⑴ 请教:微生物学中有哪些技术是独特的,它们对生物学发展作出了什么贡献
什么算是独特呢?发酵技术,这个是独特的,其他的都有所交叉!贡献嘛,多了,面包,酒,抗生素,等等都需要,很多微生物技术最终几乎都要通过发酵技术获得产品!
⑵ 微生物的培养技术及应用有哪些
微生物的培养技术及应用有好氧培养和厌氧培养。
应用是不断发现和广泛应用各种抗生素,对细菌细胞和病毒形态的研究已经达到亚显微结构的水平,从而进一步理解它们的活动规律,进一步阐明了细菌内、外毒素的性质、组成和作用机理,显着地改进了分离培养技术,大大提高了从病人标本中分离弯曲菌或类杆菌的阳性率。
好氧培养也称好气培养。就是说这种微生物在培养时,需要有氧气加入,否则就不能生长良好。在实验室中,斜面培养是通过棉花塞从外界获得无菌的空气。三角烧瓶液体培养多数是通过摇床振荡,使外界的空气源源不断地进入瓶中。
微生物培养技术
厌氧培养也称厌气培养。这类微生物在培养时,不需要氧气参加。在厌氧微生物的培养过程中,最重要的一点就是要除去培养基中的氧气。研制开发免疫原性好,副作用小的新型微生物,研制特异,灵敏,简便,快速的微生物学诊断方法及技术。
⑶ 用微生物作为实验材料而取得重要成果有哪些
因为微生物学在现代生命科学研究中一直处于前沿地位。
首先,生命活动的基本规律,大多数是在研究微生物的过程中首先被阐明的。例如,利用酵母菌的无细胞制剂进行酒精发酵的研究,阐明了生物体内糖酵解的途径。
其次,微生物学为分子遗传学和分子生物学的创立、发展提供了基础和依据,而且是它们进一步发展的必要工具。举例来说,
DNA双螺旋结构的确定,遗传密码的揭露,中心法则的建立,RNA逆转录酶的发现,以及基因工程的诞生,都是用微生物做实验材料的,其实验方法和指导思想也都与微生物学密切相关。再如,基因工程中的第一个限制性内切酶是从大肠杆菌中发现的,人们获得的第一个基因——乳糖操纵子的部分DNA,是从大肠杆菌中分离出来的……如今,微生物学已成为分子生物学的三大支柱(微生物学、生物化学、遗传学)之一,可以说没有对微生物的深入研究也就没有今天的分子生物学。
第三,微生物学是基因工程乃至生物工程的主角。基因工程实质上是体外切割和重组DNA片段的过程,而其中所需的供体、受体、载体及工具酶,大都要由微生物来承担和完成。生物工程包括基因工程、发酵工程等四大工程,要使生物工程转化为生产力,发挥出巨大的经济效益和社会效益,微生物是主角。这主要是因为微生物不仅可以在工厂化的条件下进行大规模生产,极大地提高了生产效率,而且还具有节约能源和资源、减少环境污染等优越性。
第四,微生物的多样性为人类了解生命起源和生物进化提供了依据。微生物的多样性,归根到底是基因的多样性,它为研究生命科学提供了丰富的基因库。通过比较研究真核生物和原核生物的线粒体DNA,人们意外发现它们的遗传密码不同,从而对生物进化的共生学说提出了挑战。通过对16SrRNA的研究,人们发现了古细菌,并提出了生命起源的三原界系统,即古细菌原界、真细菌原界和真核生物原界。这说明微生物在生物的界级分类研究中占有特殊地位。
第五,微生物学是整个生物学科中第一门具有自己独特实验技术的学科,如无菌操作技术、消毒灭菌技术、纯种分离和克隆化技术、原生质体制备和融合技术及深层液体培养技术等。这些技术已逐步扩散到生命科学各个领域的研究中,成为研究生命科学的必要手段,从而为整个生命科学的发展,做出了方法学上的贡献。
微生物学对生命科学的贡献将会不断延续。例如,1982年,美国微生物学家普鲁西纳发现了一种病原体,是一种毒蛋白,有人称之为朊病毒。虽然朊病毒只有蛋白质而无核酸,但由它引起的疾病可以遗传、传染。这一发现震动了生物学界,因为它与中心法则是相违背的。普鲁西纳因此获得了1997年的诺贝尔医学和生理学奖。可以预料,关于许多生命之谜的探索很可能在微生物的研究中获得突破。
⑷ 关于微生物学,你知道哪些科学成果呢
微生物学属于生物学的一部分,主要是研究分子水平的粒子生物,比如细菌、病毒等。研究这些微小生物的形态结构,从而得出他们的生长规律以及生命活动基本范围,将这些研究扩展到工业发展,医疗工程等方面,为科学领域的研究提供更精准的生物理论。那么,关于微生物学都有哪些可以科学成果呢?
