❶ 生化问题。。。请高人指点!! C12FA 是什么彻底氧化产生多少ATP
十二碳的脂肪酸,进行5次β氧化,生成5分子的FADH2,5分子的NADH、H+,6分子的乙酰辅酶A,则有5×(1.5+2.5)+6×10=80个ATP,但在脂肪酸活化过程耗去2分子的ATP,故净生成78个ATP~~~~~~~
❷ 公卫助理医师考试《生物化学》维生素知识点
2017年公卫助理医师考试《生物化学》维生素知识点
2017年公卫执业助理医师考试马上就要开始了,为了方便考生更好的复习生物化学科目为僧俗的知识。下面是我为大家带来的关于维生素的知识,欢迎阅读。
一、定义
维生素是机体必需的多种生物小分子营养物质。1894年荷兰人Ejkman用白米养鸡观察到脚气病现象,后来波兰人Funk从米糠中发现含氮化合物对此病颇有疗效,命名为vitamine,意为生命必须的胺。后来发现并非所有维生素都是胺,所以去掉词尾的e,成为Vitamin。
维生素有以下特点:
1.是一些结构各异的生物小分子;
2.需要量很少;
3.体内不能合成或合成量不足,必需直接或间接从食物中摄取;
4.主要功能是参与活性物质(酶或激素)的合成,没有供能和结构作用。水溶性维生素常作为辅酶前体,起载体作用,脂溶性维生素参与一些活性分子的构成,如VA构成视紫红质,VD构成调节钙磷代谢的激素。
二、分类
维生素的结构差异较大,一般按溶解性分为脂溶性和水溶性两大类。
脂溶性维生素 不溶于水,易溶于有机溶剂,在食物中与脂类共存,并随脂类一起吸收。不易排泄,容易在体内积存(主要在肝脏)。包括维生素A(A1,A2)、D(D2,D3)、E(α,β,γ,δ)、K(K1,K2,K3)等。
水溶性维生素 易溶于水,易吸收,能随尿排出,一般不在体内积存,容易缺乏。包括B族维生素和维生素C。
三、命名
维生素虽然是小分子,但结构较复杂,一般不用化学系统命名。早期按发现顺序及来源用字母和数字命名,如维生素A、维生素AB2等。同时还根据其功能命名为“抗…维生素”,如抗干眼病维生素(VA)、抗佝偻病维生素(VD)等。后来又根据其结构及功能命名,如视黄醇(VA1)、胆钙化醇(VD3)等。
四、人体获取维生素的途径
1.主要由食物直接提供 维生素在动植物组织中广泛存在,绝大多数维生素直接来源于食物。少量来自以下途径:
2.由肠道菌合成 人体肠道菌能合成某些维生素,如VK、VB12、吡哆醛、泛酸、生物素和叶酸等,可补充机体不足。长期服用抗菌药物,使肠道菌受到抑制,可引起VK等缺乏。
3.维生素原在体内转变 能在体内直接转变成维生素的物质称为维生素原。植物食品不含维生素A,但含类胡萝卜素,可在小肠壁和肝脏氧化转变成维生素A。所以类胡萝卜素被称为维生素A原。
4.体内部分合成 储存在皮下的7-脱氢胆固醇经紫外线照射,可转变成VD3。因此矿工要补照紫外线。人体还可利用色氨酸合成尼克酰胺,所以长期以玉米为主食的人由于色氨酸不足,容易发生糙皮病等尼克酰胺缺乏症。
五、有关疾病
机体对维生素的需要量极少,一般日需要量以毫克或微克计。维生素缺乏会引起代谢障碍,出现维生素缺乏症。过多也会干扰正常代谢,引起维生素过多症。因水溶性维生素容易排出,所以维生素过多症只见于脂溶性维生素,如长期摄入过量维生素A、D会中毒。
