① 废水生物处理机理是什么
废水生物处理法
biological treatment of wastewater
利用微生物的代谢作用除去废水中有机污染物的一种方法,亦称废水生物化学处理法,简称废水生化法,分需氧生物处理法和厌氧生物处理法两种。 需氧生物处理法 利用需氧微生物在有氧条件下将废水中复杂的有机物分解的方法。 生活污水中的典型有机物是碳水化合物、合成洗涤剂、脂肪、蛋白质及其分解产物如尿素、甘氨酸、脂肪酸等。这些有机物可按生物体系中所含元素量的多寡顺序表示为 COHNS。在废水需氧生物处理中全部反应可用以下两式表示:
微生物细胞+COHNS+O2—→ 较多的细胞+CO2+H2O+NH3
生物体系中这些反应有赖于生物体系中的酶来加速。酶按其催化反应分为:氧化还原酶:在细胞内催化有机物的氧化还原反应,促进电子转移,使其与氧化合或脱氢。可分为氧化酶和还原酶。氧化酶可活化分子氧,作为受氢体而形成水或过氧化氢。还原酶包括各种脱氢酶,可活化基质上的氢,并由辅酶将氢传给被还原的物质,使基质氧化,受氢体还原。水解酶:对有机物的加水分解反应起催化作用。水解反应是在细胞外产生的最基本的反应,能将复杂的高分子有机物分解为小分子,使之易于透过细胞壁。如将蛋白质分解为氨基酸,将脂肪分解为脂肪酸和甘油,将复杂的多糖分解为单糖等。此外还有脱氨基、脱羧基、磷酸化和脱磷酸等酶。 许多酶只有在一些称为辅酶和活化剂的特殊物质存在时才能进行催化反应,钾、钙、镁、锌、钴、锰、氯化物、磷酸盐离子在许多种酶的催化反应中是不可缺少的辅酶或活化剂。 在需氧生物处理过程中,污水中的有机物在微生物酶的催化作用下被氧化降解,分三个阶段:第一阶段,大的有机物分子降解为构成单元——单糖、氨基酸或甘油和脂肪酸。在第二阶段中,第一阶段的产物部分地被氧化为下列物质中的一种或几种:二氧化碳、水、乙酰基辅酶A、α-酮戊二酸(或称 α-氧化戊二酸)或草醋酸(又称草酰乙酸)。第三阶段(即三羧酸循环,是有机物氧化的最终阶段)是乙酰基辅酶A、α-酮戊二酸和草醋酸被氧化为二氧化碳和水。有机物在氧化降解的各个阶段,都释放出一定的能量。 在有机物降解的同时,还发生微生物原生质的合成反应。在第一阶段中由被作用物分解成的构成单元可以合成碳水化合物、蛋白质和脂肪,再进一步合成细胞原生质。合成能量是微生物在有机物的氧化过程中获得的。 厌氧生物处理法 主要用于处理污水中的沉淀污泥,因而又称〖HTK〗污泥消化〖HT〗,也用于处理高浓度的有机废水。这种方法是在厌氧细菌或兼性细菌的作用下将污泥中的有机物分解,最后产生甲烷和二氧化碳等气体,这些气体是有经济价值的能源。中国大量建设的沼气池就是具体应用这种方法的典型实例。消化后的污泥比原生污泥容易脱水,所含致病菌大大减少,臭味显着减弱,肥分变成速效的,体积缩小,易于处置。 城市污水沉淀污泥和高浓度有机废水的完全厌氧消化过程可分为三个阶段(见图)。在第一阶段,污泥中的固态有机化合物借助于从厌氧菌分泌出的细胞外水解酶得到溶解,并通过细胞壁进入细胞中进行代谢的生化反应。在水解酶的催化下,将复杂的多糖类水解为单糖类,将蛋白质水解为缩氨酸和氨基酸,并将脂肪水解为甘油和脂肪酸。第二阶段是在产酸菌的作用下将第一阶段的产物进一步降解为比较简单的挥发性有机酸等,如乙酸、丙酸、丁酸等挥发性有机酸,以及醇类、醛类等;同时生成二氧化碳和新的微生物细胞。
第一、二阶段又称为液化过程。第三阶段是在甲烷菌的作用下将第二阶段产生的挥发酸转化成甲烷和二氧化碳,因此又称为气化过程,其反应可用下式表示:
一些有机酸或醇的气化过程举例如下: 乙酸:
CH3COOH—→CO2+CH4
丙酸:
4CH3CH2COOH+2H2O—→5CO2+7CH4
甲醇:
4CH3OH—→CO2+3CH4+2H2O
乙醇:
2CH3CH2OH+CO2—→2CH3COOH+CH4
为了使厌氧消化过程正常进行,必须将温度、pH值、氧化还原电势等保持在一定的范围内,以维持甲烷菌的正常活动,保证及时地和完全地将第二阶段产生的挥发酸转化成甲烷。
生物化学反应的速度直接受温度的影响。进行厌氧消化的微生物有两类:中温消化菌和高温消化菌。前者的适应温度范围为17~43℃,最佳温度为32~35℃;后者则在50~55℃具有最佳反应速度。
近年来,厌氧消化处理法发展到应用于处理高浓度有机废水,如屠宰场废水、肉类加工废水、制糖工业废水、酒精工业废水、罐头工业废水、亚硫酸盐制浆废水等,比采用需氧生物处理法节省费用。
利用生物法处理废水的具体方法有〖HTK〗活性污泥法〖HT〗、〖HTK〗生物膜法〖HT〗、〖HTK〗氧化塘法〖HT〗、〖HTK〗土地处理系统〖HT〗和污泥消化等。〖HT〗
② 微生物处理污水的方法
微生物在有氧条件下,吸附环境中的有机物,并将其氧化分解成无机物,使污水得到净化,同时合成细胞物质。微生物在污水净化过程,以活性污泥和生物膜的主要成分等形式存在。
(1)活性污泥法
又称曝气法,是利用含有好氧微生物的活性污泥,在通气条件下,使污水净化的生物学方法。此法是现今处理有机废水的最主要的方法。
所谓活性污泥是指由菌胶团形成菌、原生动物、有机和无机胶体及悬浮物组成的絮状体。在污水处理过程中,它具有很强的吸附、氧化分解有机物或毒物的能力。在静止状态时,又具有良好沉降性能。活性污泥中的微生物主要是细菌,占微生物总数的90%~95%。,并多以菌胶团的形式存在,具有很强的去除有机物的能力,原生动物起间接净化作用。
活性污泥法根据曝气方式不同,分多种方法,目前最常用的是完全混合曝气法。污水进入曝气池后,活性污泥中的细菌等微生物大量繁殖,形成菌胶团絮状体,构成活性污泥骨架,原生动物附着其上,丝状细菌和真菌交织在一起,形成一个个颗粒状的活跃的微生物群体。曝气池内不断充气、搅拌,形成泥水混合液,当废水与活性污泥接触时,污水中的有机物在很短时间内被吸附到活性污泥上,可溶性物质直接进入细胞内。大分子有机物通过细胞产生的胞外酶将其降解成为小分子物质后再渗入细胞内。进入细胞内的营养物质在细胞内酶的作用下,经一系列生化反应,使有机物转化为C02、H2O等简单无机物,同时产生能量。微生物利用呼吸放出的能量和氧化过程中产生的中间产物合成细胞物质,使菌体大量繁殖。微生物不断进行生物氧化,污水中有机物不断减少,使污水得到净化。当营养缺乏时,微生物氧化细胞内贮藏物质,并产生能量,这种现象叫自身氧化或内源呼吸。
曝气池中混合物以低BOD值流入沉淀池。活性污泥通过静止、凝集、沉淀和分离,上清液是处理好的水,排放到系统外。沉淀的活性污泥一部分回流曝气池与未处理的废水混合,重复上述过程,回流污泥可增加曝气池内微生物含量,加速生化反应过程。剩余污泥排放出去或进行其他处理后继续应用。
(2)生物膜法
该法是以生物膜为净化主体的生物处理法。生物膜是附着在载体表面,以菌胶团为主体所形成的粘膜状物。生物膜的功能和活性污泥法中的活性污泥相同,其微生物的组成也类似。净化污水的主要原理是附着在载体表面的生物膜对污水中有机物的吸附与氧化分解作用。生物膜法根据介质与水接触方式不同,有生物转盘法、塔式生物滤池法等。
2.厌氧处理系统