生态方面的成果众所周知,我们地球上的物质非常多,绝大部分的物质我们肉眼都看不见,这个时候就需要微生物学的研究了。在微生物学中对食物链中的一些微小物质进行研究,并用这些研究技术进行生态方面的保护,以及对一些污水污染物的处理。在生态方面微生物学不仅提供了重要的研究方向,也促进了自然界中的物质循环。
⑸ 微生物育种技术有哪些
其方法通常为自然选育和人工选育两类,可单独使用,也可交叉进行。
DNA Shuffling技术
编辑
随着PCR技术的发展和应用,1994年美国的stemmer提出了一个全新的人工分子进化技术——DNA Shuffling(又称洗牌技术),该技术能模拟生物在数百年间发生的分子进化过程,并可在短的实验循环中定向筛选出特定基因编码的酶蛋白活性提高几百倍甚至上万倍的功能性突变基因。其基本原理是将来源不同但功能相同的一组同源基因,用DNA核酸酶I进行消化 产生随机小片段,由这些小片段组成一个文库,使之互为引物和模板,进行PCR扩增,当一个基因拷贝片段作为另一个基因拷贝的引物时,引起模板转换,重组因而发生,导入体内后,选择正突变体作新一轮的体外重组。一般通过2-3次循环,课获得产物大幅度提高的重组突变体。
2自然选育
编辑
对自然界中的微生物,在未经人工诱变或杂交处理的情况下进行分离和纯化(见微生物的分离和纯化),然后进行纯培养和测定(见微生物测定法),择优选取微生物的菌种。这种方法简单易行,但获得优良菌种的几率小,一般难以满足生产的需要。
3人工选育
编辑
分诱变育种和杂交育种两种。
诱变育种
以诱发基因突变为手段的微生物育种技术。1927年,H.J. 马勒发现X射线有增加突变率的效果;1944年,C.奥尔巴克首次发现氮芥子气的诱变效应;随后,人们陆续发现许多物理的(如紫外线、γ射线、快中子等)和化学的诱变因素。化学诱变因素分为3种:①诱变剂与一个或多个核酸碱基发生化学变化,使DNA复制时碱基置换而引起变异,如羟胺亚硝酸、硫酸二乙酯、甲基磺酸乙酯、硝基胍、亚硝基甲基脲等;②诱变剂是天然碱基的结构类似物,在复制时参入DNA分子中引起变异,如5-溴尿嘧啶、5-氨基尿嘧啶、8-氮鸟嘌呤和2-氨基嘌呤等;③诱变剂在DNA分子上减少或增加1~2个碱基,使碱基突变点以下全部遗传密码的转录和翻译发生错误,从而导致码组移动突变体的出现,如吖啶类物质和一些氮芥衍生物(ICR)等。诱变育种操作简便,突变率高,突变谱广,它不仅能提高产量,改进质量,还可扩大产品品种和简化工艺条件。如1943年从自然界分离到的青霉素产生菌的效价只有20单位/毫升,经过一系列的诱变育种后,效价已达40000单位/毫升;金霉素产生菌经诱变后,发酵液中又积累了去甲基金霉素;谷氨酸棒杆菌1299经紫外线诱变后,有的能产赖氨酸,有的能产缬氨酸,增加了产品的种类;土霉素产生菌经诱变后,选到了能减少泡沫的突变菌株,从而提高了发酵罐的利用率。诱变育种的不足是缺乏定向性。
杂交育种
不同基因型的品系或种属间,通过交配或体细胞融合等手段形成杂种,或者是通过转化和转导形成重组体,再从这些杂种或重组体或是它们的后代中筛选优良菌种。通过这种方法可以分离到具有新的基因组合的重组体,也可以选出由于具有杂种优势而生长旺盛、生物量多、适应性强以及某些酶活性提高的新品系。杂交育种的方式因实验菌株的生殖方式不同而异,如有性杂交、准性重组、原生质体融合、转化、转导、杂种质粒的转化等;但是,选择亲株、分离群体后代的培养、择优去劣和杂种遗传分析的过程基本是相同的。杂交法一般指有交配反应的菌株进行交配或接合而形成杂种。这种方法适用范围很广,在酒类、面包、药用和饲料酵母的育种,链霉菌和青霉菌抗生素产量的提高,曲霉的酶活性增强等方面均已获得成功。