一、维生素A
维生素A又称抗干眼醇,有A1、A2两种,A1是视黄醇,A2是3-脱氢视黄醇,活性是前者的一半。肝脏是储存维生素A的场所。
植物中的类胡萝卜素是VA前体,一分子β胡萝卜素在一个氧化酶催化下加两分子水,断裂生成两分子VA1。这个过程在小肠粘膜内进行。类胡萝卜素还包括α、γ胡萝卜素、隐黄质、番茄红素、叶黄素等,前三种加水生成一分子VA1,后两种不生成VA1。
维生素A与暗视觉有关。维生素A在醇脱氢酶作用下转化为视黄醛,11-顺视黄醛与视蛋白上赖氨酸氨基结合构成视紫红质,视紫红质在光中分解成全反式视黄醛和视蛋白,在暗中再合成,形成一个视循环。维生素A缺乏可导致暗视觉障碍,即夜盲症。食用肝脏及绿色蔬菜可治疗。全反式视黄醛主要在肝脏中转变成11-顺视黄醛,所以中医认为“肝与目相通”。
维生素A的作用很多,但因缺乏维生素A的动物极易感染,所以研究很困难。已知缺乏维生素A时类固醇激素减少,因为其前体合成时有一步羟化反应需维生素A参加。另外缺乏维生素A时表皮黏膜细胞减少,角化细胞增加。有人认为是因为维生素A与细胞分裂分化有关,有人认为是因为维生素A与粘多糖、糖蛋白的合成有关,可作为单糖载体。维生素A还与转铁蛋白合成、免疫、抗氧化等有关。
维生素A过量摄取会引起中毒,可引发骨痛、肝脾肿大、恶心腹泻及鳞状皮炎等症状。大量食用北极熊肝或比目鱼肝可引起中毒。
二、维生素D
又称钙化醇,是类固醇衍生物,含环戊烷多氢菲结构。可直接摄取,也可由维生素D原经紫外线照射转化。植物油和酵母中的麦角固醇转化为D2(麦角钙化醇),动物皮下的7-脱氢胆固醇转化为D3(胆钙化醇)。
维生素D与动物骨骼钙化有关。钙化需要足够的钙和磷,其比例应在1:1到2:1之间,还要有维生素D的存在。
维生素D3先在肝脏羟化形成25-羟维生素D3,然后在肾再羟化生成1,25-(OH)2-D3。第二次羟化受到严格调控,平时只产生无活性的24位羟化产物,只有当血钙低时才有甲状旁腺素分泌,使1-羟化酶有活性。1,25-(OH)2-D3是肾皮质分泌的一种激素,作用于肠粘膜细胞和骨细胞,与受体结合后启动钙结合蛋白的合成,从而促进小肠对钙磷的吸收和骨内钙磷的动员和沉积。
食物中维生素D含量少,同时又缺乏紫外线照射的人易发生骨折。肝胆疾病、肾病、或某些药物也会抑制羟化。摄入过多也会引起中毒,发生迁移性钙化,导致肾、心、胰、子宫及滑膜粘蛋白钙化。高血钙也会导致肾结石,而骨骼却因钙被抽走而疏松软化。
三、维生素E
又称生育酚,含有一个6-羟色环和一个16烷侧链,共有8种其色环的取代基不同。α生育酚的活性最高。
存在于蔬菜、麦胚、植物油的非皂化部分,对动物的生育是必需的。缺乏时还会发生肌肉退化。生育酚极易氧化,是良好的脂溶性抗氧化剂。可清除自由基,保护不饱和脂肪酸和生物大分子,维持生物膜完好,延缓衰老。
维生素E很少缺乏,毒性也较低。早产儿缺乏会产生溶血性贫血,成人回导致红细胞寿命短,但不致贫血。
四、维生素K
天然维生素K有K1、K2两种,都由2-甲基-1,4-萘醌和萜类侧链构成。人工合成的K3无侧链。K1存在于绿叶蔬菜及动物肝脏中,K2由人体肠道细菌合成。
