Ⅰ 如何计算生物基因频率
1.理想状态下种群基因频率的计算
种群后代中出现三种基因型AA、Aa、aa,并且三种基因型出现的频率分别为P(AA)= p×p= p2=D;P(Aa)=2p×q=2pq=H; P(aa)= q×q = q 2=R.且它们的频率之和为p2+2pq+q2=(p+q)2=1.其基因频率为A基因的频率P(A)=D+1/2H= p2+ pq=p(p+q)=p;a基因的频率P(a)= R+1/2H=q2+ pq=q(p+q)=q.可见子代基因频率与亲代基因频率一样.所以,在以后所有世代中,如果没有突变、迁移和选择等因素干扰,这个群体的遗传成分将永远处于p2+ 2pq+q2平衡状态.伴性基因和多等位基因遗传平衡的计算仍遵循上述规律.运用此规律,已知基因型频率可求基因频率;反之,已知基因频率可求基因型频率.
Ⅱ 高中生物遗传概率计算问题
这是一道基因频率的习题。一般人群男女人数各占一半,所以男性携带者的概率是人群中携带者概率的一半。基因频率符合一个公式,如果设A基因频率为p,a基因频率为q,则它们的关系符合(p+q)的平方等于1,(p+q)的平方的展开式中p的平方即为AA的概率,2pq即为Aa的概率,q的平方为aa的概率。(注:平方我不会标注,只好写汉字了)
Ⅲ 高中生物 如何计算PpQqXppqq后代基因型比例
1:1:1:1
1.因为是测交所以是1:1:1:1
2.Pp和pp后代基因型此为1:1
Qq和qq也是1:1
所以(1:1)×(1:1)=1:1:1:1
Ⅳ 高中生物遗传计算公式(p+q)^2=p^2+2pq+q^2表示什么
哈迪-温伯格定律,又称群体平衡法则,其要点如下:1.在随机交配的大群体中,若没有选择突变和迁移等因素的影响,则各个世代的基因频率会保持不变;2.在一个大群体内,不论起始群体的基因频率和基因型频率是多少,在经过一代随机交配后,基因频率与基因型频率在世代间保持恒定,群体处于遗传平衡状态,这种群体就叫做遗传平衡群体它所处的状态就叫做哈迪温伯格平衡。处于哈迪温伯格平衡状态的群体中基因频率与基因型频率存在的关系就是是上式,如p代表A基因的基因频率,q代表a基因的基因频率,那么AA的基因型频率就是p的平方,Aa的基因型频率就是2pq,aa的基因型频率便是q的平方。
Ⅳ 生物基因频率的完全平方公式
生物基因频率的完全平方公式:
B的基因频率为p,b的基因频率为q,则(p+q)=1
(p+q)2=p2+2pq+q2
则BB的基因型频率为,Bb的基因型频率为2pq,bb的基因型频率为q2。
基因频率,是指某种基因在某个种群中出现的比例.对于基因频率的计算方法如下:
1、通过基因型个数计算基因频率
方法:某种基因的基因频率=此种基因的个数/(此种基因的个数+其等位基因的个数)
例1:在一个种群中随机抽取100个个体,测知基因型为AA、Aa和aa的个体分别是30、60和10个.求基因A与a的频率是多少?
解析:就A与a这对等位基因来说,每个个体可以看做含有2个基因.那么,这100个个体共有200个基因,其中,A基因有2×30+60=120个,a基因有2×10+60=80个.于是,在这个种群中,
A基因的基因频率为: 120÷200=60%
a基因的基因频率为: 80÷200=40%
2、通过基因型频率计算基因频
方法:某种基因的基因频率=某种基因的纯合体频率+1/2杂合体频率
例2:在一个种群中随机抽出一定数量的个体,其中,基因型为AA的个体占18%,基因型为Aa的个体占78%,aa的个体占4%.基因A和a的频率分别是:
A.18%、82% B.36%、64% C.57%、43% D.92%、8%
该题答案为C.