体细胞融合是在不具性反应的品系或种属间细胞融合和染色体重组,先用酶溶解细胞壁,再用氯化钙-聚乙二醇处理原生质体,促使融合,获得杂种。此法在工业微生物的菌种改良中有积极作用。
转化和转导首先应用于细菌,现已广泛用于链霉菌和酵母菌等。随着重组DNA技术的发展,重组质粒的构建和转化系统的确立,已可将目的基因转移到受体细胞内,得到能产生具有重要经济价值的生物活性物质(如疫苗、酶等)的株系。
微生物与酿造工业、食品工业、生物制品工业等的关系非常密切,其菌株的优良与否直接关系到多种工业产品的好坏,甚至影响人们的日常生活质量,所以培育优质、高产的微生物菌株十分必要。微生物育种的目的就是要把生物合成的代谢途径朝人们所希望的方向加以引导,或者促使细胞内发生基因的重新组合优化遗传性状,人为地使某些代谢产物过量积累,获得所需要的高产、优质和低耗的菌种。作为途径之一的诱变育种一直被广泛应用。目前,国内微生物育种界主要采用的仍是常规的物理及化学因子等诱变方法。此外,原生质体诱变技术已广泛地应用于酶制剂、抗生素、氨基酸、维生素等的菌种选育中,并且取得了许多有重大应用意义的成果。
4诱变育种
编辑
1.1物理诱变
1.1.1紫外照射
紫外线照射是常用的物理诱变方法之一,是诱发微生物突变的一种非常有用的工具。DNA 和RNA 的嘌呤和嘧啶最大的吸收峰在260nm,因此在260nm 的紫外辐射是最有效的致死剂。紫外辐射的作用已有多种解释,但比较确定的作用是使DNA 分子形成嘧啶二聚体[1]。二聚体的形成会阻碍碱基间正常配对,所以可能导致突变甚至死亡[2]。
紫外照射诱变操作简单,经济实惠,一般实验室条件都可以达到,且出现正突变的几率较高,酵母菌株的诱变大多采用这种方法。
1.1.2电离辐射
γ- 射线是电离生物学上应用最广泛的电离射线之一,具有很高的能量,能产生电离作用,可直接或间接地改变DNA 结构。其直接效应是可以氧化脱氧核糖的碱基,或者脱氧核糖的化学键和糖- 磷酸相连接的化学键。其间接效应是能使水或有机分子产生自由基,这些自由基可以与细胞中的溶质分子发生化学变化,导致DNA 分缺失和损伤[2]。
除γ- 射线外的电离辐射还有X- 射线、β- 射线和快中子等。电离辐射有一定的局限性,操作要求较高,且有一定的危险性,通常用于不能使用其他诱变剂的诱变育种过程。
1.1.3离子注入
离子注入是20 世纪80 年代初兴起的一项高新技术,主要用于金属材料表面的改性。1986 年以来逐渐用于农作物育种,近年来在微生物育种中逐渐引入该技术[3]。
离子注入时,生物分子吸收能量,并且引起复杂的物理和化学上的变化,这些变化的中间体是各类活性自由基。这些自由基,可以引起其它正常生物分子的损伤,可使细胞中的染色体突变,DNA 链断裂,也可使质粒DNA 造成断裂。由于离子注入射程具有可控性,随着微束技术和精确定位技术的发展,定位诱变将成为可能[4]。
离子注入法进行微生物诱变育种,一般实验室条件难以达到,目前应用相对较少。
