导航:首页 > 生物信息 > 生物堆浸是什么

生物堆浸是什么

发布时间:2023-01-18 17:24:11

Ⅰ 金矿采用堆侵法所用的是什么化学药剂(它的化学方程式

NACN,氰化钠。金的化学性质稳定,但易生成配合物;比如王水能溶解金。氰化钠与金反应生成AGCN配合物,溶于水,水溶液再通过后步处理置换出单质金。此方法适合低含量。紫金矿业就是采取这种方式,但污染严重。

Ⅱ 红土矿的堆浸问题

蛇纹石在有催化剂存在时,易溶于硫酸,所以堆浸理论上是可行的,但是否有企业再用,就不得而知了。另外从资料上了解有一些研究机构在做这类矿石的生物堆浸,我们公司也在关注,一旦有成功的事例,考虑引进。

Ⅲ 如何把硫从煤炭中分离出来

煤中硫的脱除方法

按照脱硫工序在煤炭利用过程中所处阶段的不同,煤碳脱硫可以分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫。

煤炭燃烧后脱硫又称烟道气脱硫(Flue Gas Desulphurization,简称FGD),是指对燃烧后产生的气体进行脱硫。按产物是否回收,烟道气脱硫可分为抛弃法和回收法;按照脱硫过程的干湿性质又可分为湿式脱硫、干式脱硫和半干式脱硫;按脱硫剂的使用情况,可分为再生法和非再生法。FGD法技术上比较成熟,属末端治理,经过小试和中试已投入工业运行。尽管脱硫率可高达90%,但工艺复杂,运转费用高,副产品难以处置。

煤炭燃烧中脱硫(固硫)是在采用低温沸腾床层燃烧(800~850℃)的过程中,向炉内加入固硫剂如CaCO3、CaO或MgO等粉末,使煤中的硫转化成硫酸盐,随炉渣排出,可脱除50%-60%的硫。其脱硫效率受到温度的限制,而且固硫剂的磨制过程中需要消耗大量的能量,燃烧后增加了锅炉的排灰量。采用该方法无法将所有的硫转化成硫酸盐,只能在一定程度上降低烟气中的硫含量,不能从根本上解决烟气的污染问题。此技术目前尚不成熟,而且存在易结渣、磨损和堵塞等难题,成本高。

煤炭燃烧前脱硫是在煤炭燃烧前就脱去煤中硫分,避免燃烧中硫的形态改变,减少烟气中硫的含量,减轻对尾部烟道的腐蚀,降低运行和维护费用。燃烧前脱硫较之另两种脱硫工艺有许多潜在的优势,而且符合“预防为主”的方针。因为众多家庭用煤、中小锅炉用煤量大,来源不一,不易控制,而在选煤厂就把硫脱除到一定范围,从源头进行控制。所以,燃烧前脱硫具有重要意义。

煤炭的燃烧前脱硫可以分为物理脱硫法、化学脱硫法和生物脱硫法等。

物理脱硫法利用煤和黄铁矿的性质(如表面性质、密度、电及磁性等)差异而使它们分离,包括重选、浮选、磁分离、油团聚等方法。该方法工艺较简单,投资少,可以脱除50%左右的黄铁矿,而对煤质中高度分散的黄铁矿作用不大,且不能脱除煤炭中的有机硫。

化学脱硫法是利用不同的化学反应,将煤炭中的硫转变为不同形态,而使它们从煤中分离出来。在众多的化学脱硫方法中,目前经济技术效果较好的,且颇具应用前景的主要是碱法脱硫和溶剂萃取脱硫工艺。新开发的温和的化学脱硫法主要有辐射法、电化学法等。化学脱硫方法虽然能脱除无机硫和一部分有机硫,但有两个致命缺点,一是大多数化学脱硫法是在高温、高压和强氧化-还原条件下进行的,并使用不同氧化剂,故设备及操作费用显着提高;二是由于在这样的反应条件下,煤的结构、煤的粘结性被破坏,热值损失大,因而使所净化煤的用途受到了限制,难于在工业上大规模应用。

