-20、40、60、80。
若把司盘类多元醇表面活性剂再用环氧乙烷作用就得到相应的吐温(Tween)类非表面活性剂。由于聚氧乙烯链的引入可以提高其水溶性,如由一个Span—60分子和20个环氧乙烷劳划子加成得到的Tween—60。
Span和Tween系列非离子表面活性剂都是工业生产中常用的乳化剂。表7—工2列有司盘划
和吐温乳化剂的商品名称、化学组成和HLB值。
⑵蔗糖酯
蔗糖酯蔗糖酯是蔗糖脂肪酸酯的简称。蔗糖(C12H22011)是一个葡萄糖分子与一个果糖分子缩合的产物,分子中有多个自由羟基,因此有良好的水溶性,能与高级脂肪酸发生酯化反应:
K2CO3
RCOOCH3+C12H22011=========RCOOC12H21O10+CH3OH
减压,90~100℃
(脂肪酸甲酯) (蔗糖) (蔗糖脂肪酸单酯)
由于蔗糖酯有易于生物降解,可为人体吸收,对人体无害,不刺激皮肤的特点,因此大量用于食品和化妆晶中作乳化剂等添加剂,也,可用作低泡沫洗涤剂成分。
3. 烷基醇酰胺型
烷基醇酰胺是脂肪酸与乙醇胺的缩合产物。脂肪酸通常为椰子油酸、脂肪酸或月桂酸,乙醇胺为单乙醇胺或二乙醇胺。
乙醇胺是二、三乙醇胺的通称,当氨与环氧乙烷反应时,氨分子中的三个活泼氢会被羟乙基取代而形成单乙醇胺、二乙醇胺和三乙醇胺:
其中比较重要的是月桂酸、椰子油酸、油酸和硬脂酸与-a,醇胺反应的产物。有脂肪酸与二乙醇胺分子比为I:1及1:2的两种产物,当lmol脂肪酸与2mol二乙醇胺反应时得到一种水溶性烷基醇酰胺产物,商品名为尼纳尔(Ninol),6501,2:1型烷醇酰胺。 非离子氟碳表面活性剂在水溶液中不电离,其极性基通常由一定数量的含氧醚键和/或羟基构成。含氧醚键通常为聚氧乙烯基(polyoxyethylene)链或聚氧乙烯基片段或聚氧丙烯基(polyox—propylene)片段组成。这些极性基的长度是可以调节的,极性基长度的改变可改变非离子氟碳表面活性剂的亲水亲油平衡(Hy-drophile Lipophile Balance,即HLB)值,而非离子氟碳表面活性剂的HLB值对其所在体系的界面性质及乳液的稳定性有很大的影响。在本质上聚氧乙烯基或聚氧丙烯基的长短直接影响了分子中“过渡段”的长短,因此影响了氟碳表面活性剂的表面活性行为,这将在氟碳表面活性剂结构特点章节中详细讨论。所以使用非离子氟碳表面活性剂可以选择其极性基的长度以达到满意的应用效果。由于非离子氟碳表面活性剂在水溶液中不是离子状态,所以稳定性高,不易受到电解质及某些无机盐类存在的影响,pH值的变化对非离子氟碳表面活性剂也无明显影响。非离子氟碳表面活性剂易溶于水溶液,既可溶解于酸性介质也可溶解于碱性介质,比之于离子表面活性剂更易溶于有机溶剂,与离子表面活性剂及两性表面活性剂有良好的相溶性。非离子氟碳表面活性剂不含带电荷的表面活性离子,这使其不易优先在带负电荷的表面吸附。当然,对这一性质也不能笼统说其利弊,取决于应用的条件。
在说明非离子氟碳表面活性剂因其不存在离子状态而稳定的同时,还必须指出,这一类氟碳表面活性剂的极性基部分都是普通的碳氢化合物结构,且往往有相当的长度,所以与羧酸盐或磺酸盐极性基相比,其化学稳定性要差一些,因而限制了非离子氟碳表面活性剂在强氧化介质中的使用。
4. 聚氧乙烯烷基醇醚
-[-CH2CH2O-]n-H 聚氧乙烯烷基醇, n表示聚合度
R 表示烷基, O 表示氧 ,C是碳,H是氢。
氧的双键分别连着个碳的基团就属于醚类。所以全称是聚氧乙烯烷基醇醚。至于有些地方输入的不一样是因为写的形式不太一样,有可能写的是结构式
5. 聚氯乙烯烷基醚是什么
洗衣粉—洗衣粉中四聚丙烯烷基苯磺酸盐和烷基酚聚氯乙烯醚 聚氯乙烯烷基醚就是洗衣粉的化合物 脂肪醇聚氧乙烯醚是离子表面活性剂! 具有的良好的去污力、抗硬水性、较低的刺激性!