1.1.4 激光
激光是一种光量子流,又称光微粒。激光辐射可以通过产生光、热、压力和电磁场效应的综合应用,直接或间接地影响有机体,引起细胞染色体畸变效应、酶的激活或钝化,以及细胞分裂和细胞代谢活动的改变。光量子对细胞内含物中的任何物质一旦发生作用,都可能导致生物有机体在细胞学和遗传学特性上发生变异。不同种类的激光辐射生物有机体,所表现出的细胞学和遗传学变化也不同[5]。
激光作为一种育种方法,具有操作简单、使用安全等优点,近年来应用于微生物育种中取得不少进展。
1.1.5 微波
微波辐射属于一种低能电磁辐射,具有较强生物效应的频率范围在300MHz~300GHz,对生物体具有热效应和非热效应。其热效应是指它能引起生物体局部温度上升。从而引起生理生化反应;非热效应指在微波作用下,生物体会产生非温度关联的各种生理生化反应。在这两种效应的综合作用下,生物体会产生一系列突变效应[6]。
因而,微波也被用于多个领域的诱变育种,如农作物育种、禽兽育种和工业微生物育种,并取得了一定成果。
1.1.6 航天育种
航天育种,也称空间诱变育种,是利用高空气球、返回式卫星、飞船等航天器将作物种子、组织、器官或生命个体搭载到宇宙空间,利用宇宙空间特殊的环境使生物基因产生变异,再返回地面进行选育,培育新品种、新材料的作物育种新技术。空间环境因素主要有微重力,空间辐射,以及其它诱变因素如交变磁场,超真空环境等,这些因素交互作用导致生物系统遗传物的损伤,使生物发生诸如突变、染色体畸变、细胞失活、发育异常等。
航天育种较其它育种方法特殊,是航天技术与微生物育种技术的有机结合,技术含量高,成本高,个体研究者或一般研究单位都难以实现,只能与航天技术相结合,由国家来完成。
1.1.7 常压室温等离子体诱变育种
常压低温等离子体(Atmospheric and Room Temperature Plasma)简称为ARTP,指能够在大气压下产生温度在25-40 °C之间的、具有高活性粒子(包括处于激发态的氦原子、氧原子、氮原子、OH自由基等)浓度的等离子体射流。ARTP技术作为一种新型的物理方法,在微生物诱变育种领域有着广阔的应用前景。
等离子体中适当剂量的活性粒子作用于微生物,能够使微生物细胞壁/膜的结构及通透性改变,并引起基因损伤,菌株出现遗传物质损伤后,微生物启动SOS修复机制,其诱导产生DNA聚合酶Ⅳ和V,它们不具有3ˊ核酸外切酶校正功能,于是在DNA链的损伤部位即使出现不配对碱基,复制仍能继续前进。在此情况下允许错配可增加存活的机会。ARTP对遗传物质造成的损伤,多样性较高;又SOS诱导修复本身为容错性修复,因此,ARTP多样性的损伤将可能在修复过程中包容于DNA链中,在微生物进行复制修复时,其可能带来多样性的错配可能。
ARTP应用于微生物突变育种,成本低、操作方便,没有很多物理诱变设备(如离子束注入等)所需的离子或电子加速、真空和制冷等附属设备;ARTP对遗传物质的损伤机制多样,具有较高的正突变率,突变性能多样,对于真菌、细菌、藻类等都有效果;ARTP对环境无污染,保证操作者的人身安全,无论用何种气体放电,其均无有害气体产生。[1]
5化学诱变
编辑
2.1.1 烷化剂
烷化剂能与一个或几个核酸碱基反应,引起DNA 复制时碱基配对的转换而发生遗传变异,常用的烷化剂有甲基磺酸乙酯、亚硝基胍、乙烯亚胺、硫酸二乙酯等。