[解析1]:A基因的基因频率为:18% +78%×1/2=57%
a基因的基因频率为: 4%+78%×1/2=43%
[解析2]:先把题目转化为基因型个数(即第一种计算方法).不妨设该种群为100个个体,则基因型为AA、Aa和aa的个体分别是18、78和4个.就这对等位基因来说,每个个体可以看做含有2个基因.那么,这100个个体共有200个基因,其中,A基因有2×18+78=114个,a基因有2×4+78=86个.于是,在这个种群中,
A基因的基因频率为: 114÷200=57% ,a基因的基因频率为:86÷200=43%
也可以先算出一对等位基因中任一个基因的频率,再用1减去该值即得另一个基因的频率.
例3:据调查,某地人群基因型为XBXB的比例为42.32%、XBXb为7.36%、XbXb为0.32%、XBY为46%、XbY为4%,求在该地区XB和Xb的基因频率分别为
[解析]取100个个体,由于B和b这对等位基因只存在于X染色体上, Y染色体上无相应的等位基因.故基因总数为150个,而XB和Xb基因的个数XB、Xb分别为42.32×2+7.36+46=138,7.36+0.32×2+4=12,再计算百分比.XB、Xb基因频率分别为138/150=92%,12/150=8%
3、根据遗传平衡定律计算基因频率
遗传平衡定律:一个群体在符合一定条件的情况下,群体中各个体的比例可从一代到另一代维持不变.
遗传平衡定律是由Hardy和Weinberg于1908年分别应用数学方法探讨群体中基因频率变化所得出一致结论.符合遗传平衡定律的群体,需满足的条件:(1)在一个很大的群体中;(2)随机婚配而非选择性婚配;(3)没有自然选择;(4) 没有突变发生;(5)没有大规模迁移.群体的基因频率和基因型频率在一代一代繁殖传代中保持不变.
这样,用数学方程式可表示为:
(p+q)2=1,p2+2pq+q2=1,p+q=l.其中p代表一个等位基因的频率,q代表另一个等位基因的频率.运用此规律,已知基因型频率可求基因频率;反之,已知基因频率可求基因型频率.
例4:某人群中每10000人中有一白化病患者(aa),问该人群中带有a基因的杂合体概率是
[解析]:已知基因型aa的频率为1/10000则基因a的频率q= 0.01,基因A的频率p=1-0.01=0.99,则基因型Aa的频率为2pq=2×0.99×0.01=0.0198
例5:若在果蝇种群中,XB的基因频率为80%,Xb的基因频率为20%,雌雄果蝇数相等,理论上XbXb、XbY的基因型频率依次为( )
A.1% 2% B.8% 8% C. 2% 10% D.2% 8%
[解析]:雌性果蝇XbXb的基因型频率按照遗传平衡定律计算,为Xb的平方,即4%,但雌雄性比为1:1,则XbXb的频率为4%×1/2=2%.
由于雄性果蝇只有一条X性染色体,则雄果蝇的X基因频率就是基因型频率,为20%,但雌雄性比为1:1,则XbY的频率为20%×1/2=10%。
Ⅵ 高中生物基因频率计算
设致病基因频率为P,则非致病频率为q(p+q=1).则正常人群的概率为1-p^2(根据基因频率公式)携带者的频率为2pq,所以2pq/(1-P^2)=1/22,展开解得p=1/43,望采纳,么么哒^-^
Ⅶ 高中生物计算的所有公式
)F1产生的两种雌雄配子的几率都是1/2;
(2)在F2代中,共有3种基因型,其中纯合子有2种(显性纯合子和隐性纯合子),各占1/4,共占1/2,杂合子有一种,占1/2;
(3)在F2代中,共有2种表现型,其中显性性状的几率是3/4,隐性性状的几率是1/4,在显性性状中,纯合子的几率是1/3,杂合子的几率是2/3.
