导航:首页 > 生物信息 > 生物质燃料指标标准有哪些

生物质燃料指标标准有哪些

发布时间:2023-01-10 20:41:22

① 2016年生物质锅炉新排放标准

生物质锅炉以“第四大能源”而着称,作为一种新型的环保设备,从原材料的使用上便开始遵循“节能”,其材料主要是以废旧的麦秸秆等为主,无论是从质量还是从污染排放量上都会有很大的降低。
关于生物质锅炉项目废气排放执行标准问题,根据环保部《关于生物质成型燃料有关问题的复函》(环办函[2009]797号),对生物质成型燃料在燃烧过程中的大气污染排放提出了严格的标准:“应以燃气的排放标准来要求”生物质成型燃料,尽可能减少大气污染。
1、气体排放标准
据专家分析,生物质燃料锅炉燃烧后可实现CO2零排放,NOx微量排放,SO2排放量小于33.6mg/m3,烟尘排放量低于46mg/m3,相比燃煤、燃油锅炉来讲,其污染指数已经很低。根据国家对于大气污染物排放控制指标显示,锅炉排放标准为:SO2≤100mg/m3、烟尘≤100mg/m3,因此生物质锅炉排放标准符合控制指标,并且排放浓度远远低于国家标准。
2、固体排放
生物质锅炉除了排放气体以外,还有固体的排出,其固体主要成分是燃烧后的灰分。燃料包含70%左右的纤维含量,含硫量不到碳含量的1/10,硫硫和氯含量均小于0.07%,氮含量小于0.5%,因此固体灰分的含量也比较低,符合国家排放标准。
3、单台出力65t/h以上采用甘蔗渣、锯末、树皮等生物质燃料的发电锅炉,参照《火电厂大气污染物排放标准》(GB13223-2003)规定的资源综合利用火力发电锅炉的污染物控制要求执行。
4、单台出力65t/h及以下采用甘蔗渣、锯末、树皮等生物质燃料的发电锅炉,参照《锅炉大气污染物排放标准》(GB13271-2001)中燃煤锅炉大气污染物最高允许排放浓度执行。
5、有地方排放标准且严于国家标准的,执行地方排放标准。
6、引进国外燃烧设备的项目,在满足我国排放标准前提下,其污染物排放限值应达到引进设备配套污染控制设施的设计运行值要求。

河北浩瀚农牧机械制造有限公司

② 生物质燃料到达什么标准最好

生物质燃料发热量的检测方法:

1 范围
本标准规定了生物质燃料的高位发热量的测定方法和低位发热量的计算方法

2 单位和定义
2.1 热量单位
热量的单位为焦耳(J)
1焦耳(J)=1牛顿(N)×1米(m)=1牛·米(N·m)
发热量测定结果以兆焦每千克(MJ/kg)或焦耳每克(J/g)表示。
2.2 弹筒发热量
单位质量的固体生物质燃料在充有过量氧气的氧弹内燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、硝酸和硫酸、液态水以及固态灰时放出的热量称为弹筒发热量。
2.3 恒容高位发热量
单位质量的固体生物质燃料在充有过量氧气的氧弹内燃烧,其燃烧产物组成为氧气、氮气、二氧化碳、二氧化硫、液态水和固态灰,且所有产物都在标准温度下所放出的热量。
恒容高位发热量即由弹筒发热量减去硝酸生成热和硫酸校正热后得到的发热量。
2.4 恒容低位发热量
单位质量的固体生物质燃料在恒容条件下燃烧,在燃烧产物中所有的水都保持气态水的形态(0.1MPa),其它产物与恒容高位发热量相同,并都在标准温度下的固体生物质燃料的发热量。
2.5 恒压低位发热量
单位质量的固体生物质燃料在恒压条件下燃烧,在燃烧产物中所有的水都保持气态水的形态(0.1MPa),其它产物与恒压高位发热量相同,并都在标准温度下的固体生物质燃料的发热量。
2.6 热量计的有效热容量
量热系统产生单位温度变化所需的热量(简称热容量)。通常以焦耳每开尔文(J/K)表示。

3 原理
3.1 高位发热量
生物质的发热量在氧弹热量计中进行测定。一定量的分析试样在氧弹热量计中,进行过量氧气燃烧,氧弹热量计的热容量通过在相近条件下燃烧一定量的基准量热物苯甲酸来确定,根据试样燃烧前后量热系统产生的温升,并对点火热等附加热进行校正后即可求得试样的弹筒发热量。
从弹筒发热量中扣除硝酸生成热和硫酸校正热(硫酸与二氧化硫形成热之差)即得高位发热量。
3.2 低位发热量
生物质的恒容低位发热量和恒压低位发热量可以通过分析试样的高位发热量计算。计算恒容低位发热量需要知道固体生物质样中水分和氢的含量。原则上计算恒压低位发热量还需知道固体生物质燃料样中氧和氮的含量。