维生素K参与蛋白质谷氨酸残基的γ-羧化。凝血因子Ⅱ、Ⅶ、Ⅸ、Ⅹ肽链中的谷氨酸残基在翻译后加工过程中,由蛋白羧化酶催化,成为γ-羧基谷氨酸(Gla)。这两个羧基可络合钙离子,对钙的输送和调节有重要意义。有关凝血因子与钙结合,并通过钙与磷脂结合形成复合物,发挥凝血功能。这些凝血因子称为维生素K依赖性凝血因子。
缺乏维生素K时常有出血倾向。新生儿、长期服用抗生素或吸收障碍可引起缺乏。
一、硫胺素(VB1)
由一个取代的噻唑环和一个取代的嘧啶环组成,因噻唑环含硫,嘧啶环有氨基取代而得名。他就是Funk发现的vitamine。
硫胺素与ATP反应,生成其活性形式:硫胺素焦磷酸(TPP),即脱羧辅酶。其分子中氮和硫之间的碳原子性质活泼,易脱氢。生成的负碳离子有亲核催化作用。羧化辅酶作为酰基载体,是α酮酸脱羧酶的辅基,也是转酮醇酶的`辅基,在糖代谢中起重要作用。缺乏硫胺素会导致糖代谢障碍,使血液中丙酮酸和乳酸含量增多,影响神经组织供能,产生脚气病。主要表现为肌肉虚弱、萎缩,小腿沉重、下肢水肿、心力衰竭等。可能是由于缺乏TPP而影响神经的能源与传导。
硫胺素在糙米、油菜、猪肝、鱼、瘦肉中含量丰富。但生鱼中含有破坏B1的酶,咖啡、可可、茶等饮料也含有破坏B1的因子。
二、核黄素(VB2)
核黄素是异咯嗪与核醇的缩合物,是黄素蛋白的辅基。它有两种活性形式,一种是黄素单核苷酸(FMN),一种是黄素腺嘌呤二核苷酸(FAD)。这里把核黄素看作核苷,即把异咯嗪看作碱基,把核醇看作核糖。
异咯嗪的N1、N10能可逆地结合一对氢原子,所以可作为氧化还原载体,构成多种黄素蛋白的辅基,在三羧酸循环、氧化磷酸化、α酮酸脱羧、β氧化、氨基酸脱氨、嘌呤氧化等过程中起传递氢和电子的作用。
主要从食物中摄取,如谷类、黄豆、猪肝、肉、蛋、奶等,也可由肠道细菌合成。冬季北方缺少阳光,植物合成V-B2也少,常出现口角炎。缺乏V-B2还可引起唇炎、舌炎、贫血等。
三、泛酸(VB3)
也叫遍多酸,广泛存在,极少缺乏。由一分子β丙氨酸与一分子羧酸缩合而成。
泛酸可构成辅酶A,是酰基转移酶的辅酶。也可构成酰基载体蛋白(CAP),是脂肪酸合成酶复合体的成分。
四、吡哆素(VB6)
包括吡哆醇、吡哆醛和吡哆胺3种,可互相转化。吡哆素是吡啶衍生物,活性形式是磷酸吡哆醛和磷酸吡哆胺,是转氨酶、氨基酸脱羧酶的辅酶。磷酸吡哆醛的醛基作为底物氨基酸的结合部位,醛基的邻近羟基和对位氮原子还参与催化部位的构成。在转氨反应中,磷酸吡哆醛结合氨基酸,释放出相应的α酮酸,转变为磷酸吡哆胺,再结合α酮酸释放氨基酸,又变成磷酸吡哆醛。
缺乏V-B6可引起周边神经病变及高铁红细胞贫血症。因为5-羟色胺、γ-氨基丁酸、去甲肾上腺素等神经递质的合成都需要V-B6(氨基酸脱羧反应),而血红素前体的合成也需要V-B6。肉、蛋、蔬菜、谷类中含量较多。新生婴儿易缺乏。
五、尼克酰胺(VPP)
尼克酰胺和尼克酸分别是吡啶酰胺和吡啶羧酸,都是抗糙皮病因子,又称VPP。其活性形式有两种,尼克酰胺腺嘌呤二核苷酸(NAD)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP)。在体内先合成去酰胺NAD,再接受谷氨酰胺提供的氨基成为NAD,再磷酸化则成为NADP。
