导航:首页 > 生物信息 > 氨基酸衍生物如何产生

氨基酸衍生物如何产生

发布时间:2022-12-30 19:44:21

① 什么是氨基酸衍生物

氨基酸衍生物是由氨基酸通过一系列反应化合而成的物质,例如氨基酸的联合脱氨基作用合成氨基酸衍生物,也就是说氨基酸衍生物的前身是氨基酸。人体内多种物质,如肾上腺素、甲状腺激素就是氨基酸衍生物
肾上腺素是酪氨酸的衍生物。其衍生途径为:酪氨酸→多巴→多巴胺→去甲肾上腺素→肾上腺肾上腺素
甲状腺激素衍生物指母体化合物分子中的原子或原子团被其他原子或原子团取代所形成的化合物,称为该母体化合物的衍生物。甲状腺激素是氨基酸的四个氢被四个碘所取代,所以是氨基酸的衍生物。

② 氨基酸衍生物是蛋白质吗

不是。 组成蛋白质的基本单位是氨基酸,氨基酸通过脱水缩合形成肽链。蛋白质由一条或多条多肽链组成的生物大分子,每一条多肽链有二十~数百个氨基酸残基不等;各种氨基酸残基按一定的顺序排列。产生蛋白质的细胞器是核糖体。只有核糖体翻译mRNA编码产生的多肽链经过一定的折叠形成的物质才是蛋白质。
胺类、氨基酸衍生物是小分子物质,蛋白质是大分子。

衍生物指母体化合物分子中的原子或原子团被其他原子或原子团取代所形成的化合物,称为该母体化合物的衍生物。
氨基酸衍生物-------氨基酸通过一系列反应(某些官能团取代氢)化合而成的物质,例如氨基酸的联合脱氨基作用合成氨基酸衍生物,也就是说氨基酸衍生物。蛋白质类-----氨基酸脱水缩合产物。
一般后者较前者分子量大。

当然不是,氨基酸衍生物和蛋白质类激素属不同类别。
激素主要分为:
①类固醇激素:如肾上腺皮质激素,性激素等。
②多肽及蛋白质激素,如生长激素,胰岛素等。
③胺类激素,如肾上腺素等,去甲肾上腺素等。
④氨基酸衍生物如甲状腺激素。

③ 氨基酸衍生物

木霉次级代谢产物大多起源于氨基酸代谢路径,微生物体内的肽常起源于非核糖体合成途径,研究环孢菌素(cyclosporins)的合成途径时发现,在一定程度上,通过添加氨基酸可以产生缩氨酸合成体,也可改变产物的化学成分,这种定向生物合成通过木霉生产多肽的能力得到了验证(Ruegger et al.,2004)。

二酮哌嗪分子中具有2,5-二酮哌嗪结构单位,该族物质来源于环二肽,由两个氨基酸缩水而成。

异氰又称胩,它的通式为RNC,独有的特征是N原子与羟基相连,具有挥发性的污秽气味,很长时间来一直被化学家所关注。

多肽由多个氨基酸分子缩合而成,有3个结构特点:①含有高比例的非蛋白质氨基酸残基,尤其是富含a-氨基异丁酸;②烷基化的N末端(通常为乙酰化)和C末端羟基化的氨基酸;③分子长度在5~20残基之间,多数为15~20个残基。多肽的作用机制与其膜修饰活性和离子通道形成是分不开的,多肽的两亲a螺旋结构,极易在脂双层膜中形成离子通道。

④ 高中生物:氨基酸衍生物是不是在糙面内质网上合成的如果是,它还需不需要经过高尔基体的加工谢谢!

在高中生物中,这里所谓“氨基酸衍生物”应该指的是肽链,那么它确实可以是在附着于糙面内质网上的核糖体合成的。但这里的肽链是没有一定的空间结构,不能行使特定的功能,因此需要经过高尔基体的加工。

⑤ 氨基酸衍生物的化学本质是什么

氨基酸衍生物,意思就是氨基酸的R基上的氢原子被其他杂原子或含有杂原子的基团取代得到的物质。氨基酸的联合脱氨基作用合成氨基酸衍生物。
这类物质不在20种必需氨基酸之中。甲状腺素是典型的氨基酸衍生物。