4 实验室条件
4.1 进行发热量测定的实验室,应为单独房间,不得在同一房间内同时进行其他试验项目。
4.2 室温应保持相对稳定,每次测定室温变化不超过1℃,室温以不超过15℃~30℃范围为宜。
4.3 室内应无强烈的空气对流,因此不应有强烈的热源、冷源和风扇等,试验过程中应避免开启门窗。
4.4 实验室最好朝北,以避免阳光照射,否则热量计应放在不受阳光直射的地方。

5 试剂和材料
5.1 氧气(GB 3863): 99.5%纯度,不含可燃成分,不允许使用电解氧。
5.2 苯甲酸: 基准量热物质,二等或二等以上,经权威计量机关检定或授权检定并标明标准热值。
5.3 点火丝: 直径0.1mm左右的铂、铜、镍丝或其他已知热值的金属丝或棉线,如使用棉线,则应选用粗细均匀,不涂腊的白棉线。各种点火丝点火时放出的热量如下:
铁丝:6700 J/g
镍铬丝:6000 J/g
铜丝:2500 J/g
棉线:17500 J/g
5.4 擦镜纸 :使用前先测出燃烧热:抽取3张~4张纸,团紧,称准质量,放入燃烧皿中,然后按常规方法测定发热量。取3次结果的平均值作为擦镜纸热值。

6 仪器设备
6.1 热量计
6.1.1 总则
热量计是由燃烧氧弹、内筒、外筒、搅拌器、温度传感器和试样点火装置、温度测量和控制系统以及水构成
热量计的精密度和准确度要求为,测试精密度:5次苯甲酸测试结果的相对标准差不大于0.20%;准确度:标准煤样测试结果与标准值之差都在不确定度范围内,或者用苯甲酸作为样品进行5次发热量测定,其平均值与标准热值之差不超过50J/g。
注:除燃烧不完全的结果外,所有的测试结果不能随意舍弃。
6.1.2 氧弹
由耐热、耐腐蚀的镍铬合金钢制成,需要具备3个主要性能:
a) 不受燃烧过程中出现的高温和腐蚀性产物的影响而产生热效应;
b) 能承受充氧压力和燃烧过程中产生的瞬时高压;
c) 试验过程中能保持完全气密。
弹筒容积为250mL~350 mL,弹头上应装有供充氧和排气的阀门以及点火热源的接线电极。
新氧弹和新换部件(弹桶、弹头、连接环)的氧弹应经20.0MPa的水压试验,证明无问题后方能使用。此外,应经常注意观察与氧弹强度有关的结构,如弹筒和连接环的螺纹、进气阀、出气阀和电极与弹头的连接处等,如发现显着磨损或松动,应进行修理,并经水压试验合格后再用。
氧弹还应定期进行水压试验,每次水压试验后,氧弹的使用时间一般不应超过2年。
当使用多个设计制作相同的氧弹时,每一个氧弹都必须作为一个完整的单元使用。氧弹部件的交换使用可能导致发生严重事故。
6.1.3 内筒
用紫铜、黄铜或不锈钢制成,断面可为椭圆形、菱形或其他适当形状。筒内装水2000 mL~3000 mL,以能浸没氧弹(进、出气阀和电极除外)为准。
内筒外面应高度抛光,以减少与外筒间的辐射作用。
压力表通过内径1mm~2mm的无缝铜管与氧弹连接,或通过高强度尼龙管与充氧装置连接,以便导入氧气。
压力表和各连接部分禁止与油脂接触或使用润滑油。如不慎沾污,必须依次用苯和酒精清洗,待风干后再用。
6.2 分析天平:感量 0.1mg 。
6.3 工业天平:载量 4 kg~5 kg,感量1g。