NAD和NADP是脱氢辅酶,分别称为辅酶Ⅰ和辅酶Ⅱ。二者利用吡啶环的N1和N4可逆携带一个电子和一个氢原子,参与氧化还原反应。辅酶Ⅰ在分解代谢中广泛接受还原能力,最终传给呼吸链放出能量。辅酶Ⅱ则只从葡萄糖及葡萄糖酸的磷酸酯获得还原能力,用于还原性合成及羟化反应。需要尼克酰胺的酶多达百余种。
人体能用色氨酸合成尼克酸,但合成率极低(60:1),而且需要B1、B2、B6,所以仍需摄取。抗结核药异烟肼的结构与尼克酰胺类似,两者有拮抗作用,长期服用异烟肼时应注意补充尼克酰胺。花生、豆类、肉类和酵母中含量较高。
尼克酸或烟酸肌醇有舒张血管的作用,可用于冠心病等,但可降低cAMP水平,使血糖及尿酸升高,有诱发糖尿病及痛风的风险。长期使用大量尼克酸可能损害肝脏。
六、生物素(biotin)
由杂环与戊酸侧链构成,又称维生素H,缺乏可引起皮炎。在生鸡蛋清中有抗生物素蛋白(avidin),能与生物素紧密结合,使其失去活性。
生物素侧链羧基可通过酰胺键与酶的赖氨酸残基相连。生物素是羧基载体,其N1可在耗能的情况下被二氧化碳羧化,再提供给受体,使之羧化。如丙酮酸羧化为草酰乙酸、乙酰辅酶A羧化为丙二酰辅酶A等都由依赖生物素的羧化酶催化。
花生、蛋类、巧克力含量最高。
以上六种维生素都与能量代谢有关。下面两种维生素与生血有关。
七、叶酸(folic acid,FA)
又称维生素M,由蝶酸与谷氨酸构成。活性形式是四氢叶酸(FH4),即蝶呤环被部分还原。四氢叶酸是多种一碳单位的载体,分子中的N5,N10可单独结合甲基、甲酰基、亚氨甲基,共同结合甲烯基和甲炔基。因此在嘌呤、嘧啶、胆碱和某些氨基酸(Met、Gly、Ser)的合成中起重要作用。缺乏叶酸则核酸合成障碍,快速分裂的细胞易受影响,可导致巨红细胞贫血(巨大而极易破碎)。
叶酸容易缺乏,特别是孕妇。叶酸分布广泛,肉类中含量丰富。苯巴比妥及口服避孕药等药物干扰叶酸吸收与代谢。
八、钴胺素(VB12)
是一个抗恶性贫血的维生素,存在于肝脏。分子中含钴和咕啉。咕啉类似卟啉,第六个配位可结合其他集团,产生各种钴胺素,包括与氢结合的氢钴胺素、与甲基结合的甲基钴胺素、与5’-脱氧腺苷结合的辅酶B12等。
一些依赖辅酶B12的酶类催化1,2迁移分子重排反应,即相邻碳原子上氢原子与某一基团的易位反应。例如在丙酸代谢中,催化甲基丙二酰辅酶A转变为琥珀酰辅酶A的变位酶就以辅酶B12为辅助因子。
甲基钴胺素可作为甲基载体,接受甲基四氢叶酸提供的甲基,用于合成甲硫氨酸。甲硫氨酸可作为通用甲基供体,参与多种分子的甲基化反应。因为甲基四氢叶酸只能通过这个反应放出甲基,所以缺乏钴胺素时叶酸代谢障碍,积累甲基四氢叶酸。缺乏钴胺素可导致巨红细胞贫血。
胃粘膜能分泌一种粘蛋白,可与V-B12结合,促进吸收,称为内因子。缺乏内因子时易被肠内细菌及寄生虫夺去,造成缺乏。素食者也易缺乏。
九、抗坏血酸(V-C)
是烯醇式L-古洛糖酸内酯,有较强的酸性。容易氧化,是强力抗氧化剂,也可作为氧化还原载体。