甲基磺酸乙酯(ethylmethane sulphonate,EMS) 是最常用的烷化剂,诱变率很高。它诱导的突变株大多数是点突变,该物质具有强烈致癌性和挥发性,可用5%硫代硫酸钠作为终止剂和解毒剂。
N- 甲基- N'- 硝基- N- 亚硝基胍(NTG) 是一种超诱变剂,应用广泛,但有一定毒性,操作时应该注意。在碱性条件下,NTG 会形成重氮甲烷(CH2N2),它是引起致死和突变的主要原因。它的效应很可能是CH2N2 对DNA 的烷化作用引起的[2]。
硫酸二乙酯(DMS) 也很常用,但由于毒性太强,目前很少使用。乙烯亚胺,生产的较少,很难买到。使用浓度0.0001%~0.1%,高度致癌性,使用时需要使用缓冲液配置。
2.1.2 碱基类似物
碱基类似物分子结构类似天然碱基,可以掺入到DNA 分子中导致DNA 复制时产生错配,mRNA 转录紊乱,功能蛋白重组,表型改变。该类物质毒性相对较小,但负诱变率很高,往往不易得到好的突变体。主要有5- 氟尿嘧啶(5- FU) 、5- 溴尿嘧啶(5- BU) 、6- 氯嘌呤等。程世清等[25]用5- BU 对产色素菌(分枝杆菌T17- 2- 39) 细胞进行诱变,生物量平均提高22.5%.
2.1.3 无机化合物
诱变效果一般,危险性较小。常用的有氯化锂,白色结晶,使用时配成0.1%~0.5%的溶液,或者可以直接加到诱变固体培养基中,作用时间为30min~2d。亚硝酸易分解,所以现配现用。常用亚硝酸钠和盐酸制取,将亚硝酸钠配成0.01~0.1mol/L 的浓度,使用时加入等浓度等体积的盐酸即可。
2.1.4 其他
盐酸羟胺,一种还原剂,作用于C 上,使G- C 变为A- T。也较常用,使用浓度为0.1%~0.5%,作用时间60min~2h。
此外,诱变时将两种或多种诱变因子复合使用,或者重复使用同一种诱变因子,效果更佳。顾正华等[7]以谷氨酸棒杆菌ATCC- 13761 为出发菌株,经DMS 和NTG 多次诱变处理,获得一株L- 组氨酸产生菌。
2、诱变剂
2.1 诱变剂的选择
在选择诱变剂时,需要注意诱变剂的专一性,即某一诱变剂或诱变处理优先使基因组的某些部分发生突变而别的部分即使有也很少发生突变。对诱变剂专一性的分子基础不十分了解万尽管有关的修复途径必定对此有影响,但它们的关系并不那么简单,其它各种因素,包括诱变处理的环境条件也能影响突变类型。
工业遗传学家很难正确地预言改良某一菌种时需要何种类型的分子水平的突变。因此,为了产生类型尽可能多的突变体,最适当的方法是采用几种互补类型的诱变处理。远紫外无疑是所有诱变剂中最为合适的,似乎可以诱导所有已知的损伤类型。采取有效、安全的预防方法也很容易。在化学诱变剂中,液体试剂比粉末试剂更易进行安全操作。的另一个不利因素是它有产生紧密连锁的突变丛的趋势,尽管这种效应在某些体系中能成为有利条件。最后,必须认识到可能某些特异菌系用某些诱变剂是不能被诱变的。当然这一点通过测定易检出的突变体,如抗药性突变体或原养型回复突变体的诱变动力学可以相当容易地得到验证。[8]
2.2 诱变剂的剂量
从随机筛选的最佳效果看,诱变剂的最适剂量就是在用于筛选的存活群体中得到最高比例的所需要的突变体,因为这会使在测定效价的阶段更省力。