⑥ 氨基酸衍生物类激素是基因表达的直接产物吗

基因表达的直接产物是多肽,因此氨基酸衍生物类激素不是基因表达的直接产物

⑦ 氨基酸衍生物的类别有哪些

衍生物指母体化合物分子中的原子或原子团被其他原子或原子团取代所形成的化合物,称为该母体化合物的衍生物。甲状腺激素是氨基酸的四个氢被四个碘所取代,所以是氨基酸的衍生物。氨基酸分类的方法有多种,目前常以氨基酸的R基团的结构和性质作为氨基酸分类的基础.如果按侧链R基团的结构分类,可将20种氨基酸分为七类:
(1)R为脂肪族基团的氨基酸;(2)R为芳香族基团的氨基酸;(3)R为含硫基团的氨基酸;(4)R为含醇基基团的氨基酸;(5)R为碱性基团的氨基酸;(6)R为酸性基团的氨基酸;(7)R为含酰胺基团的氨基酸.
根据R基团的极性可将氨基酸分为四大类:
(1)非极性R基团氨基酸;(2)极性不带电荷R基团氨基酸;(3)R基团带负电荷的氨基酸;(4)R基团带正电荷的氨基酸.这种分类方法更有利于说明不同氨基酸在蛋白质结构和功能上的作用.氨基酸的名称常使用三字母的简写符号表示,有时也使用单个字母简写符号表示.