抗坏血酸还参与氨基酸的羟化。胶原中脯氨酸和赖氨酸的羟化都需要抗坏血酸作为酶的辅因子。缺乏抗坏血酸会影响胶原合成及结缔组织功能,使毛细血管脆性增高,发生坏血病。
肾上腺皮质激素的合成也需要V-C参加羟化。V-C可还原铁,促进其吸收;保护A、E及某些B族维生素免遭氧化。
五、辅酶Q
又称泛醌,广泛存在于线粒体中,与细胞呼吸链有关。泛醌起传递氢的作用。
六、硫辛酸
是酵母和一些微生物的生长因子,可以传递氢。有氧化型和还原型。
例题:
(一)A型题
l,下列关于维生素的叙述中,正确的是
A.维生素是一类高分子有机化合物
B.维生素是构成机体组织细胞的原料之一
C.酶的辅酶或辅基都是维生素
D.引起维生素缺乏的唯一原因是摄人量不足
E. 维生素在机体内不能合成或合成量不足
2,脂溶性维生素
A. 是一类需要量很大的营养素 B,易被消化道吸收
C. 体内不能储存,余者由尿排出
D,过少或过多都可能引起疾病
E. 都是构成辅酶的成分
3,维生素A除从食物中吸收外,还可在体内由
A. 肠道细菌合成 . B.肝细胞内氨基酸转变生成
C. β-胡萝卜素转变而来 D.由脂肪酸转变而来
E,由叶绿素转变而来
参考答案
1.E 2. D 3. C
;❸ 几个【生物化学】英文缩写!急急急!
FAD:黄素腺嘌呤二核苷酸
HnRNAG :核内不均一RNA 为存在于真核生物细胞核中的不稳定、大小不均的一组高分子RNA(分子量约为105~2×107,沉降系数约为30—100S)之总称。占细胞全部RNA之百分之几,在核内主要存在于核仁的外侧。认为hnRNA多属信使RNA(messenger ribonucleic acid,mRNA)之先驱体,包括各种基因的转录产物及其成为mRNA前的各中间阶段的分子,在5’末端多附有间隙结构,而3’的末端附有多聚腺苷酸聚合酶分子。这些hn-RNA在受到加工之后,移至细胞质,作为mRNA而发挥其功能。大部分的hnRNA在核内与各种特异的蛋白质形成复合体而存在着。
参考资料:http://ke..com/view/299730.htm?fr=ala0
His:代表组氨酸(Histidine)
NADP:烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate)
TPP:三苯基膦
FMN:
英文全称为:flavin mononucleotide,中文名:黄素单核苷酸
是黄素蛋白(flavoprotein)的辅基。
生物氧化时,氧化呼吸链由4中具有传递电子能力的复合体组成,线粒体内膜蛋白质用胆酸等去污剂处理及离子交换层析分离,磕纯化出内膜的呼吸链成分,得到这4中仍具有传的电子功能的蛋白质-酶复合体(complex),分别为复合体Ⅰ,复合体Ⅱ,复合体Ⅲ,复合体Ⅳ,各含有不同的组分。其中复合体Ⅰ又称为NADH-泛醌还原酶,在三羧酸循环和脂酸β-氧化等过程的脱氢酶催化反应中,大部分代谢物脱下的2H是由氧化型烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)接受,形成还原型烟酰胺腺嘌呤二核苷酸(NADH+H+)。NADH+H+的电子经复合体Ⅰ继续传递氧化。复合体Ⅰ由三部分组成,成“L“形,其一臂突出线粒体基质,由两部分组成,其中之一就是黄素蛋白。而FMN即为黄素蛋白的辅基。