(4)一对等位基因的杂合子连续自净n代,在Fn代中杂合子占(1/2)n,纯合子占1-(1/2)n
2.两对相对性状的杂交实验中:
(1)F1双杂合子产生四种雌雄配子的几率都是1/4;
(2)在F2中,共有9种基因型,各种基因型的所占几率如下表:
F2代基因型的类型 对应的基因型 在F2代中出现的几率
纯合子 YYRR、YYrr、yyRR、yyrr 各占1/16
杂合子 一纯一杂 YYRr、yyRr、YyRR、Yyrr 各占2/16
双杂合 YyRr 占4/16
(3)在F2代中,共有四种表现型,其中双显性性状有一种,几率为9/16(其中的纯合子1种,占1/9,一纯一杂2种,各占2/9,双杂合子1种,占4/9),一显一隐性状有2种,各占3/16(其中纯合子2种,各占1/6,一纯一杂2种,各占2/6),共占6/16,双隐性性状有一种,占1/16.
3.配子的种类数=2n种(n为等位基因的对数).
4.分解组合法在自由组合题中的应用:
基因的自由组合定律研究的是控制两对或多对相对性状的基因位于不同对同源染色体上的遗传规律.由于控制生物不同性状的基因互不干扰,独立地遵循基因的分离定律,因此,解这类题时我们可以把组成生物的两对或多对相对性状分离开来,用基因的分离定律一对对加以研究,最后把研究的结果用一定的方法组合起来,即分解组合法.这种方法主要适用于基因的自由组合定律,其大体步骤是:
●先确定是否遵循基因的自由组合定律.
●分将所涉及的两对(或多对)基因或性状分离开来,一对对单独考虑,用基因的分离定律进行研究.
●组合:将用分离定律研究的结果按一定方式进行组合或相乘.
三、基因突变和染色体变异的有关计算:
1.正常细胞中的染色体数=染色体组数×每个染色体组中的染色体数
2.单倍体体细胞中的染色体数=本物种配子中的染色体数=本物种体细胞中的染色体数÷2
3.一个种群的基因突变数=该种群中一个个体的基因数×每个基因的突变率×该种群内的个体数.
四、基因频率和基因型频率的计算:
1.求基因型频率:
设某种群中,A的基因频率为p,a的基因频率为q,则AA、Aa、aa的基因型频率的计算方法为:
p+q=1,(p+q)2=1,p2+2pq+q2=1,即AA+2Aa+aa=1,所以AA%=p2,Aa%=2pq,aa%=q2.
说明:此结果即“哈代-温伯格定律”,此定律需要以下条件:①群体是极大的;②群体中个体间的交配是随机的;③没有突变产生;④没有种群间个体的迁移或基因交流;⑤没有自然选择.因此这个群体中各基因频率和基因型频率就可一代代稳定不变,保持平衡.
2.求基因频率:
(1)常染色体遗传:
●通过各种基因型的个体数计算:一对等位基因中的一个基因频率=(纯合子的个体数×2+杂合子的个体数)÷总人数×2
●通过基因型频率计算:一对等位基因中的一个基因频率=纯合子基因型频率+1/2×杂合子基因型频率
(2)伴性遗传:
●X染色体上显性基因的基因频率=雌性个体显性纯合子的基因型频率+雄性个体显性个体的基因型频率+1/2×雌性个体杂合子的基因型频率.隐性基因的基因型频率=1-显性基因的基因频率.
●X染色体上显性基因的基因频率=(雌性个体显性纯合子的个体数×2+雄性个体显性个体的个体数+雌性个体杂合子的个体数)÷雌性个体的个体数×2+雄性个体的个体数).隐性基因的基因型频率=1-显性基因的基因频率.
(3)复等位基因:
对哈迪-温伯格定律做相应调整,公式可改为:(p+q+r)2=p2+q2+r2+2pq+2pr+2qr=1,p+q+r=1.p、q、r各复等位基因的基因频率.