7 测定步骤
7.1 概述
发热量的测定由两个独立的实验组成,即在规定的条件下基准量热物质的燃烧实验(热容量标定)和试样的燃烧试验。为了消除未受控制的热交换引起的系统误差,要求两种试验的条件尽量相近。
试验包括定量进行燃烧反应到定义的产物和测量整个燃烧过程引起的温度变化。
试验过程分为初期、主期(反应期)和末期。对于绝热式热量计,初期和末期是为了确定开始点火的温度和终点温度;对于恒温式热量计,初期和末期的作用是确定热量计的热交换性,以便在燃烧反应期间内对热量计内筒和外筒间的热交换进行校正。初期和末期的时间应足够长。
7.2 恒温式热量计法
7.2.1按使用说明书安装调试热量计
7.2.2 在燃烧皿中称取粒度小于0.2 mm的空气干燥生物质燃料样0.9~1.1 g(称准到0.0002 g)。
燃烧时易于飞溅的试样,可用已知质量的擦镜纸包紧再进行测试,或先在压饼机中压饼并切成2 mm~4 mm的小块使用。不易燃烧完全的试样,可先在燃烧皿底部铺上一个石棉网,或用石棉绒做衬垫(先在皿底铺上一层石棉绒,然后以手压实)。石英燃烧皿不需任何衬垫。如加衬垫仍燃烧不完全,可提高充氧压力至3.2MPa,或用已知质量和热值的擦镜纸包裹称好的试样并用手压紧,然后放入燃烧皿中。
7.2.3 取一段已知质量的点火丝,把两端分别接在两个电极柱上,弯曲点火丝接近试样,注意与试样保持良好接触或保持微小的距离(对易飞溅和易燃的样品);并注意勿使点火丝接触燃烧皿,以免形成短路而导致点火失败,甚至烧毁燃烧皿。同时还应注意防止两电极间以及燃烧皿与另一电极之间的短路。
往氧弹中加入10 ml蒸馏水。小心拧紧氧弹盖,注意避免燃烧皿和点火丝的位置因受震动而改变,往氧弹中缓缓充入氧气,直至压力到2.8MPa~3.0 MPa,充氧时间不得少于15s;如果不小心充氧压力超过3.3 MPa,停止实验,放掉氧气后,重新充氧至3.2 MPa以下。当钢瓶中氧气压力降到5.0 MPa以下时,充氧时间应酌量延长,压力降至4.0 MPa以下时,应更换新的氧气瓶。
7.2.4 往内筒中加入足够的蒸馏水,使氧弹盖的顶面(不包括突出的进、出气压力阀和电极)淹没在水面下10mm~20mm。每次实验时用水量应与标定热容量时一致(相差1g以内)。
水量最好用称量法测定。如用容量法,则需对温度变化进行修正。注意恰当调节内筒水温,使终点时内筒比外筒温度高1K左右,以使终点时内筒温度出现明显下降。外筒温度应尽量靠近室温,相差不得超过1.5K。
7.2.5把氧弹放入装好水的内筒中,如氧弹中无气泡漏出,则表明气密性良好,即可把内筒放在外筒的绝缘架上;如有气泡出现,则表明漏气,应找出原因,加以纠正,重新充氧。然后接上点火电极插头,装上搅拌器和量热温度计,并盖上外筒的盖子。
注 :一 般 热量计由点火到终点的时间为8min-10min。对一台具体热量计,可根据经验恰当掌握。
7.2.6 实验结束,取出内筒和氧弹,开启放气阀,放出燃烧废气,打开氧弹,仔细观察弹筒和燃烧皿内部,如果有试样燃烧不完全的迹象或有炭黑存在,试验应作废。
量出未烧完的点火丝长度,以便计算实际消耗量。
用蒸馏水充分冲洗氧弹内各部分、放气阀,燃烧皿内外和燃烧残渣。把全部洗液(共约100m L)收集在一个烧杯中供测硫使用。

③ 生物质燃料燃烧热值以什么为标准

各种生物质成型燃料的热值: 名称: 每公斤热值(千焦) 发热量(千卡) 灰份 豆杆 16157 3877.68 3.13% 稻草 13980 3355.2 13.86% 玉米杆 15550 3732 5.93% 麦杆 15374 3689.76 8.90% 牛粪 11627 2790.48 32.40% 烟煤 24300 5832 21.37% 无烟煤 24430 5863.2 19.02% 棉杆 15379 3690.96 3.64% 杨树 13995 3358.8 松树 18372 4409.28 桦树 16945 4066.8