参考资料:http://ke..com/view/2117062.htm?fr=ala0
❹ 求生物化学里名词的英文缩写
DNFB 2,4-二硝基氟苯
DNS-Cl 丹磺酰氯
FAD 黄素腺嘌呤二核苷酸
IU 国际酶活力单位
Vit 维他命
TPP 硫胺素焦磷酸
FH4 四氢叶酸
AMP 腺苷一磷酸
ADP 腺苷二磷酸
ATP 腺苷三磷酸
HA 透明质酸
CS 硫酸软骨素
KS 硫酸角质素
HS 硫酸类肝素
Hp 肝素
PG 蛋白聚糖
GPC 凝胶渗透层析
HPGPC 高效凝胶渗透层析
FA 不饱和脂肪酸
PG 前列腺素
LT 白三烯
MDA 丙二醛
TBA 硫代巴比妥酸
SOD 超氧化物歧化酶
GSHPX 谷胱甘肽过氧化物酶
PAF 血小板活化因子
PITC 苯异硫氰酸酯
PTC 苯氨基硫甲酰
PTH 苯异内酰硫脲
❺ 什么是生化危机
生化危机(日本名称:バイオハザード、Biohazard,欧美名称:Resident Evil),由日本CAPCOM公司推出的电子游戏系列作品,创始人为三上真司。除了电玩游戏外,还衍生出了漫画、小说、好莱坞电影等改编作品。截至2006年2月,系列的电玩作品总销售量已经超过三千万套。2007年为止,该系列共推出了六款正篇游戏作品,而第七和第八款作品正在开发中。
这款游戏是丧尸游戏的创始者,也可以说是开辟了收款的僵尸类游戏。 更详细的你可以再网络生化危机贴吧上找到答案
http://tieba..com/f?kw=%C9%FA%BB%AF%CE%A3%BB%FA
❻ PUFA在生物化学中式什么意思
鱼油多烯脂酸 (Polyunsaturated fatty acids;PU FA)是从鲐鱼 (Chub machrel)鱼油中分离提取的有效成份 ,主要有二十碳五烯酸 (EPA)和二十二碳六烯酸 (DHA) ,实验结果表明 PUFA可明显地抑制由二磷酸腺苷 (ADP)诱导的家兔和大鼠血小板聚集作用
❼ fa生化中是什么意思
是脂肪酸的意思。
脂肪酸,是指一端含有一个羧基的长的脂肪族碳氢链,是有机物,通式是C(n)H(2n+1)COOH。
低级的脂肪酸是无色液体,有刺激性气味,高级的脂肪酸是蜡状固体,无可明显嗅到的气味。
脂肪酸简介
脂肪酸是由碳、氢、氧三种元素组成的一类化合物,是中性脂肪、磷脂和糖脂的主要成分。
脂肪酸可分成两类:
一类是分子内不带碳碳双键的饱和脂肪酸,如硬脂酸、软脂酸等。
另一类是分子内带有一个或几个碳碳双键的不饱和脂肪酸,最常见的有油酸,油酸的碳链中只有一个碳碳双键,所以又叫单不饱和脂肪酸。
一般脂肪酸化合物的碳链都较短,其长度一般在18-36个碳原子,最少的就是12个碳原子,如月桂酸。
不管饱和的或不饱和的,生物体内脂肪酸的碳原子数大多是偶数,极少含有奇数碳原子,尤其是在高等动植物体内主要存在12碳以上的高级脂肪酸,一般在14-24个碳,以16和18碳脂肪酸最为常见。
以上内容参考:网络-脂肪酸
❽ 关于生化问题!!!急需!!!!