因此在菌株改良以前,为了决定所用诱变剂的最适剂量,并为突变性的增强技术打下基础,聪明的做法通常是测定不同诱变剂处理不同菌种时的突变动力学。用高单位突变本身来测定最适剂量有时是不可能的,因为这种突变的检测很困难。但如使用容易检出的标记如耐药标记,只要估计到方法的局限性,还是可以提供一些有价值的资料的。
⑹ 在现代微生物分类中应用了哪些新技术和新方法
经典分类、鉴定指标主要包括形态学指标,生理、生化反应指标,生态特性指标等。
在现代微生物分类中应用了一下几种新方法、新技术(有些是方法,有些是思路或技术):
1、通过核酸分析鉴定微生物的遗传型;
(1)、DNA碱基比例的测定。即:(G+C)mol%值。
(2)、核酸分子杂交法。
(3)、rRNA寡核苷酸编目分析。
(4)、对微生物全基因组序列进行测定。
2、细胞化学成分用作鉴定指标;
(1)、分析细胞壁的化学成分;
(2)、分析全细胞水解液的糖型;
(3)、分析磷酸类脂成分;
(4)、分析枝菌酸;
(5)、分析醌类;
(6)、用气相色谱分析
3、数值分类法(又称统计分类法)。
每一方法或技术更详细的阐明可以在专业网站或书籍上查询。
⑺ 微生物学中哪几项技术是独特的简述其原理和方法及对现代生物学发展所作的贡献。谢谢!!!急求!!!
微生物工程工艺原理_电子书.rar免费下载
链接:https://pan..com/s/184QnDM-fZbtWDqAOzMsEKQ
“它应用微生物野生菌或工程菌为工业、农业、医药、环保等大规模生产服务的一门工程技术,它是直接建立在微生物工业基础上的,伴随着微生物工业的飞速发展而急速发展壮大起来的一门学科。由于微生物工业与化学工程的紧密结合使微生物工程又不断的得到了新的发展。微生物工程已经涉及到了诸多领域,包括:生物化工原料的清洁生产、食品与饮料、医药产品、生物燃料、微生物采油、生物材料、磁性材料等。
⑻ 微生物学常用的接种技术有哪些各有何特点
细菌的接种方法有很多种,如划线法、涂布法、倾注法、斜面接种法、液体培养基接种法、螺旋接种法等,其方法和应用各有不同。
一、划线法:
此法主要用于菌种分纯,获得单菌落.
由接种环沾取少许待分离的材料,在无菌平板表面进行平行划线、扇形划线或其他形式的连续划线,微生物细胞数量将随着划线次数的增加而减少,并逐步分散开来,如果划线适宜的话,微生物能一一分散,经培养后,可在平板表面得到单菌落。
优点:可以观察菌落特征,对混合菌进行分离。
缺点:不能用于菌落计数。
二、涂布法:
此法主要用于菌落总数计数.
先将培养基熔化后趁热倒入无菌平板中,然后用无菌吸管吸取0.1ml 菌液接种在已凝固的琼脂平板上。再用无菌L 型玻璃棒将菌液在平板上涂抹均匀,将涂抹好的平板平放于桌上20~30min,使菌液渗透入培养基内,然后将平板倒转,保温培养,至长出菌落后即可计数。
优点:可以计数,可以观察菌落特征。
缺点:接种前需梯度稀释,吸收量较少,较麻烦,平板不干燥效果不好,容易蔓延。
三、倾倒法:
此法主要用于菌落总数的计数.
吸取1ml 菌液加入平板中,倒入已融化并冷却至45~50℃的细菌培养基,轻轻转动平板,使菌液与培养基混合均匀,冷疑后倒置,适温培养。至长出菌落后即可计数。
优点:可以计数,较方便。
缺点:接种前需梯度稀释,不能观察菌落特征,不适用于严格好氧菌和热敏感菌。
四、斜面接种法:
此法主要用于保存菌种,或观察细菌的某些生化特性和动力.