Ⅳ.生物与环境的相关计算
1.关于种群数量的计算:
(1)用标志重捕法来估算某个种群数量的计算方法:
种群数量[N]=第一次捕获数×第二次捕获数÷第二捕获数中的标志数
(2)据种群增长率计算种群数量:
设种群的起始数量为N0,年增长率为λ(保持不变),t年后该种群的数量为Nt,则:
Nt=N0λt
2.能量传递效率的计算:
(1)能量传递效率=上一个营养级的同化量÷下一个营养级的同化量×100%
(2)同化量=摄入量-粪尿量
Ⅷ 生物遗传计算
某常染色体隐性遗传病在人群中的发病率为1%”,假设该病患者基因型为aa,则aa基因型的频率为1%,也就是说q2 =1%,那么,a的基因频率q=1/10。“现有一对表现正常的夫妇,妻子为该常染色体遗传病致病基因和色盲致病基因携带者”,那么妻子的基因型可以肯定是AaXBXb。那么丈夫的基因型只可能是AAXBY或者AaXBY两者之一。(p+q)2=p2+2pq+q2=1,可以推算出:a的基因频率q=1/10,则A的基因频率p=9/10,AA基因型的频率p2=81%,Aa基因型的频率2pq =18%。现在丈夫的表现正常,因此排除了其基因型为aa的可能性。于是,丈夫的基因型为AaXBY的概率=2pq/(p2+2pq)=2/11由此得出结果:妻子的基因型可以肯定是AaXBXb丈夫的基因型为AaXBY的概率=2/11基因型为AaXBY与AaXBXb的夫妇,其后代同时患上述两种遗传病的概率=1/4X1/4=1/16再把丈夫的基因型为AaXBY的概率=2/11一起算上,即,1/16X2/11=1/88
Ⅸ 高中生物基因型频率公式是什么
在群体遗传学中基因型频率指在一个种群中某种基因型的所占的百分比。它可以这样表示:比较等位基因频率,哈蒂-温伯格定律预测在特定条件下得知等位基因频率时可以这样计算基因型频率:(p为A的等位基因频率,q为a的等位基因频率)。
遗传平衡定律:
①一个无穷大的群体在理想情况下进行随机交配,经过多代,仍可保持基因频率与基因型频率处于稳定的平衡状态。
②在一对等位基因的情况下,基因p(显性)与基因q(隐形)的基因频率的关系为:
(p+q)^2=1
二项展开得:p^2+2pq+q^2=1
可见,式中"p^2"为显性纯合子的比例,2pq为杂合子的比例,"q^2"为隐形纯合子的比例。
哈代-温伯格定律在多倍体等更加复杂的情况下也可应用。
基因型频率
基因型频率是指某种基因型个体占该群体个体总数的比率。根据群体中各基因型个体的数量可计算出不同基因型的频率。例如:某一群体的个体总数为1000,其中AA个体为400,Aa个体为500,aa个体为100。那么三种基因型的频率:[AA]=400/1000=0.40;[Aa]=500/1000=0.50;[aa]=100/1000=0.10。
以上内容参考:网络-基因频率
Ⅹ 如何计算生物中等位基因的频率
1关于常染色体遗传基因频率的计算
由定义可知,某基因频率=某基因的数目/该基因的等位基因总数×100%。若某二倍体生物的常染色体的某一基因位点上有一对等位基因A、a,他们的基因频率分别为p、q,可组成三种基因型AA、Aa、aa,基因型频率分别为D、H、R,个体总数为N,AA个体数为n1 ,Aa个体数为n2 ,aa个体数为n3 ,n1+n2+n3=N。那么:
基因型AA的频率=D=n1/N,n1=ND;
基因型Aa的频率=H=n2/N,n2=NH;
基因型aa的频率=R=n3/N,n3=NR;
基因A的频率P(A)=(2n1+n2)/2N=(2ND+NH)/2N=D+1/2·H=p
基因a的频率P(a)=(2n3+n2)/2N=(2NR+NH)/2N=R+1/2·H=q