④ 生物质燃料热值以什么为标准

生物质燃料热值以什么为标准
生物质燃料的原料是多种多样的,不同的原料它的热值肯定会有相差!
生物质:
各种农业、林业的废弃物均可加工成生物质燃料
1、农业原料如:秸秆类(含稻草、麦秆)、花生壳、板栗壳等等
2、林业原料如:锯沫、竹粉、树叶(松针热值很高)、树皮等等
3、还有的工业废料如:污水处理厂的污泥,烟厂的烟渣,药厂的药渣,牲畜的粪便,醋厂的醋渣,糖厂的糖渣等等,只要是植物,均可加工成生物质颗粒燃料
这其中农业原料的颗粒燃料热值一般在3000-4200KCAL/KG左右。
而林业的原料颗粒燃料热值普遍较高在4200-5000KCAL/KG左右
但是林业类的颗粒燃料经过碳化后其热值不低于7000KCAL/KG,而标准煤的要求热值也就是7000KCAL/KG

⑤ 生物质燃料的简介

生物质燃料中较为经济的是生物质成型燃料,多为茎状农作物、花生壳、树皮、锯末以及固体废弃物(糠醛渣、食用菌渣等)经过加工产生的块状燃料,其直径一般为6~8毫米,长度为其直径的4~5倍,破碎率小于1.5%~2.0%,干基含水量小于10%~15%,灰分含量小于1.5%,硫含量和氯含量均小于0.07%,氮含量小于0.5%。若使用添加剂,则应为农林产物,并且应标明使用的种类和数量。欧盟标准对生物质燃料的热值没有提出具体的数值,但要求销售商应予以标注。瑞典标准要求生物质燃料的热值一般应在16.9兆焦上。在我国河南,生物质燃料是政府重点扶持的08年新农村建设的项目之一。

⑥ 生物质燃料

生物质成型燃料(北京市地方标准)2010-08-01 11:21ICS 75.160.10
F 13 备案号:22597-2008

北 京 市 地 方 标 准DB11/T 541-2008

生物质成型燃料
biomass molded fuel

2008-03-28发布
2008-05-01实施
北京市质量技术监督局 发布

前 言
本标准依据GB/T 1.1制定。标准中引用了相关的标准、法律、法规、条例和办法。
本标准附录A、附录B、附录C和附录D为规范性附录。
本标准由北京市质量技术监督局提出并归口。
本标准起草单位:北京市质量技术监督信息研究所、北京市朝阳区产品质量监督检验所、中国农村能源行业协会、北京市环境保护科学研究院、北京市新能源与可再生能源协会。
本标准主要起草人:刘雪涛、田川、沈百建、崔岩、贾振航、郝芳洲、杨明珍、沈士民、裴贤丰。
本标准2008年3月28日首次发布。

生物质成型燃料
1 范围
本标准规定了生物质成型燃料的分类、要求、检验规则和包装运输、储存。
本标准适用于以生物质为主要原料生产的成型燃料。
2 规范性引用文件
下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T 211 煤中全水份的测定方法
GB/T 212 煤的工业分析方法
GB/T 213 煤的发热量测定方法
GB/T 214 煤中全硫的测量方法
《定量包装商品计量监督管理办法》 国家质量技术监督检验检疫总局第75号令(2005年)
3 术语和定义
下列术语和定义适用于本标准。
3.1 生物质成型燃料
全部以草本植物或木本植物为原料,经过机械加工,生产的具有规则形状的燃料产品。
3.2 生物质颗粒(Pellet)
直径或截面最大尺寸不大于25mm的生物质成型燃料。
3.3 生物质压块(Briqrette)
直径或截面最大尺寸的大于25mm的生物质成型燃料。
3.4 抗碎强度
生物质成型燃料保持原形状的能力。
3.5 破碎率
生物质燃料中小于规定粒度部分的质量占测定质量的百分比;
4 产品分类
4.1 按形状分类
生物质成型燃料产品按形状分为:粒状、块状和棒状。
4.2 按使用原料分类
生物质成型燃料产品按使用原料分为:麦秆、玉米秸秆、大豆秸秆、棉花秸秆、花生壳、稻壳、木屑等成型燃料。
4.3 符号
粒状——L
块状——K
棒状——B
麦秆——MG
玉米秸秆——YM
大豆秸秆——DD
棉花秸秆——MH
花生壳——HS
稻壳——DK
稻草――DC
木屑——MX
4.4 生物质成型燃料型号示例:
SL12——X90×Y10

原材料Y比例为10%

原材料X的比例90%

直径或截面最大尺寸为12mm生物质粒状

示例:SL12---YM90×MH10 表示:生物质粒状成型燃料,直径为12mm,原料成分由90%玉米秸秆和10%棉花秆组成。
5 要求
5.1 外形尺寸及真密度
生物质成型燃料的外形尺寸、真密度应满足表1规定要求:

5.2 抗碎强度和破碎率
生物质成型燃料的抗碎强度、破碎率应满足表2规定要求:

5.3 工业及元素分析
生物质成型燃料的工业、元素分析指标应满足表3规定

5.4 添加剂
各种添加剂要求无毒无害无异味,不产生二次污染。要求总量不超过2%。
5.5 净含量
按实际净含量标注。
6 试验方法
6.1 分析样品制备
按附录A的规定执行。
6.2 全水份的检测
按GB/T 211的规定执行。
6.3 挥发份、灰分的检测
按GB/T 212的规定执行。
6.4 发热量的检测
按GB/T 213的规定执行。
6.5 全硫的检测
按GB/T 214的规定执行。
6.6 外形尺寸的检测
采用标准量具。
6.7 抗碎强度的检测
按附录B的规定执行。
6.8 破碎率的检测
按附录C的规定执行。
6.9 真密度的检测
按附录D的规定执行。
6.10 净含量
按国家质检总局第75号令(2005)执行。
7 检验规则
7.1 检验规则分为出厂检验和型式检验。
7.1.1 出厂检验
产品的出厂检验项目包括:抗碎强度、密度、尺寸。所检项目中除规格尺寸项目外,其余项目中有一项不合格时,应对产品加倍复验,复验仍有不合格项目时,则判定该批产品不合格。
7.1.2 型式检验
型式检验项目为本标准第5章规定的全部项目。
7.1.3 本标准要求下列情况之一必须进行型式检验:
a) 批量生产的产品每两年应进行一次;
b) 正式生产后,如结构、材料、生产工艺有较大改变,可能影响户用生物质炉具性能时;
c) 新产品和该型产品正式投产时;
d) 长期停产后,恢复生产时;
e) 出厂检验结果与上次型式检验有较大差异时;
f) 国家质量监督机构提出进行型式检验的要求时。
7.2 组批与抽样
7.2.1 组批
以同一配方同一班次生产的产品为一批。
7.2.2 有包装产品的抽样
有包装产品的抽样随机抽取码放在中间层的一个完整包装。
7.2.3 散装产品的抽样
散装产品抽样时,要区分单一原材料产品和混合原材料产品,采取不同的抽样方法。
7.2.3.1 单一原材料产品抽样
在料堆中部均匀布置5个抽样点,用采样铲扒开表面20cm深度后抽样,每个抽样点抽取量为1kg。将样品混合后分成两份,一份供检验,一份存查。
7.2.3.2 混合原材料产品抽样
根据被采样产品的总量,确定子样数(见表4),每个子样取1kg,将子样数量均匀分布在料堆的顶部(距顶部0.5m),腰、底(距地面0.5m)部,将所有子样用采样工具均匀混合在一起,并将混好的样品摊成一个圆饼,用十字缩分法将对角弃去,剩下的部分继续混合、缩分,每次混合三遍,直至每个对角约2.5kg时,一份供检验,一份存查;

注:散装产品不做破碎率检测,刚生产的散装产品可做抗碎检测强度。
8 标识、包装、运输、贮存
8.1 标识
产品包装应标明产品名称、型号规格、厂名、厂址、净含量
8.2 包装
生物质成型燃料宜采用编织袋、麻袋、纸箱等进行包装,包装规格符合用户要求。
8.3 运输
运输时,要防雨、避免剧烈碰撞,以防破碎和遗撒;散装产品要采用密闭运输,严密覆盖。
8.4 贮存
产品的贮存场地应干燥、平整、防雨、防水;包装产品码放整齐,散装产品贮存时注意防尘。

附 录 A
(规范性附录)
生物质成型燃料试样的制备方法
A.1 方法提要
将样品破碎、缩分至20克左右,使其全部通过3mm圆孔筛,达到空气干燥状态后,进入制样机制成分析试样。
A.2 设施、设备和工具
A.2.1 样品室(包括制样、贮样)应宽大敞亮,不受风雨及外来灰尘的影响,要有防尘设备。
A.2.2 制样室应为水泥地面。堆掺缩分区,还需要在水泥地面上铺以厚度6mm以上的钢板。
A.2.3 贮存试样的房间不应有热源,不受强光照射,无任何化学药品。
A.2.4 手工磨碎样品的钢板、剪刀和钢辊。
A.2.5 不同规格的二分器(如图1所示),二分器的格槽宽度为样品最大粒度的2.5~3倍,但不小于5 mm。格槽数目两侧应相等,各格槽的宽度应该相同,格槽等斜面的坡度不小于600。
A.2.6 十字分样板、平板铁锹、铁铲、镀锌铁盘或搪瓷盘、毛刷、台秤、托盘天平、增花磅称、清扫设备和磁铁。
A.2.7 绞刀式或磨式密闭制样机