采用洗涤剂代替汽油、酒精、四氧化碳、三氯乙稀等清洗电机,可以降低成本,且无毒安全。所用洗涤应是中性,无损于绝缘,一般市售洗涤剂大部分是阳离子型,易吸潮,潮解后为电解质,不易清除。在清洗电机时会有残余的清洗剂留在电机绝缘缝隙或毛细孔中,对绝缘层会有腐蚀作用。105洗涤剂、781洗涤剂,均是由各种类型的非离子表面活性剂配制成,主要有脂肪醇聚氯乙稀、烷基苯酚氯乙稀醚。烷基醇酰胺及三乙油酸皂等。
柠檬香精的化学性质不太清楚,但是柠檬酸的化学性质是水溶液呈酸性。 加热可以分解成多种产物,与酸、碱、甘油等发生反应。我想可能会有一点联系吧!!
只查到这些我尽力了!!你看一下怎样
6. 请问,石材清洗剂配方哪里有
(1)中国专利(CN1055198)它是一种大理石表面清洗剂。由柠檬酸钠、三乙醇胺、油酸、白油、甲基硅油、水等混合而成,据称可以清洗无机和有机污垢,节约水,具有一定上光功能,成本较低等。
(2)中国专利(CN1064886),石材表面污垢、油泥、锈斑等的去污膏。由三聚磷酸钠、方解石粉硫酸、硅酸钠、羟甲基纤维素钠、液体石蜡、液体烧碱和离子水组成。据称能清洗花岗石纪念碑、建筑物及有关制品的风蚀物、有机微生物及污斑。
(3)美国专利(US4897213)花岗石清洗剂,配方为:NF4F吨F、乙醇或改性乙醇等的混合溶液。据称它能清洗花岗石纪念碑、花岗石建筑物及花岗石制品的风蚀物、有机微生物及污斑。
(4)日本专利(JP9031493A),石材、混凝土、砖等的去污剂。其配方为磷酸、盐酸、甲酸、二乙醇脂肪酰胺、聚氧烷基醚、氯化铵等或硫酸铵;据称它能清洗混凝土、石材,研钵、砖上的污垢。
(5)日本专利(JP 6322398A),石材料等硬质表面的油污去除剂,其配方为多种两性表面活性剂,脂肪酸盐,金属离子絮凝剂和溶剂等,据作者称它能去除粘附在石材材料等硬质表面的油污。
(6)世界专利(WO9722679A),适合于高光泽度的大理石表面清洗,其配方中至少有一种阴离子表面活性剂,调配成中性溶液,还要有一种二价阳离子,以开成浸透型去污混合物。据称具有去污保光泽功能。
(7)美国专利(US5780111)大理石表面清洗磨光剂,其配方为ZnS04、磨料、增稠剂、渗透剂、氟硅酸盐等,可以与大理石表面发生化学反应,据称它能对大理石进行清洗并恢复光泽,可以提高其耐久性、抗磨性和防裂防污性能。
(8)专利(JO3182-596A)石质地面清洗剂,其配方为:阴离子表面活性剂(烷基苯磺酸盐等)、非离子表面活性剂(聚氧乙烯磺酸醚等)、羟基烷基纤维素(羟甲基纤维素等)、一般醇类物质(异丙醇、酒精等),调节PH值为9-12。据称具有高度的去污力,清洗后的表面光泽度好。
(9)美国专利(US 4613378),大理石等硬质表面的清洗处理方法。将纤维素三纳、磷酸盐等先在沸水中溶解然后再添加滑石、蔗糖进行混合制成糊状物。处理时先把这些糊状物用刷子直接涂在要清洗的表面上,或者先用布覆盖需清洗的表面然后把混合物喷洒在布的表面,然后用塑料薄膜覆盖并让它凝固,最后用水或水蒸气漂洗。据称该法可以去除顽垢。
(10)中国专利(CN 1071452),硬质表面油污清洗剂,其组成为表面活性剂与吸附性的矿物粉(硅藻土、膨润土、次膨润土、漂白土、沸石或膨胀珍珠岩粉等),用于硬质表面油污的清洗,据称这种方法对油污有较好的效果。
7. 高一生物几个问题
1.是 维生素(vitamin)又名维他命,是维持人体生命活动必需的一类有机物质,也是保持人体健康的重要活性物质。维生素在体内的含量很少,但在人体生长、代谢、发育过程中却发挥着重要的作用。各种维生素的化学结构以及性质虽然不同,但它们却有着以下共同点:①维生素均以维生素原(维生素前体)的形式存在于食物中;②维生素不是构成机体组织和细胞的组成成分,它也不会产生能量,它的作用主要是参与机体代谢的调节;③大多数的维生素,机体不能合成或合成量不足,不能满足机体的需要,必须经常通过食物中获得;④人体对维生素的需要量很小,日需要量常以毫克(mg)或微克(ug)计算,但一旦缺乏就会引发相应的维生素缺乏症,对人体健康造成损害。
2、多糖类由较多的葡萄糖分子组成,其中有的可被人体消化吸收,有的则不能,因此又将它分为二类:(1)能被消化吸收的多糖,如淀粉,糊精,糖原以及海藻多糖等。(2)不能消化吸收的多糖,如纤维素,一般也称它为粗纤维;半纤维素,常常与纤维素在一起;木质素,是植物木质化的物质;果胶,它存在于水果的组织中。