⑧ 氨基酸是如何形成的

希望可以帮到您
氨基酸合成amino acid synthesis
组成蛋白质的大部分氨基酸是以埃姆登-迈耶霍夫(Embden-Meyerhof)途径与柠檬酸循环的中间物为碳链骨架生物合成的。例外的是芳香族氨基酸、组氨酸,前者的生物合成与磷酸戊糖的中间物赤藓糖-4-磷酸有关,后者是由ATP与磷酸核糖焦磷酸合成的。微生物和植物能在体内合成所有的氨基酸,动物有一部分氨基酸不能在体内合成(必需氨基酸)。必需氨基酸一般由碳水化合物代谢的中间物,经多步反应(6步以上)而进行生物合成的,非必需氨基酸的合成所需的酶约14种,而必需氨基酸的合成则需要更多的,约有60种酶参与。生物合成的氨基酸除作为蛋白质的合成原料外,还用于生物碱、木质素等的合成。另一方面,氨基酸在生物体内由于氨基转移或氧化等生成酮酸而被分解,或由于脱羧转变成胺后被分解。
氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。氨基酸的结构通式
是生物功能大分子蛋白质的基本组成单位。
氨基酸的分类
必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。
非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。
另有酸性、碱性、中性、杂环分类,是根据其化学性质分类的。
检测:
茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。
蛋白质:
肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。
肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。
是氨基酸通过肽键相连的化合物,蛋白质不完全水解的产物也是肽。肽按其组成的氨基酸数目为2 个、3个和4个等不同而分别称为二肽、三肽和四肽等,一般含10个以下氨基酸组成的称寡肽(oligopeptide),由10个以上氨基酸组成的称多肽(polypeptide),它们都简称为肽。肽链中的氨基酸已不是游离的氨基酸分子,因为其氨基和羧基在生成肽键中都被结合掉了,因此多肽和蛋白质分子中的氨基酸均称为氨基酸残基(amino acid resie)。
多肽有开链肽和环状肽。在人体内主要是开链肽。开链肽具有一个游离的氨基末端和一个游离的羧基末端,分别保留有游离的α-氨基和α-羧基,故又称为多肽链的N端(氨基端)和C端(羧基端),书写时一般将N端写在分子的左边,并用(H)表示,并以此开始对多肽分子中的氨基酸残基依次编号,而将肽链的C端写在分子的右边,并用(OH)来表示。目前已有约20万种多肽和蛋白质分子中的肽段的氨基酸组成和排列顺序被测定了出来,其中不少是与医学关系密切的多肽,分别具有重要的生理功能或药理作用。
多肽在体内具有广泛的分布与重要的生理功能。其中谷胱甘肽在红细胞中含量丰富,具有保护细胞膜结构及使细胞内酶蛋白处于还原、活性状态的功能。而在各种多肽中,谷胱甘肽的结构比较特殊,分子中谷氨酸是以其γ-羧基与半胱氨酸的α-氨基脱水缩合生成肽键的,且它在细胞中可进行可逆的氧化还原反应,因此有还原型与氧化型两种谷胱甘肽。
近年来一些具有强大生物活性的多肽分子不断地被发现与鉴定,它们大多具有重要的生理功能或药理作用,又如一些“脑肽”与机体的学习记忆、睡眠、食欲和行为都有密切关系,这增加了人们对多肽重要性的认识,多肽也已成为生物化学中引人瞩目的研究领域之一。
多肽和蛋白质的区别,一方面是多肽中氨基酸残基数较蛋白质少,一般少于50个,而蛋白质大多由 100个以上氨基酸残基组成,但它们之间在数量上也没有严格的分界线,除分子量外,现在还认为多肽一般没有严密并相对稳定的空间结构,即其空间结构比较易变具有可塑性,而蛋白质分子则具有相对严密、比较稳定的空间结构,这也是蛋白质发挥生理功能的基础,因此一般将胰岛素划归为蛋白质。但有些书上也还不严格地称胰岛素为多肽,因其分子量较小。但多肽和蛋白质都是氨基酸的多聚缩合物,而多肽也是蛋白质不完全水解的产物。
蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。
氨基酸是指一类含有羧基并在与羧基相连的碳原子下连有氨基的有机化合物。是构成动物营养所需蛋白质的基本物质。
人体所需的氨基酸约有22种,分非必需氨基酸和必需氨基酸(须从食物中供给)。
必需氨基酸指人体不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。共有10种其作用分别是:
(一) 赖氨酸:促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退还;
(二) 色氨酸:促进胃液及胰液的产生;
(三) 苯丙氨酸:参与消除肾及膀胱功能的损耗;
(四) 蛋氨酸;参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能;
(五) 苏氨酸:有转变某些氨基酸达到平衡的功能;
(六) 异亮氨酸:参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于(1) 甲状腺(2)性腺;
(七) 亮氨酸:作用平衡异亮氨酸;
(八) 缬氨酸:作用于黄体、乳腺及卵巢。
(九) 组氨酸:作用于代谢的调节;
(十)精氨酸:促进伤口愈合,精子蛋白成分。
其理化特性大致有:
1)都是无色结晶。熔点约在230。C以上,大多没有确切的熔点,熔融时分解并放出CO2;都能溶于强酸和强碱溶液中,除胱氨酸、酪氨酸、二碘甲状腺素外,均溶于水;除脯氨酸和羟脯氨酸外,均难溶于乙醇和乙醚。
2)有碱性[二元氨基一元羧酸,例如赖氨酸(lysine)];酸性[一元氨基二元羧酸,例如谷氨酸(Glutamic acid)];中性[一元氨基一元羧酸,例如丙氨酸(Alanine)]三种类型。大多数氨基酸都呈显不同程度的酸性或碱性,呈显中性的较少。所以既能与酸结合成盐,也能与碱结合成盐。
3)由于有不对称的碳原子,呈旋光性。同时由于空间的排列位置不同,又有两种构型:D型和L 型,组成蛋白质的氨基酸,都属L型。由于以前氨基酸来源于蛋白质水解(现在大多为人工合成),而蛋白质水解所得的氨基酸均为α-氨基酸,所以在生化研究方面氨基酸通常指α-氨基酸。至于β、 γ、δ……ω等的氨基酸在生化研究中用途较小,大都用于有机合成、石油化工、医疗等方面。氨基酸及其衍生物品种很多,大多性质稳定,要避光、干燥贮存。
◇必需氨基酸(essential amino acids)
指人(或其它脊椎动物)自己不能合成,需要从饮食中获得的氨基酸,例如赖氨酸、苏氨酸等氨基酸。
◇非必需氨基酸(nonessential amino acids)
指人(或其它脊椎动物)自己能由简单的前体合成的,不需要由饮食供给的氨基酸,例如甘氨酸、丙氨酸等氨基酸。
--------------------------------------------------------------------------------
分子中同时含有氨基和羧基的有机化合物,是组成蛋白质的基本单位。

⑨ 氨基酸衍生物代谢(三)

组氨酸脱羧酶(HDC)可催化组氨酸脱羧生成组胺。合成和释放组胺的主要细胞是免疫系统的肥大细胞和嗜碱性粒细胞,胃肠系统的肠嗜铬样细胞和神经元。其中免疫细胞合成的组胺占总量的90%以上。