图 A.1 二分器示意图
A.2.8 贮存全水分试样和分析试验试样的严密容器。
A.2.9 振筛机和孔径为3mm、6mm的圆孔筛。
A.2.10 可控制温度在45℃~50℃的鼓风干燥箱。
A.3 试样的制备
A.3.1 收到样品后,应按来样标签逐项核对,并应将品种、粒度、采样地点、包装情况、样品质量、收样和制备时间等项详细登记在试样记录本上,并进行编号。
A.3.2 样品应手工破碎至全部通过相应的6mm筛子,混合后取全水分试样后再进行缩分。粒度大于25
mm的样品未经破碎不允许缩分。
A.3.3 每次破碎、缩分前后,机器和用具都要清扫干净。制样人员在制备试样的过程中,应穿专用鞋,以免污染试样。
A.3.4 使用二分器缩分试样,缩分前不需要混合。入料时,簸箕应向一侧倾斜,并要沿着二分器的整个长度往复摆动,以使试样比较均匀地通过二分器。缩分后任取一边的试样。
A.3.5 堆锥四分法缩分试样,是把已破碎、过筛的试样用平板铁锹铲起堆成圆锥体,再交互地从试样堆两边对角贴底逐锹铲起堆成另一个圆锥。每锹铲起的试样,不应过多,并分两三次撒落在新锥顶端,使之均匀地落在新锥的四周。如此反复堆掺三次,再由试样堆顶端,从中心向周围均匀地将煤样摊平(试样较多时)或压平(试样较少时)成厚度适当的扁平体。将十字分样板放在扁平体的正中,向下压至底部,试样被分成四个相等的扇形体。将相对的两个扇形体弃去,制备成一般分析试样或适当粒度的其他试样。
A.3.6 粒度小于3mm的试样,缩分至1kg后,如使之全部通过3mm圆孔筛,则可用二分器直接缩分出不少于100g和不少于500g分别用于制备分析用试样和作为存查试样。
A.3.7 在粉碎成分析试样之前,应用磁铁将试样中铁屑吸去,再进行最终粉碎,并使之达到空气干燥状态,然后装入试样瓶中(装入试样的量应不超过试样瓶容积的3/4,以便使用时混合),送交化验室化验。
A.3.8 空气干燥方法如下:将试样放入盘中,摊成均匀的薄层,于温度不超过50℃下干燥。如连续干燥lh后,煤样的质量变化不超过0. l%,即达到空气干燥状态。空气干燥也可在试样最终破碎之前进行。
A.3.9 全水分试样的制备
测定全水分的试样既可由水分专用试样制备,也可在制备一般分析试样过程中分取。试样破碎到规定粒度后,稍加混合,摊平后立即用九点法(布点如图2)缩取,装入试样瓶中封严(装样量不得超过试样瓶容积的3/4),称出质量,贴好标签,速送化验室测定全水分。全水分试样的制备要迅速。

附 录 B
(规范性附录)
抗碎强度测定方法
B.1 方法提要
将生物质成型燃料置于软包装袋内,从2m高处自由落下到规定厚度的钢板或硬化后的地面上,共落下5次,测量粒度大于3mm或15mm的成型燃料占原样品的质量百分数,表示生物质成型燃料的抗碎强度。
B.2 仪器、设备
a) 台秤:最大称量2千克 ,感量0.1克;
b) 3mm的圆孔筛和15mm方孔筛;
c) 2m刻度尺;
d) 钢板:厚度不小于15mm,长约1200mm,宽约900mm;
e) 能装不小于1kg生物质成型燃料的布袋或尼龙袋;
f) 扎袋绳一根长约200mm。
B.3 测定步骤
B.3.1 称500克生物质成型燃料M0(若样品总长大于100mm时要先将其截断到100mm以内),准确到0.1克,装入袋内,排除空气,扎紧袋口。用刻度尺量出2m的高度,让装有样品的袋子从此高度自由落下到钢板或硬化的水泥地面上,连续落下5次。
B.3.2 解开扎袋绳,将样品倒入筛内(颗粒采用3mm圆孔筛,压块采用15mm方孔筛),经过筛分后,称量筛上物的质量。
B.4 测定结果计算
B.4.1 按下式计算生物质颗粒的抗碎强度
SS+3=(M+3)/ M0×100%
式中: SS+3——生物质颗粒抗碎强度,%;
M+3——大于3mm生物质颗粒的质量,g;
M0——装袋时生物质颗粒的质量,g。
B.4.2 按下式计算生物质压块的抗碎强度
SS+15=(M+15)/ M0×100%
式中: SS+15——生物质压块抗碎强度,%;
M+15——大于15mm的生物质压块的质量,g;
M0——装袋时生物质压块的质量,g。
B.4.3 计算重复实验结果的平均值,取到小数点后面两位,修约到小数点后的一位报出。
B.5 精确度
两次重复实验的结果差值不超过10%。