在缺氧条件下,利用厌氧菌(包括兼性厌氧菌)分解污水中有机污染物的方法,又称厌氧消化或厌氧发酵法。因为发酵产物产生甲烷,又称甲烷发酵。此法既能消除环境污染,又能开发生物能源,所以倍受人们重视。污水厌氧发酵是一个极为复杂的生态系统,它涉及多种交替作用的菌群,各要求不同的基质和条件,形成复杂的生态体系。甲烷发酵包括3个阶段:液化阶段、产氢产乙酸阶段和产甲烷阶段。
此法主要用于处理农业和生活废弃物或污水厂的剩余污泥,也可用于处理面粉厂、食品厂、造纸厂、制革厂、酒精厂、糖厂、油脂厂、农药厂或石油化工等工厂废水。
③ 微生物法处理污水的基本原理
微生物污水处理基本原理是通过微生物的作用使电镀污水中含有的多种有毒 有害物得到全面去除 确保电镀污水中的六价铬、氰化物(有氰电镀)各种重金属COD 氨氮……被处理达到相关的排放标准 具体阐述如下
微生物污水处理:氰化物(CN一)
通过革兰氏菌等菌群将其分解为氮气和CO2排入大气 反应式如下
2CN-+8OH- 破氰菌N2+2CO2+4H2O……1 随着游离氰根的去除 氰络合离子产生如下反应
Ag(CN)2Ag++2CN-……2
Cu(CN)42-Cu2++4CN-……3
④ 利用微生物处理污水的原理,简单一些,有好评!
甲烷菌属于厌氧微生物,除了厌氧微生物还有好氧微生物,在污水处理工艺中,它们生活在好氧段,主要有化能自养细菌、醋酸菌、枯草杆菌(枯草芽孢杆菌)、结核菌、固氮菌等。
微生物处理污水的的原理主要是微生物在生长繁殖过程中需要利用水中的有机污染物(碳源等)作为它们的食物,经微生物吸收、分解后,污水中的有机污染物被大量去除,从而达到水质净化的目的。
⑤ 污水厌氧处理的微生物学原理是什么污泥厌氧消化和污水厌氧处理有何异同
污水厌氧处理原理:通过厌氧微生物的新陈代谢,将有机物进行生物转化,生成沼气和二氧化碳,从而达到净化水质的目的。
污泥厌氧消化和污水厌氧处理比较:都是利用厌氧微生物进行的生物转化过程,只不过处理的对象不同而已。污泥厌氧消化对象是剩余活性污泥(细菌),而污水厌氧处理的对象是污水中的不溶性和溶解性有机物。
⑥ 污水好氧生物处理的基本原理
污水好氧生物处理的原理是,生物反应器中的微生物以悬浮状态存在,在好氧条件下氧化、分解有机物和氨氮。常见的有好氧活性污泥法,该方法不仅能有效去除污水中的有机物,还能有效的进行生物脱氮除磷。
⑦ 污水好氧微生物处理的原理
应用 好氧生物处理原理是一种在提供游离氧的前提下 以好氧微生物为主 使有机物降解 稳定的无害化处理方法 微生物以活性污泥和生物膜的形式存在 活性污泥 由细菌 原生动物等微生物与悬浮物质 胶体物质混杂在一起的絮状体颗粒 生物膜 附着在填料上呈薄膜状的活性污泥 活性污泥的主要特征具有较强的吸附能力 10~30min 内吸附作用可以去除达85~90%的BOD 铁 铜 铅等金属离子 约有30~90%能吸附去除 具有很强的分解 氧化有机物的能力 吸附的大分子有机物质在胞外酶的作用下 变成小分子可溶性物质 微生物的异化作用 微生物的同化作用 具有良好的沉降性能 具有絮状结构 泥水分开 曝气池 曝气池出水堰 废水好氧生物处理的优越性 效率高 物质迁移转化效率高
⑧ 为什么微生物能净化污水
世界的人口在不断的增多,资源的消耗也越来越多,尤其是水之源越来越紧缺了。随着科技的进步,人们的消费水品的提高,人们每天产生的污水排入江河,渐渐的污染了河流。可是为什么微生物能净化污水呢?相信许多朋友们都不太了解,下面就由我来给大家解答一下疑惑吧。
随着全球人口的膨胀,水资源越来越紧缺。无论是工业生产还是我们日常生活,每天都在产生大量的污水。如果直接将这些污水排入江河湖海,那么仅仅依靠自然界的自净能力是不行的,因此需要将这些污水进行无害化处理。传统的污水处理方法有物理法、化学法和生物法等,其中最为神奇的无疑是生物法,也就是利用微生物进行污水的净化。