1.依赖TPP-丙酮酸脱氢酶(TPP-dependent pyruvate dehydrogenase),又称丙酮酸:硫辛酸氧化还原酶(pyruvate:lipoate oxido-rectase),其辅基为TPP。它的功用是催化丙酮酸脱羧和催化硫辛酸还原。
2.二氢硫辛酸转乙酰基酶(dihydrolipoyl transacetylase),又称硫辛酸转乙酰基酶(lipoateacetyl-transferase),其辅基为硫辛酰胺,其功用为将乙酰基转移给CoA,产生还原型硫辛酰胺(即硫辛酸-酶复合物)。
3.二氢硫辛酸脱氢酶(dihydrolipoyl dehydrogenase),又称硫辛酰胺脱氢酶(lipoamide dehydrogenase),或NADH:硫辛酰胺氧化还原酶(NADH:lipoamide oxidorectase)。其辅基为FAD,是一种黄素蛋白。能利用FAD和NAD+。其功用能使二氢硫辛酰胺氧化回
到硫辛酰胺。哺乳类的丙酮酸脱氢酶系还包括有激酶和磷酸酯酶。在丙酮酸脱氢酶系反应中,不同场合需要NAD+、FAD硫胺素焦磷酸(TPP)、氧化型硫
由丙酮酸到乙酰CoA的总反应可表示如下式:
上式反应的中间过程很复杂,硫胺素焦磷酸和硫辛酸在从丙酮酸到乙酰CoA的过程中都有重要作用。学习这段反应机理时,应参考本书酶化学章的辅酶一节。根据现有的科学证据可能包括下列4个步骤:
脱羧:这一步反应极为复杂,首先是丙酮酸与TPP加合成为不稳定的络合物,后者经丙酮酸脱氢酶催化生成羟乙基硫胺素焦磷酸(CH3CHOH-TPP)。
式中R=嘧啶环,PPi=焦磷酸根。
②与硫辛酸结合形成乙酰基:这一步反应包括与TPP连接的羟乙基氧化成乙酰基并同时转移给硫辛酸-酶复合物,即硫辛酰胺(lipoamide),产生乙酰硫辛酸-酶复合物,又称乙酰硫辛酰胺(acetyllipoamide)。参加这一反应的酶为二氢硫辛酸转乙酰基酶(dihydrolipoyl transacetylase 又称lipoate acetyltransferase)。
③转酰基:
④再生: 还原型硫辛酸脱氢,脱出的氢由FAD接受生成FADH2,FADH2被NAN+氧化成FAD。与此同时产生NADH+H+,参加这一反应的酶为二氢硫辛酰胺脱氢酶(dihydrolipoyl dehydrogenase又称lipoamide dehydrogenase)。
最后FADH2被NAD+再氧化。
式中方括号内的-SHS-和-S-S-表示脱氢酶分子中的-SHS-和-S-S-基团同辅基FAD共同参加电子传递。关于这一反应的作用机制,目前认为FAD的异咯嗪与硫辛酸脱氢酶分子中的二硫基团(由半胱氨酸形成的-S-S-基团)协同接受由二氢硫辛酰胺(即还原型硫辛酰胺)释出的电子。在此过程中,最初由FAD的异咯嗪部分接受一个电子变为带负离子的半醌(semiquinone)型,脱氢酶的-S-S-基团接受一个电子被还原。最后NAD+将两个电子一齐接受而产生氧化型脱氢酶-FAD复合物。这些反应说明为什么NAD+能接受由FADH2释出的电子,可表示如图9-15。
❾ 这个是什么标志啊,在生化电影里经常看
具有污(传)染性的生物化学制品的危险警告标志,
一般正规医院都会在特定的位置标示的,比如放医疗垃圾的地方就会有这个标志
生化危机类的电影《惊变28天》的海报上就有这个标志
❿ 吃糖会发胖的生化原理
糖原是人体供能的基本单位,身体对糖分的吸收速度非常快,以备突发释放,而脂肪的消耗只有当糖原无法足量供应时,才会大量出动,因此,减少糖分的摄入才是减肥的首选。
糖分对于人们来说就如一种“另类毒品”,可以无限摄入,但是又具有上瘾性,因此在市面上几乎没有什么产品不含糖分,这样更能促进大家的购买欲。
你可能对此感到疑惑,感觉自己不爱吃糖,但也发胖,这是为什么?
明确一点,糖分一定是无处不在的,即使你品尝不出甜味,但不意味着这个食品不含糖。
例如,西红柿炒蛋要放糖,红烧肉要放糖,布丁要烤糖,运动饮品有葡糖糖,奶茶有果糖,水果有单糖和双糖,米饭由淀粉组成,淀粉属于多糖,也是由糖组成的等等,糖分藏在了你生活的点点滴滴。因此,对于食物糖分的摄入,我们还是要多加小心。
糖分是最直接的、易转化为脂肪的物质。
糖分除了引起肥胖外,它的侵害性也比较严重,那就是糖化现象。糖化现象具体表现为:糖类与肌肤的胶原蛋白反应,产生“胶原蛋黄AGEs”,肌肤变得暗黄松弛,并且引发痘痘的生长,就如五花肉变成红烧肉。糖分摄入过多的人,人也会显老很多。