3、脂质(Lipids)又称脂类,是脂肪及类脂的总称.这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂。并能为机体利用的重要有机化合物。脂质包括的范围广泛,其分类方法亦有多种。通常根据脂质的主要组成成分分为:简单脂质、复合脂质、衍生脂质、不皂化脂类。
一、简单脂质
简单脂质是脂肪酸与各种不同的醇类形成的酯,简单脂质包括酰基甘油酯和蜡。
(一)酰基甘油酯
酰基甘油酯又称脂肪是以甘油为主链的脂肪酸酯。如三酰基甘油酯的化学结构为甘油分子中三个羟基都被脂肪酸酯化,故称为甘油三酯(triglyceride)或中性脂肪。甘油分子本身无不对称碳原子。但它的三个羟基可被不同的脂肪酸酯化,则甘油分子的中间一个碳原子是一个不对称原子,因而有两种不同的构型(L-构型和D-构型)。天然的甘油三酯都是L-构型。酰基甘油酯分为甘油一酯、甘油二酯、甘油三酯、烷基醚(或α、β烯基醚)酰基甘油酯。
(二)蜡
蜡(waxes)是不溶于水的固体,是高级脂肪酸和长链一羟基脂醇所形成的酯,或者是高级脂肪酸甾醇所形成的酯。常见有真蜡、固醇蜡等。
真蜡是一类长链一元醇的脂肪酸酯。
固酯蜡是固醇与脂肪酸形成的酯,如维生素A酯、维生素D酯等。
二、复合脂质
复合脂质(complx lipids)即含有其他化学基团的脂肪酸酯,体内主要含磷脂和糖脂两种复合脂质。
(一)磷脂
磷脂(phospholipid)是生物膜的重要组成部分,其特点是在水解后产生含有脂肪酸和磷酸的混合物。根据磷脂的主链结构分为磷酸甘油反和鞘磷脂。
1.磷酸甘油酯(phosphoglycerides)主链为甘油-3-磷酸,甘油分子中的另外两个羟基都被脂肪酸所酯化,噒酸基团又可被各种结构不同的小分子化合物酯化后形成各种磷酸甘油酯。体内含量较多的是磷脂酰胆碱(卵磷脂)、磷脂酰乙醇胺(脑磷脂)、磷脂酰丝氨酸、磷脂酰甘油、二磷脂酰甘油(心磷酯)及磷酯酰肌醇等,每一磷脂可因组成的脂肪酸不同而有若干种,见表1-1。
从分子结构可知甘油分子的中央原子是不对称的。因而有不同的立体构型。天然存在的磷酸甘油酯都具有相同的主体化学构型。按照化学惯例。这些分子可以用二维投影式来表示。D-和L甘油醛的构型就是根据其X射线结晶学结果确定的。右旋为D构型,左旋为L构型。磷酸甘油酯的立化化学构型及命名由此而确定。
2.鞘磷脂(sphingomyelin)鞘磷脂是含硝氨醇或二氢鞘氨醇的磷脂,其分子不含甘油,是一分子脂肪酸以酰胺键与鞘氨醇的氨基相连。鞘氨醇或二氢鞘氨醇是具有脂肪族长链的氨基二元醇。有疏水的长链脂肪烃基尾和两个羟基及一个氨基的极性头。鞘磷脂含磷酸,其末端痉基取代基团为磷酸胆碱酸乙醇胺。人体含量最多的鞘磷脂是神经鞘磷脂,由鞘氨醇、脂肪酸及磷酸胆碱构成。神经鞘磷酯是构成生物膜的重要磷酯。它常与卵磷脂并存细胞膜外侧。
(二)糖脂
糖脂(glycolipids)这是一类含糖类残基的复合脂质化学结构各不相同的脂类化合物,且不断有糖脂的新成员被发现。糖脂亦分为两大类:糖基酰甘油和糖鞘脂。糖鞘脂又分为中性糖鞘脂和酸性糖鞘脂。
1.糖基酰基甘油(glycosylacylglycerids),糖基酰甘油结构与磷脂相类似,主链是甘油,含有脂肪酸,但不含磷及胆碱等化合物。糖类残基是通过糖苷键连接在1,2-甘油二酯的C-3位上构成糖基甘油酯分子。已知这类糖脂可由各种不同的糖类构成它的极性头。不仅有二酰基油酯,也有1-酰基的同类物。自然界存在的糖脂分子中的糖主要有葡萄糖、半乳糖,脂肪酸多为不饱和脂肪酸。根据国际生物化学名称委员会的命名:单半乳糖基甘油二酯和二半乳糖基甘油二酯的结构分别为1,2-二酰基-3-O-β-D-吡喃型半乳糖基-甘油和1,2-二酰基-3-O-(α-D-吡喃型半乳糖基(1→6)-O-β-D吡喃型半乳糖基)-甘油。
此外,还有三半乳糖基甘油二酯,6-O-酰基单半乳糖基甘油二酯等。