因为p+q=1所以D+1/2H+R+1/2H= D+R+H=1
由以上推导可知,
①常染色体基因频率的基本计算式:
某基因频率=(2×该基因纯合子个数+1×杂合子个数)/2×种群调查个体总数
②常染色体基因频率的推导计算式:
某基因频率=某种基因的纯合子频率+1/2杂合子频率
例题:从某个种群中随机抽出100个个体,测知基因型为AA、Aa和aa的个体分别是30、60和10个。求这对等位基因的基因频率。
解法一:
先求出该种群等位基因的总数和A或a的个数。100个个体共有200个基因;其中,A基因有2×30+60=120个,a基因有2×10+60=80个。然后由常染色体基因频率的基本式计算求得:
A基因的频率为:120÷200=60%
a基因的频率为:80÷200=40%
解法二:
由题意可知,AA、Aa和aa的基因型频率分别是30%、60%和10%,由常染色体基因频率的推导式计算求得:
A基因的频率为:30%+1/2×60%=60%
a基因的频率为:10%+1/2×60%=40%
变式1:已知人眼的褐色(A)对蓝色(a)是显性,属常染色体上基因控制的遗传。在一个30000人的人群中,蓝眼的有3600人,褐眼的有26400人,其中纯合子有12000人,那么,这一人群中A和a基因的基因频率分别为(E)
A.64%和36% B.36%和64% C.50%和50% D.82%和18% E.58%和42%
变式2:在一个种群中随机抽出一定数量的个体,其中,基因型为BB的个体占40%,基因型为Bb的个体占50%,基因型为bb的个体占10%,则基因B和b的频率分别是(B)
A. 90%,10% B. 65%,35% C. 50%,50% D. 35%,65%
2.2关于X或Y染色体遗传基因频率的计算
对于伴性遗传来说,位于X、Y同源区段上的基因,其基因频率计算与常染色体计算相同;而位于X、Y非同源区段上的基因,伴X染色体遗传,在Y染色体上没有该基因及其等位基因。同理伴Y染色体遗传,在X染色体上也没有其对等的基因。所以在计算基因总数时,应只考虑X染色体(或Y染色体)上的基因总数。若某二倍体生物的X染色体的某一基因位点上有一对等位基因B、b,他们的基因频率分别为p、q,可组成五种基因型XBXB、XBXb、XbXb 、XBY和XbY,基因型频率分别为E、F、G 、H和I,个体总数为N,XBXB个体数为n1 ,XBXb个体数为n2 ,XbXb个体数为n3 ,XBY个体数为n4、XbY个体数为n5。且n1+n2+n3=n4+n5那么:
E=n1 /N、 F=n2 /N、G=n3 /N、H=n4 /N、 I=n5 /N;
p(B)=(2n1 +n2 +n4)/[2(n1+n2+n3)+(n4+n5)]=(2n1 +n2 +n4)/1.5N=2/3(2E+F+H)
p(b)=(2n3 +n2 +n5)/ [2(n1+n2+n3)+(n4+n5)]=(2n3 +n2 +n5)/ 1.5N=2/3(2G+F+I)
由以上推导可知,
①X染色体基因频率的基本计算式:
某基因频率=(2×该基因雌性纯合子个数+雌性杂合子个数+雄性含该基因个数)/(2×雌性个体总数+雄性个体数)
②X染色体基因频率的推导计算式:
某种基因的基因频率=2/3(2×某种基因雌性纯合体频率+雌性杂合体频率+雄性该基因型频率)(雌、雄个体数相等的情况下)
例题:从某个种群中随机抽出100个个体,测知基因型为XBXB、XBXb、XbXb和XBY、XbY的个体分别是44、5、1和43、7。求XB和Xb的基因频率。
解法一:
就这对等位基因而言,每个雌性个体含有2个基因,每个雄性个体含有1个基因(Y染色体上没有其等位基因)。那么,这100个个体共有150个基因,其中雌性个体的基因有2×(44+5+1)=100个,雄性个体的基因有43+7=50个。而XB基因有44×2+5+43=136个,基因Xb有5+1×2+7=14个。于是,根据X染色体基因频率的基本式计算求得:
XB的基因频率为:136÷150≈90.7%
Xb的基因频率为:14÷150≈9.3%
解法二:
由题意可知,XBXB、XBXb、XbXb和XBY、XbY的基因型频率分别 44%、5%、1%和43%、7%,因为雌性、雄性个体的基因型频率各占50%,于是,由X染色体基因频率的推导式计算求得:
XB基因的基因频率=2/3×(2×44%+5%+43%)≈90.7%
Xb基因的基因频率=2/3×(2×1%+5%+7%)≈9.3%
变式1:某工厂有男女职工各200名,调查发现,女性色盲基因的携带者为15人,患者5人,男性患者11人。那么这个群体中色盲基因的频率是(B)
A. 4.5% B. 6% C. 9% D. 7.8%
解法:色盲基因(a隐性)数=5*2+15+11,非色盲基因(A,显性)和色盲基因总和=200*2+200,因此色盲基因的频率为36/600=0.06
变式2:对欧洲某学校的学生进行遗传调查时发现,血友病患者占0.7%(男∶女=2∶1);血友病携带者占5%,那么,这个种群的X的频率是( C )
A.2.97%B.0.7%C.3.96%D.3.2%
解析:
方法一:这里首先要明确2:1为患者中男女的比例,人群中男女比例为1:1。假设总人数为3000人。则男患者为3000×0.7%×2/3=14,女患者为3000×0.7%×1/3=7。携带者为3000×5%=150。则X的频率=(14+7×2+150)/(1500×2+1500)=3.96%。
方法二:人群中男女比例为1:1,根据X染色体基因频率的推导式计算求得:
X的频率=2/3(0.7%×1/3×2+0.7%×2/3+5%)=3.96%。
答案:选C。
总之,尽管基因频率的计算类型复杂多样,其思维方法又迥然各异,但是我们只要把握住基因频率计算的条件和方法规律,弄清原委并灵活运用,就能准确地计算出正确的答案。
主要参考文献
1.李 难.进化论教程.北京:高等教育出版社,1990.9:244—276.
2.朱正威,赵占良.普通高中课程标准实验教科书生物必修2遗传与进化.北京:人民教育出版社,2007:115
定律
哈代-温伯格定律
也称“遗传平衡定律”,1908年,英国数学家戈弗雷·哈罗德·哈代(Godfrey Harold Hardy)最早发现并证明这一定律;1909年,德国医生威廉·温伯格(Wilhelm Weinberg)也独立证明此定律,故得名哈代-温伯格定律。
主要用于描述群体中等位基因频率以及基因型频率之间的关系。内容为:
①一个无穷大的群体在理想情况下进行随机交配,经过多代,仍可保持基因频率与基因型频率处于稳定的平衡状态[1] 。
②在一对等位基因的情况下,基因p(显性)与基因q(隐形)的基因频率的关系为:
(p+q)^2=1
二项展开得:p^2+2pq+q^2=1
可见,式中p^2为显性纯合子的比例,2pq为杂合子的比例,q^2为隐形纯合子的比例。
哈代-温伯格定律在多倍体等更加复杂的情况下也可应用。
[例1]一个种群中AA个体占30%,Aa的个体占60%,aa的个体占10%。计算A、a基因的频率。
[剖析]A基因的频率为30%+1/2×60%=60%
a基因的频率为10%+1/2×60%=40%
[答案]60% 40%
相关结论:种群中一对等位基因的频率之和等于1,种群中基因型频率之和也等于1。基因频率的变化,导致种群基因库的变迁,所以说,生物进化实质上就是种群基因频率发生变化的过程。