附 录 C
(规范性附录)
破碎率测定方法
C.1 方法提要
通过测量一个生物质成型燃料的包装单位中小于规定尺寸的样品质量分数,为生物质成型燃料的破碎率。
C.2 仪器、设备
a) 磅秤:最大称量50kg,感量50g。台称:最大量程量10kg,感量5g。
b) 3mm圆孔筛和15mm方孔筛。
c) 铁板: 厚度不低于3mm ;长2000mm;宽1200mm。
d) 钢叉:钢针直径为3mm,长150mm、宽100mm、间隙6mm
e) 毛刷
C.3 测定步骤
选定生物质成型燃料一个完整包装,在磅秤上称得质量后打开包装,将里面的成型燃料倒在铁板上,用台秤称包装物的质量,用钢叉叉起燃料放入原包装中,铁板上残留的燃料经3mm圆孔筛(或15mm方孔筛)过滤后,称得筛下物的质量。
C.4 测定结果表述
C.4.1 按下列公式计算生物质颗粒的破碎率
SS-3=(M-3)/(M0—M1)×100%
式中: SS-3——生物质颗粒的破碎率,%;
M-3——小于3mm的生物质颗粒的质量,kg;
M0——含包装的生物质颗粒的质量, kg;
M1——包装物的质量,kg。
C.4.2 按下列公式计算生物质压块的破碎率
SS-15=(M-15)/(M0-M1)×100%
式中:SS-15——生物质压块的破碎率,%。
M-15——小于15mm生物质压块的质量,kg。
C.4.3 实验结果,取到小数点后面两位。

附 录 D
(规范性附录)
密度的测定方法
D.1 方法提要
通过测量试样的质量和真体积,计算出生物质成型燃料的密度。
D.2 仪器、设备
a) 托盘天平:最大称量量500g,感量0.1g
b) 量筒500ml,250ml
c) 大头针
d) 自来水
D.3 测定步骤
准确称量生物质颗粒20粒或称量生物质压块2块。在量筒中装上其容量一半的水,读数,将称量好颗粒或压块倒入量筒水中,若出现漂浮现象,迅速用大头针将其扎入水中,在10秒内迅速读数。
D.4 测定结果的表述
D.4.1 按下列公式计算生物质或成型燃料的密度
D=m/(V-V0)
式中:d——生物质成型燃料的密度,g/cm3;
m——试样的质量,g;
V——加入试样后量筒水面读数,cm3
V0——加入试样前量筒水面读数,cm3。
D.4.2 计算重复实验结果的平均值,取值到小数点后三位,修约到小数点后两位。
D.5 精密度
两次重复实验结果的差不超过0.1 g/cm3。

⑦ 常用的生物质颗粒热值是多少

欧盟标准对生物质颗粒的热值没有提出具体的数值,但要求销售商应予以标注。瑞典标准要求生物质颗粒的热值一般应在16.9 兆焦上。

根据瑞典的以及欧盟的生物质颗粒分类标准,若以其中间分类值为例,则可以将生物质颗粒大致上描述为以下特性:

生物质颗粒的直径一般为6~10毫米,长度为其直径的4~5倍,破碎率小于1.5%~2.0%,干基含水量小于15%,灰分含量小于2%,硫含量和氯含量均小于0.07%,氮含量小于0.5%。

生物质燃料由秸秆、稻草、稻壳、花生壳、玉米芯、油茶壳、棉籽壳等以及“三剩物”经过加工产生。生物质颗粒的直径一般为6~10毫米。

(7)生物质燃料指标标准有哪些扩展阅读

使用生物质颗粒的优势有:

1、生物质颗粒燃料发热量大,发热量在3900~4800千卡/kg左右,经炭化后的发热量高达7000—8000千卡/kg。

2、生物质颗粒燃料纯度高,不含其他不产生热量的杂物,其含炭量75—85%,灰份3—6%,含水量1—3%,绝对不含煤矸石,石头等不发热反而耗热的杂质,将直接为企业降低成本。

3、生物质颗粒燃料不含硫磷,不腐蚀锅炉,可延长锅炉的使用寿命,企业将受益匪浅。

4、由于生物质颗粒燃料不含硫磷,燃烧时不产生二氧化硫和五氧化二磷,因而不会导致酸雨产生,不污染大气,不污染环境。

5、生物质颗粒燃料清洁卫生,投料方便,减少工人的劳动强度,极大地改善了劳动环境,企业将减少用于劳动力方面的成本。

6、生物质颗粒燃料燃烧后灰碴极少,极大地减少堆放煤碴的场地,降低出碴费用。

⑧ 各种生物质成型燃料的热值

生物质燃料颗粒热值多少大卡,主要取决于燃料的原材料,原材料不同加工出来的生物质燃料颗粒热值侧不相同,目前市场上的生物质燃料颗粒分为两大类:一类是生物质颗粒燃料,颗粒状,另一类是生物质压块燃料,块状的产品,相对来说颗粒状密度大,耐烧,块状密度小不耐烧。

⑨ 生物质锅炉执行标准

法律分析:现有燃气锅炉项目自2015年1月1日起,二氧化硫与氮氧化物排放浓度分别执行GB/13271-2014中50mg/m3和200mg/m3的要求。

法律依据:《中华人民共和国标准化法》 第二条 本法所称标准(含标准样品),是指农业、工业、服务业以及社会事业等领域需要统一的技术要求。

标准包括国家标准、行业标准、地方标准和团体标准、企业标准。国家标准分为强制性标准、推荐性标准,行业标准、地方标准是推荐性标准。

强制性标准必须执行。国家鼓励采用推荐性标准。

⑩ 固体生物质燃料检验方法的标准

固体生物质颗粒燃料(BiomassMouldingFuel,简称"BMF"),是将秸秆、稻草、 稻壳 、 花生壳 、 玉米芯 、油茶壳、 棉籽壳 等“三剩物”作为原材料,经过粉碎、混合、挤压、烘干等工艺,制成各种成型(如块状、颗粒状等)的,可直接燃烧的一种新型清洁燃料。其与煤性质相同,是可供各种燃烧机、生物质锅炉、熔解炉、生物质发电等的高效、可再生、环保生物质燃料,此种燃料在国际认证为零污染燃料。生物质颗粒的直径一般为6~10毫米,干基含水量小于10%~15%。

目前市场上生物质颗粒燃料种类很多,但大体上可分为三种:第一:农作物废弃物:主要由秸秆、花生壳、稻草杆;第二:经济作物废弃物:主要由牲畜粪便;第三:林业废弃物废木、树皮、裁剪掉的树枝等。

对于生物质燃料而言,水分含量对其本身的热值及燃烧所能获得的能量有重要的影响。水分含量越高,相对的热值就越低,同时,水分蒸发是一个吸热过程,水分含量越高,蒸发所需要的能量就越高,燃料燃烧释放出来的能量相对越低。

MS-590在线生物质颗粒燃料水分测定仪,是一款德国进口非接触式多频谱微波水分、密度测量仪,采用当今全球最新的多频谱硬件技术和独特模糊数据分析的专利算法结合数据模型结构,可实现含水率与密度完全独立测量,互不影响,适用于为固体生物质颗粒燃料中水分含量的实时在线测定,既可以皮带上测定,也可以整包测定。

据德国默斯技术人员介绍,MS-590在线生物质颗粒燃料水分测定仪,可以在皮带上测量全部生物质原料的水分,完全穿透测量。可以测量所有物料的实时水分和平均水分,不同于抽样测量和离线测量。这是一款不受皮带上的物料高度、密度、温度、颜色影响的在线生物质水分测定仪,可以同时测量水分和密度两个参数。该水分测定仪,不仅高可靠性:无任何可动部件和易损件,最高可达10年使用寿命,而且高精度:最高精度0.2%;宽量程比:水分测量范围宽至0%-100%。同时,该水分测定仪适用范围广:一款仪器可测量几乎所有类型的原料;内置校准曲线,一次校准成功后,无需经常校准。安装简易:可安装在皮带上、料仓内、斗内、管道上等各种位置。

阅读全文

与生物质燃料指标标准有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1371
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1351
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:834
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1453
数学中的棱的意思是什么 浏览:1017