2.糖硝脂(glycosphingolipids) 有人将此类物质列为鞘脂和鞘磷脂一起讨论,故又称鞘糖脂。糖鞘脂分子母体结构是神经酰胺。脂肪酸连接在长链鞘氨醇的C-2氨基上,构成的神经酰胺糖类是糖鞘脂的亲水极性头。含有一个或多个中性糖残基作为极性头的糖鞘脂类称为中性糖鞘脂或糖基神经酰胺,其极性头带电荷,最简单的脑苷脂是在神羟基上,以β糖苷链接一个糖基(葡萄糖或半乳糖)。重要的糖鞘脂有脑苷脂和神经节苷脂。脑苷在脑中含量最多,肺、肾次之,肝、脾及血清也含有。脑中的脑苷脂主要是半乳糖苷脂,其脂肪酸主要为二十四碳脂酸;而血液中主要是葡萄糖脑苷脂神经节苷脂是一类含唾液酸的酸性糖鞘酯。唾液酸又称为N-乙酰神经氨酸它通过α-糖苷键与糖脂相连。神经节苷脂分子由半乳糖(Gal)、N-乙酰半乳糖(GalNAc)、葡萄糖(Glc)、N-脂酰硝氨醇(Cer)、唾液酸(NeuAc)组成。神经节苷脂广泛分布于全身各组织的细胞膜的外表面,以脑组织最丰富。
三、衍生脂质
1.脂肪酸及其衍生物前列腺素等。
2.长链脂肪醇,如鲸蜡醇等。
四、不皂化的脂质
不皂化的脂质是一类不含脂肪酸的脂质。主要有类萜及类固醇。
(一)类萜(terpens)
类萜亦称异戊烯脂质。异戊烯是具有两个双键的五碳化合物,也叫做“2-甲基-1.3-丁二烯“。其结构式为:
CH3
|
CH2 = C-CH=CH2。
烯萜类化合物就是很多异戊二烯单位缩合体。两个异戊二烯单位头尾连接就形成单萜;含有4个、6个和8个异戊二烯单位的萜类化合物分别称为双萜、三萜或四萜。异戊二烯单位以头尾连接排列的是规则排列;相反尾尾连接的是不规则排列。两个一个半单萜以尾尾排列连接形成三萜,如鲨烯;两个双萜尾尾连接四萜,如β-胡罗卜素。还有些类萜化合物是环状化合物,有遵循头尾相连的规律,也有不遵循头尾相连的规律。另外还有一些化合物尽管与类萜有密切有关系,但其结构式并不是五碳单位的偶数倍数;例如莰稀是具有二环结构的单萜,结构相似的檀烯却缺少一个碳原子。异戊烯脂质包括多种结构不同物质,对这些自然界存在的复杂结构的物质给予系统的命名是困难的。现习惯上沿用的名称多来自该化合物的原料来源,更显得杂乱无章。
天然的异戊烯聚合物与其他多聚物的共同点为:①由具有通用结构的重复单位所组成(异戊烯骨架相当于糖,氨基酸或核苷酸单位);②此单位的结构在细节上可有所变动(例如在类异戊二烯中的双键)并按顺序排列;③链长变化极大,小到两个单位聚合而成单萜,多至数百倍的单位聚合而成的橡胶。不同点为:①重复单位以C-C键连接在一起;②相对地说它们是非极性的,属于脂质。异戊烯脂质一旦聚合,就不能再裂解回复到单体形式。
(二)类固醇
类固醇(steroid)是环戊稠全氢化菲的衍生物。天然的类固醇分子中的双键数目和位置,取代基团的类型、数目和位置,取代基团与环状核之间的构型,环与环之间的构型各不相同。其化学结构是由三个六碳环已烷(A、B、C)和一个五碳环(D)组成的稠和回环化合物。类固醇分子中的每个碳原子都按序编号,且不管任一位置有没有碳原子存在,在类固醇母体骨架结构中都保留该碳原子的编号。存在于自然界的类固醇分子中的六碳环A、B、C都呈“椅”式构象(环已结构),这也是最稳定的构象。唯一的例外是雌激素分子内的A环是芳香环为平面构象。类固醇的A环和B环之间的接界可能是顺式构型,也可能是反式构型;而C环与D环接界一般都是反式构型,但强心苷和蟾毒素是例外。
类固醇的母体化合物通常是饱和的碳氢化合物,母体化合物用来作为命名的基础。表1-2为类固醇母体化合物。
表1-2 类固醇母体化合物的名称
<TBODY>
母体化合物
碳原子
天然类固醇类别
举 例
性甾烷gonane
1-17
无
-
雌烷estrane
1-18
雌激素
雌二醇
雄烷androstane
1-19
雄激素
睾酮、雄烯二酮
孕烷pregnane
1-21
孕激素和肾上腺皮质激素
孕酮、皮质醇、醛固酮
胆烷cholane
1-24
胆汁酸
胆酸、甘氨胆酸钠
胆甾烷cholestane
1-27
固醇类
胆固醇、鲨胆固醇
麦角甾烷ergostane
1-28
固醇类
麦角固醇
豆甾烷stigmastane
1-29
固醇类
豆甾醇
羊毛甾烷lanostane
1-27,
30-32
三甲基固醇类
羊毛固醇
强心烷交酯cardanoloide
1-23
强心苷类
毛地黄毒苷配基
蟾蜍烷交脂bufanolide
1-24
蟾蜍毒
蟾毒素
</TBODY>