人体有四种组胺受体(H1R-H4R),均属于GPCR。H1R在多种组织表达,如血管和气管平滑肌细胞、内皮细胞、免疫细胞和神经细胞等。H1R激活磷脂酶C并升高钙离子浓度,促进前列腺素I2合成,增加血管通透性。

H2R主要在免疫细胞和胃壁细胞表达,可促进胃酸分泌。H3R主要分布在中枢神经系统,可减少乙酰胆碱、5-羟色胺和去甲肾上腺素的产生和释放。H4R主要在胃肠道和免疫细胞。

组胺是大脑感觉神经递质,调节多种生理功能,如睡眠-觉醒周期、压力反应、食欲和记忆等。人脑中组胺能神经元约有6万多个,位于下丘脑的结节乳头核中,并将其轴突投射到大脑的各个区域,包括大脑皮层,下丘脑,基底神经节和杏仁核。

灭活组胺的酶有两种:二胺氧化酶(DAO)和组胺N-甲基转移酶(HNMT)。DAO(EC 1.4.3.22)也称为组胺酶,可以氧化脱氨多种胺类,包括组胺,腐胺,亚精胺等,主要在外周组织中起作用。HNMT(EC 2.1.1.8)主要分布在中枢神经系统。

释放到细胞外的神经递质会被邻近神经元或星形胶质细胞吸收,以免神经元过度活化。人类星形胶质细胞主要通过质膜单胺转运蛋白(PMAT)和有机阳离子转运蛋白3(OCT3)转运组胺。被转运到胞质的组胺由HNMT催化,利用SAM将组胺甲基化,然后从尿液排出。

谷胱甘肽是细胞内含量最高的还原剂,因为含有一个巯基而缩写为GSH。两个GSH以二硫键相连,就形成氧化型谷胱甘肽(GSSG)。谷胱甘肽还原酶(GR)可以利用NADPH将GSSG还原回GSH。GSH具有抗氧化、解毒、氨基酸转运等重要功能。

谷胱甘肽含有非标准肽键,所以其合成与分解过程较为独特。谷氨酸-半胱氨酸连接酶(glutamate-cysteine ligase, GCL)催化谷氨酸的侧链羧基与半胱氨酸的氨基相连,形成γ-谷氨酰半胱氨酸(γ-GC)。这是谷胱甘肽合成的限速步骤,所以GCL也是开发谷胱甘肽合成抑制剂的主要靶标。

第二步由GSH合酶(GSS)催化,将甘氨酸连接到γ-GC上。这两步反应各消耗一分子ATP。

谷胱甘肽的γ-酰胺键不能被正常肽酶降解,所以只能通过膜结合的γ-谷氨酰转移酶(GGT)在细胞外代谢。GGT催化γ-谷氨酰胺键的ATP依赖性裂解,并将谷氨酰基转移到某一个氨基酸上,生成γ-谷氨酰氨基酸。后者进入细胞后水解,谷氨酸部分以5-氧代脯氨酸的形式释放,需要再消耗一个ATP才能转化为谷氨酸。GGT生成的Cys-Gly则被细胞外二肽酶水解,然后各自进入细胞。

这个反应既用于降解,也用于氨基酸转运,称为γ-谷氨酰循环(γ-glutamyl cycle)。这种转运方式属于基团转运,虽然耗能高达4个ATP,但速度快,容量高。该循环主要在肾脏,特别是肾上皮细胞中起作用。

谷胱甘肽最重要的功能还是抗氧化,特别是对红细胞和线粒体。红细胞因为需要运输氧,所以是高度氧化环境,容易形成过氧化物。谷胱甘肽过氧化物酶(GPx)利用GSH还原过氧化物,生成GSSG,再由GR催化GSH再生,维持氧化-还原平衡。所以合成NADPH的磷酸戊糖途径对红细胞十分重要,高达10%的葡萄糖被用于此途径的消耗。

谷胱甘肽还参与有毒物质的生物转化过程,起到与葡萄糖醛酸类似的解毒作用,参见《糖醛酸途径与肝脏代谢》。谷胱甘肽S-转移酶(glutathione S-transferase,GST)催化谷胱甘肽与一些带有巯基、双键、卤素等基团的化合物反应,促进其排出。