微生物生长快,数量多,再加上几十亿年来进化所取得的丰富“经验”和“积累”,使得微生物具备了极其丰富的多样性。这种多样性不仅表现在形态、种类上,更表现在它们获取营养和进行代谢的能力上。微生物几乎能将所有类型的有机物作为能量来源“吃”下去,不少微生物还能以无机物和光作为能量来源。正是微生物这种强大的营养代谢能力,决定了它在污水处理中几乎“无所不能”。
微生物可以分为好氧性和厌氧性两种,它们处理污水的办法截然不同。在好氧处理过程中,人们需要不断将氧气鼓入污水池中,这称为“曝气”。充足的氧气使污水中本来存在的各种微生物能够大量生长起来,这些臭烘烘的污泥对微生物来说是可口的“美食”,它们在“大吃大喝”的.过程中将污水内的各种物质转化为自己身体的组成部分,将代谢产生的二氧化碳等无害气体排出体外,使水体中溶解的营养成分逐渐减少。“吃饱了”的菌体们会聚集在一起,缓慢下沉到池底,成为“活性污泥”。处理过的水经沉淀分离“活性污泥”后,可以除去90%左右的有机物,水也就变清了。
自然界中还有许多微生物是躲在没有氧气的环境中生长的,它们同样具有分解各种物质的能力,许多有机物就是在海底、河床的淤泥层中被逐渐分解的,厌氧生物处理就是人工模拟这个过程。与好氧处理不同,厌氧处理需要在密闭的容器中进行,也不用鼓风加氧。污水流入时会带入一些氧气,但这些氧气会很快就被入水口附近的好氧微生物消耗殆尽,然后水体就进入无氧状态,各种厌氧微生物便大展拳脚,逐渐分解各种有机物,使污水澄清。与好氧处理法相比,厌氧处理过程中会产生甲烷等气体,可以作为能源。用厌氧法可以处理的污染浓度范围也更广,但缺点在于处理周期较长。
由于不同来源的污水含有的污染成分和浓度不同,常常把好氧处理和厌氧处理结合起来。有时候,对一些含有特殊的有毒物质或难以降解的物质的污水,还需要采取特别的工艺流程,分离培育特殊的菌种和专门的活性污泥,以达到理想的污水处理目的。
⑨ 污水好氧微生物处理的基本原理
污水好氧微生物处理即硝化细菌降解氨氮的基本原理。
微生物氧化氨过程的化学表达
1)在好氧条件下:
①(NH4+)+2O2 → (NO2-)+2H2O
② 2(NO2-)+O2 → 2NO3-
2)在厌氧条件下:
③(NH4+)+(NO2-) → N2+2H2O
④ 5(NH4+)+3(NO3-)→ 4N2+9H2O+2H+
其中①②是由亚硝化细菌和硝化细菌分别完成,限制其反应的步骤是亚硝化细菌进行氨的氧化,其反应速率决定了整个总过程的速度。
⑩ 微生物处理污水原理
生化处理是利用微生物处理废水中的有机物和污染物的一种工艺,因而也称为污水的生物处理。
微生物是一类体形微小、结构简单的生物,主要包括细菌、放线菌、藻类、真菌、立克次氏菌、枝原体以及原生动物和后生动物等类群,其中与废水处理密切相关的是细菌、放线菌、原生动物和后生动物中的某些种类。
1、细菌:是单细胞生物,有球形,杆状和螺旋形三种。在废水处理过程中起主要作用的是由多种细菌所组成的菌胶团。细菌在适宜的环境中,每20~30min可裂殖一次,生成2个细菌。
2、丝状菌:是一大类菌体细胞相连而形成丝状的微生物的总称,也称为丝状微生物。包括丝状细菌、丝状真菌和丝状藻类等微生物群。丝状菌在废水生化处理过程中是活性污泥絮体的主要骨架材料。如丝状菌数量不足,则无法形成活性污泥絮体,不能进行高效的泥水分离。从而无法获得清澈的上清液,使出水浑浊。但当丝状菌过多时,会导致活性污泥膨胀。
3、原生动物:在废水活性污泥处理法中,原生动物主要有三类:肉足类、鞭毛类和纤毛类。分别有代表生物变形虫、鞭毛虫和纤毛虫。