类固醇母体化合物结构的修饰主要有:①引入双键或三键,例如胆固醇分子C-5和C-6之间的双键;②引入羟基取代基团,例如固醇类化合物都是3-羟基类固醇化合物;③引入羰基,例如胆固醇的3β-羟基经氧化产生胆甾-5-烯-3-酮。类固醇的命名有三种方法:①俗名:即根据其来源(如胆固醇、睾酮、豆甾醇等),结构特征(醛固酮),或生物功能(雄酮)等分别给它们命名;②在俗名前加上词头形成部分系统的,部分通俗的名称,例如7α-羟基胆固醇;③系统名称。按照IUPAC- IUB (Internationcal Union of Pure and Applied Chemistry-International Union of Biochemistry)的系统命名原则命名。以类固醇化合物的母体物质为基础,加上词头和词尾系统地描述类固醇的功能基团类别、数目、位置和取向。表1-3为一些重要固醇的俗名、系统名称和来源。
表1-3 某些重要的固醇及其生物体分布
<TBODY>
俗名
系统名称
生物体分布
胆固醇
胆甾-5-烯-3β-醇
动物、脊椎动物组织的主要固醇
类甾醇
5β-胆甾烷-3α-醇
脊椎动物粪便
胆甾烷醇
5α-胆甾烷-3β-醇
次要的脊椎动物固醇,豚鼠和兔肾上腺
7-烯胆甾烷醇
5α-胆甾-7-烯-3β-醇
脊椎动物皮肤、肠
7-脱氢胆固醇
胆甾-5,7-二烯-3β-醇
哺乳动物皮肤、肠
链甾醇
胆甾-5,24二烯-3β-醇
鸡 胚
酵母甾醇
5α-胆甾-8,24-二烯-3β-醇
酵母的次要的固醇
麦角甾醇
麦角甾-5,7,22-三烯-3β-醇
酵母、麦角菌的主要固醇
豆甾醇
豆甾-5,22-二烯-3β-醇
许多绿色植物、大豆
谷甾醇
豆甾-5-二烯-3β-醇
许多绿色植物、麦胚
岩藻甾醇
豆甾-5,24(28)-二烯-3β醇
海生藻的主要固醇
羊毛固醇
5α-羊毛甾-8(9),24-二烯-3β醇
皮肤、绵羊毛脂肪、酵母
环阿屯醇
9,19-环羊毛甾-24-烯3β
波罗蜜的次要固醇
8. 做日化的进:表面活性剂的种类及应用
帮你弄得资料
(有些图片显示不了,你去连接里看看)
这是最近从工具书里面整理出来的资料,基础系的资料,如果您需要转载,请给个本BOLG链接:
表面活性剂(surface active agent)的种类与农药剂型中的使用原理(上部)
(一)表面活性剂对降低表面张力的作用
1.表面活性剂的表面活性现象
(一)表面活性剂与表面活性现象:
湿展剂和乳化剂除本身作用之外,还可降低水的表面张力,有表面活性作用,因而也称为表面活性剂。
表面活性剂:一类物质分子能在一种液体的表面进行定向排列,这类物质称为表面活性剂。
请观察下列现象:一烧杯装满清水,水面上撒一层粉末,再加一滴肥皂水,漂在水面上的粉末立即向边缘移动,这种现象称为表面活性现象。这是因为肥皂(高级脂肪酸钠盐),具有两亲性(R-COONa),即分子中有亲水的极性基(-COONa)和亲酯的非极性基(R-),当肥皂加入水中后,非极性基插入油酯中,无油就插入气界中,极性基立即插入水界中,因此在水面上形成定向排列的分子层,呈胶囊状存在,而把浮在水面上的粉末推向杯壁。
表面活性剂具备的条件:(1)分子具有两亲性,(2)亲水力与拒水力平衡。二者缺一不可。请看下列两种物质:
(1)醋酸钠(CH3COONa),分子中有两亲性,但亲水力大于拒水力。
(2)硬酯酸钠(C18H35COONa),分子中有两亲性,但拒水力大于亲水力。
以上两种物质分子中虽有两亲性,但都不是表面活性,因为亲酯力与亲水力不平衡,CH3COONa极性基把分子拉入水中,C18H35COONa的亲酯基把分子拉入油中,两者均不能在油水界面上呈定向排列,没有表面活性作用。
2.表面活性剂对降低表面张力的作用
表面张力(surface tension):表面张力是液体内部的向心收缩力。
向心力可使液体的液滴缩小到最少的程度,向心力越大,液体形成的液滴就越少,喷雾就越不均匀。
表面张力的来源:处在液体内部分子从各方面受到相邻分子的吸引力而互成平衡,作用某分子的合力为零.所以液体内部均可任意移动。而液体表面的某分子的吸引力是指向液体内部,并与液面垂直,指向液体内部的 即为表面张力。
液体的表面张力越大,喷出的液滴就越大,分散度就越小,喷雾就越不均匀,要提高分散度,就必须降低表面张力,而降低表面张力唯一的途径就是加入表面活性剂,改变液体农药的性能。
例如:水的表面张力一般是73达因/厘米,当加入0.5%肥皂水时表面张力降低为27达因/厘米。
为什么要降低表面张力?我们首先(1)从流体物理学上分析:
农药在喷雾中就是要提高分散度,分散度的提高就是要把液体内部的分子移到表层以形成新的表面,即把液体农药形成细小的液珠,这就必须克服指向液体内部的吸引力而做功,消耗的功则转变成表面分子多余的自由能而贮藏在表面,这种分子表面多余的自由能称表面能(surface energy)
因此,液体形成的表面积越多,表面分子数就越多,消耗的功越多,表面能则越大。如用:
δ表示单位面积所做的功(即表面张力,尔格/cm2);
S表示增加的表面积(cm2);
E表示自由能,那么:δ、S、E三者之间的关系为:
E=δ*S
即表面张力与表面积的乘积为自由能。
单位:δ达因/cm;尔格/cm2,是由E和S的单位所决定的。
1尔格=达因.cm
∴尔格/cm2=达因.cm/cm2
= 达因/cm ∵1尔格=达因/cm
E的单位理尔格;达因/cm
S: cm2
δ=E/S=尔格/ cm2=达因*cm/ cm2=达因/cm
(2)热力学上的自然变化法则告诉我们:表面张力越大越不稳定,必须向表面能小的稳定状态而自自动转变,这种转变就意味着表面积降低,表面分子数减少,小液珠合并成大液珠。
如何才能降低表面能,使形成小液珠稳定呢?有两种方法:
(1)物理方法:加大喷雾的内空气压对液体做功,可喷出较细的液珠,但从上述分析中可知,此法形成有液珠不稳定,不可取。
(2)化学方法:此法是从E=δ*S公式上分析得到的。从公式中我们可知:要使表面能降低(E须是较小的值),也必须降低δ和表面积S,即只有δ、S的值小,才能得到较小的E值,但S降低,总表面积降低,就意味着颗粒或雾滴增大,防治效果差,这根本不符合农药的使用原则。因此只有在δ寻找解决途径。如果降低δ,也能达到降低表面能的效果,而又使表面积不改变,岂不两全其美。
而降低表面张力最有效的方法就是加入表面活性剂,因为农药的原药是有机物质(油类物质),当加入水中后,与水不能互溶,而是呈小油珠漂浮在水面上,因表面活性剂是带有两性基团的有机物,进入液体药液中,非极性基与小药珠结合,极性基与水结合,在小油菜、珠表面形成厚厚的吸附层,在小液珠与小液珠之间起阻隔作用,抵消表面能,小雾滴再发生碰撞也不会合并,田间可得到均匀而稳定的小雾滴,提高防效。
(二)表面活性种类:
1、离子型表面活性剂:
(1)阴离子型:在水中产生阴离子,与水中阳离子结合,
(2)阳离子型:在水中产生阳离子,与水中阴离子结合,因价格贵,使用的较少。
阴离子型主要有以下几类:
(1)羧酸盐类(即碱金属皂类):通式:R-COONa(K),生产方法:动物油+NaOH(KOH)皂化而成,如钠肥皂,在原药制剂中可加入0.1-0.2%。
优点:增加药效。
缺点:不抗硬水,分子中的K、Na可与硬水中的Ca、Mg离子发生交换。
(2)松脂皂:是环烃类脂肪酸钠盐。
生产:松香在碱性中熬制而成,碱性较强,不能与原药混用,可在果园中防越冬害虫时使用,如介壳虫。
优点:碱性可溶解介壳虫体壁上的蜡质;在液态农药上作湿展剂使用,用量0.1-0.3%;配制矿物乳油中作乳化剂。缺点:耗碱量大,不抗菌硬水。
(3)硫酸化脂肪酸类:通式:R-OSO3Na,如硫酸化蓖麻子油(土耳其红油)。生产:蓖麻油+浓硫酸在20℃下反应,脱水,最后用Na中和PH值(PH=4.5-6.0为宜)。与上两种相比:
优点:pH可根据需要调节;抗硬水能力强;可作乳化剂使用。
(4)磺酸盐类:通式:R-SO3Na(Ca)
主要有两类:①拉开粉
国外常用的乳化剂,国内属于仿造。优点:能溶于水,对酸、碱、硬水均稳定,展着性强,也可作湿展剂使用,用量:0.1-0.2%。
缺点:不抗硬水,分子中的K、Na可与硬水中的Ca、Mg离子发生交换。
②十二烷基苯磺酸钙(钠)
可作乳化剂作用,pH为中性,不仅有良好的表面活性,且还有杀螨作用;脂溶性和水溶性都强,不能单独作乳化剂使用,主要与非离子乳化剂混合使用。
2、非离子型表面活性剂:
在水中不产生离子,极性基为聚氧乙基【RO(CH2CH2O)nH】,极性基为聚氧乙基。
生产方法:环氧乙烷+高级醇(烷基酚,脂肪酸)加成反应而成。
通式:环氧乙烷+高级醇:R- 称聚氧乙基烷基苯基醚
环氧乙烷+烷基酚:R-O(CH2CH2O)nH 称聚氧乙基烷基醚
环氧乙烷+脂肪酸:ROO(CH2CH2O)nH 称聚氧乙基脂肪酸醚酯
非离子型表面活性剂,在水中不产生离子,那么它进入水中,是如何表现亲水作用的?因为在无水状态下,分子呈锯齿型,在水溶液中,分子呈曲折型:
曲折型的分子使亲水性较强的醚键朝外,疏水的乙烯基朝内,水分子可通过氢键与聚氧乙基的醚基相联结,因氧的电负性很大,可以吸收水中的氢离子形成氢键,虽然氢键很弱,但许多氢键连成一束,亲水性就增强了。
非离子型表面活性剂加入水中后,多余的表面活性剂分子以胶束状存在,依表面活性种类不同,胶束的形状各有不同:
其优点:①pH为中性,可与任何酸碱性农药混用;②水中不产生离子,无离子交换作用,抗硬水能力更强;③有良好的乳化、湿展和分散性能。可用于各种农药乳油的加工。
3、混合性表面活性剂:生产上常用的是阴离子+非离子型混合。阴离子主要是十二烷基苯磺酸钙。
单一的乳化剂在配制乳油时,对农药的原药和有机溶剂有适应性的选择,即乳化剂的有机性和无机性与农药的有机性和无机性的相称。
水溶性和酯溶性的相称,也称亲水亲油平衡值,简称HLB值。比值大,水溶性强,比值小,油溶性强。
生产实际中,有机合成的农药水溶性弱,有机性强,或者是水溶性强有机性弱,但农药使用上要求有机性强,水溶性也要强。但合成的农药根体达不到这个要求,只能用乳化剂进行调整。
非离子表面活性剂的特点是:水溶性强,有机性弱;
十二烷基苯磺酸钙的特点是:水溶性弱,有机性强。
任何一个单一的乳化剂都满足不了农药使用上的要求,只有把非离子型和十二烷基苯磺酸钙混合使用,才能满足农药使用上有机性强和水溶性强的需求。因此,混合型乳化剂比单一乳化剂对农药和溶剂的适应性广。
4、天然表面活性剂:
(1)含有大量皂素的化合物:皂素化合物经水解可得到糖苷和糖类衍生物,可作为湿展剂使用,用来加工固体农药,如WP。如北方的皂角含皂素10%,南方的茶枯(油茶树果实炸油后的残渣)含皂素13%,西南还有无患子果,含皂素24.4%。
(2)纸浆废液:造纸工业的废液,含有大量木质素类的衍生物(木质素磺酸钙,五碳糖和六碳糖),可加工WP作湿展剂使用,加工矿物乳油作分散剂使用。
(3)动物废料的水解物:屠宰厂遗弃的皮、毛、骨、角等动物的废弃物,经加热后的胶状液体,易溶于水,碱性强,硬水中稳定。
天然表面活性剂,除具有表面活性剂作用外,还有粘着作用,可造成幼小虫体气孔堵塞,窒息死亡。
表面活性剂(surface active agent)的种类与农药剂型中的使用原理(下部)
(二)、农药辅助剂
辅助剂(assist agents of pesticide):与农药混合后能改变药剂的理化性能,提高分散度,便于使用一类物质统称为农药辅助剂,也称助剂。辅助剂一般没有生物活性。
一.种类:
1.填充剂:用来加工固体农药(粉剂、可湿性粉剂,颗粒剂等)。作用:稀释原药,帮助原药分散,便于粉碎。如:加工粉剂、可湿性粉剂,颗粒剂等,常见的填充剂有滑石粉、粘土等。
2.湿展剂:用来加工可湿性粉剂。作用:使药液易于在固体表面湿润与展布。如洗衣粉、纸浆废液、拉开粉等。
3.乳化剂:加工乳油、乳剂。作用:乳药作用(略)。如非离子乳化剂、土耳其红油等。
4.溶剂:用来加工乳油。作用:溶解原药。如二甲苯、丙酮、苯等。
(略讲)以上几种是常用辅助剂,加工粉剂、可湿性粉剂、乳油等不能缺少。以下几种不是常用辅助剂而是根据不同药剂的性能和使用目的可加以选用。
(1)分散剂:农药中的分散剂有两种:①具有粘度很高的分散度,通过机械可将熔融的农药分散成胶体颗粒;②防止粉粒絮结的分散剂。
(2)稳定剂:防止农药可湿性粉剂在贮藏过程中物理性质变坏。
(3)粘着剂:可增加农药对固体表面的粘着能力,耐雨水冲刷,延长残效。如矿物油、明胶、淀粉等。
(4)防解剂:防止农药中有效成份在贮藏中分解。
(5)增效剂:可抑制昆虫体内的解毒酶系,增加药效,延缓昆虫对农药的抗性。如:增效醚等。
(6)发泡剂:药剂中加入发泡剂,喷雾时产生泡沫,在植物表面产生,便于检查喷雾质量,有时也用于飞机喷雾,指示喷过的地块。
乳化剂和湿展剂除本身作用外,还可降低水的表面张力,有表面活性作用,也称为表面活性剂,这是本章的重点。
(三)表面活性剂应用原理:
1.农药加工业上的应用原理:
在农药加工中,由于加入表面活性剂形成了农药中常见的物态:
(1)乳浊液:两相不相溶的液体,其中一相以极小的液珠均匀地分散到另一相液体中,形成不透明或半透明的乳浊液,这种作用称为乳化作用。乳油加入不中后常呈这种物态。
乳浊液的状态有两种:
①油包水型(W/O):水为分散相,油为为连续相,即水分散到油中,用药量大,在作物上喷药易产生药害。