用接种环或接种针伸入菌种管内,挑取用来移种的菌落。伸入斜面培养管内,先从斜面底部到顶端拖一条接种线,再自下而上蜿蜒划线,或直接自下而上地蜿蜒划线。接种完成之后,用火焰灭菌培养管口,并塞上棉塞,置于37℃培养。
五、液体培养基接种法:
此法主要用于菌液比浊实验
用灭菌接种环挑取菌落或标本,在试管内壁与液面交界处轻轻研磨,使细菌均匀得散落在液体培养基中。
六、螺旋接种法:
此法主要用于菌落总数计数
可以在无任何全部或中间稀释的情况下快速细菌接种。对数减少的样品容量以阿基米德螺旋线的形式被自动分注在旋转式培养基表面。培养基上每一点的容量可以被知晓和校准。菌液的浓度可以通过培养皿上一定区域的菌落数量除以同区域样品分注量来计算。
优点:螺旋接种法菌液无需稀释(其他接种方法均需经过梯度稀释才能计菌落数),自动化接种,效率高,可节省3/4 的耗材和时间。
缺点:产品成本高,适用于样品量比较大的实验。
⑼ 微生物四大技术
生物是20世纪70年代初开始兴起的一门新兴的综合性应用学科。所谓生物工程,一般认为是以生物学(特别是其中的微生物学、遗传学、生物化学和细胞学)的理论和技术为基础,结合化工、机械、电子计算机等现代工程技术,充分运用分子生物学的最新成就,自觉地操纵遗传物质,定向地改造生物或其功能,短期内创造出具有超远缘性状的新物种,再通过合适的生物反应器对这类"工程菌"或"工程细胞株"进行大规模的培养,以生产大量有用代谢产物或发挥它们独特生理功能一门新兴技术。
⑽ 微生物技术有什么
当前,由于环境污染,生态资源遭到破坏,农产品质量不断下降,残留污染物所带来的“瓜不甜、果不香、菜无味”等致病致癌物质的增多,严重危害人类的生存,食品安全已成为日常生活中头等大事.怎样生产出无污染无毒副作用的绿色无公害食品,已成为各方探讨的焦点.传统种养殖方式受到新的挑战,微生物技术的应用是改变这一现状的有效途径,是时代的选择和农牧业可持续发展的需要. 微生物是一类形体微小的单细胞或个体结构比较简单的多细胞,甚至没有细胞结构的低等生物,是眼看不见,手摸不着,有生命的微小生物,只有借助于显微镜才能看到.微生物与人类的关系极为密切,每时每刻都以不同的方式影响着人类的生活.研究和应用微生物技术有助于消除环境污染,增进人类健康. 微生物分有益微生物和有害微生物,土壤中还有一种叫中庸微生物,中庸微生物是墙头草,没有立场和观点,当有益微生物占主导地位时,它即转变为有益微生物.EM、AM、CM等有效微生物均属有益微生物,是动植物和土壤中不可缺少的重要物质,土壤中有益微生物是土壤中的卫士和工程师,它们不断地分解着土壤中的有害物质,如化肥的残留物质,农药的残毒及不能被植物根系直接吸收利用的其它物质.没有微生物的不断增值和分解,动植物就很难生存. Em有效微生物是日本琉球大学比嘉照夫教授20世纪80年代初期研制的一种新型高科技复合微生物菌剂,由五科十属80多种有益微生物经过仔细筛选复合而成.主要有光合菌、酵母菌、乳酸菌等,光合菌以土壤接受的光和热为能源,以根系的有机物或有害气体(硫化氢)为食饵,产生氨基酸、核酸等代谢物,促进植物的生长发育,这些代谢物既可以直接被植物吸收,又可作为其它微生物繁殖活动的基质,提高植物的固氮能力.乳酸菌有很强的杀菌力,抑制有害微生物的繁殖,加剧有机物的腐败分解,减轻连作病害发生.酵母菌分泌激素,能促进根系生长和细胞分裂,还可以为其它微生物繁殖提供所需的基食.放线菌产生抗生素物质能抑制病原菌的繁殖,在和光合菌共生的条件下,放线菌的杀菌功效成倍提高,丝状菌对土壤中酯的生成有良好的作用,并有分解消除恶臭的效果. 