黄曲霉毒素B1(AFB1)、4-羟基壬醛(4-HNE)、丙烯醛(acrolein)等毒物和medicine均可被GST催化解毒。当然medicine被解毒的问题是可能降低效果,这就需要有针对性的措施,比如开发相应的GST抑制剂等。

血红素(heme)也是氨基酸的衍生物。虽然分子较大,但它是由四个吡咯衍生物连接在一起构成的,合成原料是甘氨酸和琥珀酰辅酶A。

人体中存在三种不同的血红素,分别称为血红素a、b、c。血红蛋白中的是血红素b,呼吸链中的细胞色素C含有血红素C,细胞色素A含有血红素A。这里介绍的是血红素b的合成。

血红素b是由卟啉(porphyrin)与亚铁离子络合生成的,所以首先要合成卟啉。此过程的第一步是在线粒体,由甘氨酸和琥珀酰辅酶A缩合,生成5-氨基乙酰丙氨酸(ALA)。ALA合成酶(ALAS)是此途径的限速酶,受血红素反馈抑制。

ALA从线粒体进入细胞质,2个分子缩合成一个胆色素原,由ALA脱水酶催化。4分子胆色素原首尾相连,形成线性四吡咯,再环化,改变侧链和饱和度,生成粪卟啉原III后再回到线粒体,生成原卟啉IX,与Fe2+螯合,生成血红素。

最后一步由铁螯合酶(FECH)催化。重金属可以抑制铁螯合酶,导致原卟啉与锌结合,生成锌原卟啉,使血液能发出荧光。血中锌原卟啉含量可作为铅中毒和铁缺乏的指标。

血红素合成和降解的中间产物有些是有色的,有些则无色。这些物质的命名有个规律,无色的化合物英文名都以-gen结尾,中文译为某某原,如胆色素原(phorphobilinogen);有色的则称某某素,英文均以-in结尾,如胆红素(bilirubin)。

卟啉合成中某些酶的缺陷会导致中间物积累,称为卟啉症。卟啉症的常见症状包括贫血导致的面色苍白,卟啉中间物沉积造成的牙齿变红、皮肤对日光过敏,以及神经系统异常,如癫痫等。这就是吸血鬼传说的原型。因为血红素可以被肠道吸收,所以吸血对卟啉症的确是有效的。另外,某些卟啉症会导致毛发过度生长,称为“狼人综合症”。

人体红细胞的寿命约为120天,所以每天约更新6克血红蛋白。其中的血红素需要分解排出,铁则尽量回收利用。血红素单加氧酶使血红素断裂,形成线性的胆绿素,放出CO。这是人体内源性CO的唯一来源,通过肺排出。胆绿素被还原生成胆红素,这是青肿伤痕变色的原因。胆红素在肝脏与2个葡萄糖醛酸结合,增加溶解度,从胆汁进入肠道排出。

⑩ 氨基酸衍生物类激素的分泌方式

1.蛋白质(大分子):——胞吞胞吐
2.激素有很多种,例如:
性激素是小分子脂溶性——自由扩散.
甲状腺激素是氨基酸衍生物,耗能.——主动运输,
其他一些大分子激素,大部分是——胞吞胞吐
3.神经递质为大分子物质(如乙酰胆碱、多巴胺),不能跨膜,也不会进入细胞,所以出去方式是——胞吐

阅读全文

与氨基酸衍生物如何产生相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:738
乙酸乙酯化学式怎么算 浏览:1403
沈阳初中的数学是什么版本的 浏览:1349
华为手机家人共享如何查看地理位置 浏览:1041
一氧化碳还原氧化铝化学方程式怎么配平 浏览:883
数学c什么意思是什么意思是什么 浏览:1407
中考初中地理如何补 浏览:1298
360浏览器历史在哪里下载迅雷下载 浏览:700
数学奥数卡怎么办 浏览:1386
如何回答地理是什么 浏览:1022
win7如何删除电脑文件浏览历史 浏览:1054
大学物理实验干什么用的到 浏览:1483
二年级上册数学框框怎么填 浏览:1698
西安瑞禧生物科技有限公司怎么样 浏览:968
武大的分析化学怎么样 浏览:1246
ige电化学发光偏高怎么办 浏览:1336
学而思初中英语和语文怎么样 浏览:1649
下列哪个水飞蓟素化学结构 浏览:1422
化学理学哪些专业好 浏览:1485
数学中的棱的意思是什么 浏览:1056