②水油包型(O/W):油为分散相,水为连续相,即油分散到水中,农药制剂中常采用的物态。
若形成水包油型的乳浊液,必须使表面活性剂分子水溶性大于脂溶性,即降低水的表面张力的能力适当大于降低油表面张力的能力。因为:
①一般乳化剂的用量要过量,这样表面活性剂分子多集中在水界面上,分子插入水面的部分多,进入油中的部分少。因此,油珠表面形成了一层厚厚的吸附膜。
②由于表面活性剂有较高的水溶性,分子在油水界面上排列螨后,大量的活性剂分子存在于水中,在油珠发生碰撞时,可随时进入油水界面起补充作用,而使乳浊液处于稳定状态。
因此可见,乳浊液的稳定性取决于表面活性剂分子形成的吸附膜的厚度及分子排列的松紧程度。
离子型表面活性剂(如Na肥皂)配制的乳浊液不稳定,抗硬功夫水能力差,主要是肥皂中的Na+易被水中的Ca++(或Mg++)起置换作用,形成钙或镁肥皂,降低了肥皂的分子数,使吸附膜厚度降低,分子排列松散,因而乳浊液不稳定。
混合型表面活性配制形成乳浊液稳定,这是因为:十二烷基苯磺酸钙脂溶性强,分子一部分在油水排列满后,另一部分分子存在于油中;而非离子型表面活性剂的水溶性强,分子除在油水界面上排列外,大部分活性剂分子存在于水中,因此,当油珠互相碰撞时,水中和油中多余的活性剂分子均可加以补充。从分子的立体结构看,混合型表面活性剂在油水分离界面上,所形成的定向排列分子层更紧密,更严实,因此稳定性更强。
(2)悬浮液:以固体微粒稳定地悬浮在液体中,不沉淀、不漂浮,这种物态称为悬浮液。因固体原药多为有机物,不易被水湿润,只有加入表面活性,降低水的表面张力,增加水和固体表面的湿润性,才可形成稳定的悬浮液。
2.表面活性剂在液态农药上的应用原理:
液态农药喷于受药表面上,可以形成以下三种现象:
∠θ>90O ∠θ=90O ∠θ<90O
液体在固体表面的接触角用θ表示。
∠θ>90O :液体在受药表面上不湿润,不展布;
∠θ=90O:液体在受药表面上只湿润,不展布;
∠θ<90O:液体在受药表面上即湿润又展布。
∠θ=0O:液体与固体互溶。
一般∠θ=30O时左右是较理想的喷雾效果,液体农药在受药表面湿润展布较为适宜。农药使用中提高喷雾的效果就是缩小液体在固体表面的接触角,而缩小∠θ最肝效的方法就是在液体农药中加入表面活性剂。因此,在液态农药上表面活性应用的原理就是通过表面活性来缩小∠θ,其原因是:
国为液体在固体表面形成的接触角与液体的表面张力有关,若一液滴若能在固体表面湿润展布,主要受三个力的影响:
液体与物体表面接触都存在着一定的界面张力,一液滴在表面趋于稳定,三个力可暂时平衡。
r1:气液界面张力(液体的表面张力使液滴沿切线方向移动);
r2:气固界面张力,展布与反展布的关系,r2力可使液滴从P→左移动;
r3:液固界面张力,渗透与反渗透的关系,湿润与反湿润的关系,r3力可使液滴从P→右移动;
P:液体、固、气三者交点为P。
假如液滴在固体表面展布稳定时,三个力关系如下:设∠θ=30O
r2=r3+r1cosθ (r1在r3方向上的分力可用cosθ表示)
这个公式可推导如下: 即r1分力受∠θ的影响
∵: r1在r3方向上的分力可用cosθ表示,即r1分力受cosθ的影响,受力可用直角⊿表示。
cosθ=
∵:若cosθ函数值大,(r2大,r3小和r1要小),
∴:∠θ才能小。
上式可以看出,余弦函数值cosθ越大,∠θ才能越小,理想的余弦的函数值应接近1,这才是喷雾湿润效果所要求的,公式可以看出,要得到较大的余弦函数值,就必须使r2大,r3小和r1小,才能使∠θ缩小。但r2是气固界面张力,大气和植物的叶片性质是一定的,我们不能人为改变,只有降低r3、r1,也可使r2增大,可有助于液体的展布,r1和r3均与液体表面张力有关,只有当加入表面活性后,即可降低表面张力, r1 、r3液固界面张力也随之降低。这就是表面活性在液态农药上应用的原理。
表面活性剂应用原理研究:近期在国外有新进展,通过表面活性剂对除草剂活性作用的探索,证明表面活性并非单纯地降低表面张力,而且适当使用表面活性剂,对药剂还有以下影响:
(1)促进药剂对植物的渗透作用:因非离子表面活性剂可以诱发细胞渗透性能改变,促进除草剂渗入植物体内,但增加了药害。
(2)对药剂具有增溶作用:阴离子和非离子型表面活性剂均可使除草剂在水中的溶解度提高达8-9倍,提高药剂的水溶有性,有助于植物体吸收和输导。
祝你成功!!