光合菌、酵母菌、乳酸菌、放线菌等有益微生物在应用过程中各自发挥着自身作用,光合菌在其中起主导作用,是其它微生物赖以生存的基础.它们形成共存共荣的关系,抑制有害菌,增加有益菌,改善土壤环境,创造有利于作物正常生长发育的物质,阻碍抑制病害的发生.土壤中的微生物数量取决于土壤中的有机物质的含量和肥沃状况,有机质越多,微生物繁殖越快,土壤越肥沃,植物越健壮,根系病害越少. 微生物技术在世界上150多个国家和地区被广泛应用,应用面积最大的有巴西、泰国、日本、朝鲜等.巴西用EM生物制剂治理了湖水的污染,朝鲜五分之四的农田应用EM生物技术解决了粮食问题.我国已有三十多个省市地区的高等院校、科研单位在研究和应用. 中国科学院院士辛德惠先生指出:“生物技术在提高农业、牧业、林业、水产业的生产能力,治理环境,创造优化新环境,人的保健方面,都有着巨大的、不可替代的作用和潜力,EM技术必将对我国高产、优质、低耗、高效地发展农业、净化环境和提高人民健康水平方面做出难以估量的贡献! 1.常规现代农业的现状 1.1 长期以来,依赖化肥、激素,而且用量不断增加,有机肥用量逐年减少,污染严重.据世农组织统计1950-1985年的35年世界化肥用量增加8.29倍,而谷物增产仅1.68倍,我国每年化肥总用量4000万吨,用量增长幅度很大,而谷物增产由原来每公斤化肥挽回20公斤粮食下降到现在每公斤化肥只能挽回45公斤粮食.据有关资料报导我国氮肥的单季利用率仅30%,磷肥利用率10-20%,钾肥利用率35-50%,大部分挥发和随水流失,污染了江河湖泊和地下水.氮磷钾比例不当造成土壤板结,保墒保肥能力降低,从而造成作物徒长,落花落果和耐贮性下降等.另外还造成烧根、熏叶以及硝酸盐、亚硝酸盐等致病致癌物质在农产品中的积累.有机肥用量逐年减少,1979年有机肥利用率40.5%,而到1997年有机肥利用率仅为19.6%.19年间有机肥利用率下降21.9%.专家指出,以生物肥料、生物有机肥和叶面肥为代表的新型肥料,其发展前景相当广阔. 1.2 滥用农药、抗生素等,农药残留不断增加.我国每年农药总用量达50万吨,农药大量应用的结果杀伤了大量的天敌和土壤中的有益微生物,土壤中的有害微生物增多,病原菌增加,导致病害越来越重.同时,由于杀伤了天敌,使次要害虫上升为主要害虫,目前有360多种害虫对60多种农药产生了抗性.病虫害越重,农药的喷洒次数和用量越增加,(有些菜农不吃自己种的菜)这样,农产品的残留不断上升,据科技人员从上市蔬菜中检查,1977年农药残留为36%,1998年上升为44%,1999年上升为54%,22年农药残留增加18%,和1977年相比农药残留增加50%. 1.3 农产品质量下降,“瓜不甜、果不香、菜无味”是农药残留所致,现代疾病也越来越多.近年来国内外科学家通过广泛研究,发现抗生素在人体内的积累和抗药性的增加将会对人类的健康带来灾难性的后果.蔬菜中的硝酸盐含量不断增加,特别是叶菜类,硝酸盐,亚硝酸盐又是致癌物质,严重威胁着人们的健康.农业的恶性循环直接制约着农业生产的持续发展. 综上所述,农药化肥抗生素时代之后,将是一个崭新的微生物制剂应用时代,杨振宁先生曾说:“二十一世纪是微生物世纪”. EM生物技术不仅是一种微生物,也不是只有某几种特定的微生物,而是将许多种类的有用微生物作为一个功能群体来应用.如果学微生物的话,前景倒是不错,毕竟我们国家欠缺这方面的人才,但是我国的基础建设比较弱,以后应当出国深造一下,对在微生物上的发展有好处