煤炭的生物脱硫法是由生物湿法冶金技术发展而来的,是在极其温和的条件下(通常是温度低于100℃、常压),利用氧化-还原反应使煤中硫得以脱除的一种低能耗的脱硫方法。它不仅生产成本低,而且不会降低煤的热值,还能脱除煤中有机硫,从而引起了世界各国的广泛关注。尽管煤炭生物脱硫目前还处于试验阶段,但它在经济上很有竞争力,是一种很有前途的煤炭燃烧前脱硫方法。

国内目前对微生物煤炭脱硫研究较多的是脱除黄铁矿硫,且仅限于试验室小型试验,对大规模培养微生物研究得较少,而微生物如何及时供应也是影响煤炭脱硫的一个重要方面,对脱除有机硫的研究国内尚处于起步阶段。国外对微生物脱除煤中硫的研究,不仅进行了脱除黄铁矿硫的研究工作,在有机硫的脱除方面也取得了很大进展。

目前,常用的生物脱硫的方法有浸出法、表面氧化法和微生物絮凝法[7-9]等。

(1)生物浸出脱硫

生物浸出法就是利用微生物的氧化作用将黄铁矿氧化分解成铁离子和硫酸,硫酸溶于水后将其从煤炭中排除的一种脱硫方法。具体方法是将含有微生物的水浸透在煤中,实现微生物脱硫。

刘生玉、印海南等认为,FeS2脱除的基本反应[27-29]如下(下面反应都是在氧化酶的参与下进行的):

2 FeS2 + 7O2+2H2O → 2FeSO4 + 2H2SO4 (1)

2FeSO4 + 0.5 O2+ H2SO4 → Fe2(SO4)3 +2 H2O (2)

FeS2 + Fe2(SO4)3 → 3FeSO4 + 2S (3)

2S + 3O2 + 2H2O → 2H2SO4 (4)

生物浸出脱硫目前常用的反应方式有堆浸法和浆态床流动法。堆浸法只需在煤堆上撒上含有微生物的水,通过水浸透,在煤中实现微生物脱硫,生成的硫酸在煤堆底部收集,从而达到脱硫的目的。浆态床流动法是将煤粉碎后与细菌、营养介质一起置于反应器内,在通气条件下进行煤的脱硫。

该法研究历史较长,技术较成熟。优点是装置简单、经济、不受场地限制、处理量大等。由于是将煤中硫直接代谢转化,当采用合适的微生物时,还能同时处理无机硫和有机硫,理论上有很大应用价值。其缺点是处理时间较长,一般需要数周;浸出的废液容易造成二次污染。

(2)微生物表面处理法

即表面改性浮选法。这是一种将微生物技术与选煤技术结合起来,开发出的一种微生物浮选脱硫技术。该法是将煤粉碎成微粒,与水混合,在其悬浮液下通入微细气泡,使煤和黄铁矿表面均附着气泡,在空气和浮力作用下,煤和黄铁矿一起浮到水面。但是,如果将微生物加入悬浮液中,由于微生物在黄铁矿表面,使黄铁矿表面由疏水性变成亲水性。与此同时微生物却难以附着在煤粒表面,所以煤表面仍保持疏水性。这样煤粒上浮,而黄铁矿则下沉从而将煤和黄铁矿分离,达到煤炭中脱除黄铁矿的目的。

该法优点是处理时间短,当采用对黄铁矿有很强专一性的微生物(如氧化亚铁硫杆菌)时,能在数秒钟之后就起作用,抑制黄铁矿上浮,整个过程几分钟就完成,脱硫率较高。该法缺点是煤炭回收率较低。

(3)微生物絮凝法

利用一种本身疏水的分歧杆菌的选择性吸附作用,在煤浆中有选择地吸附在煤表面,使煤表面的疏水性增强,结合成絮团,而硫铁矿和其它杂质吸附细菌,仍分散在矿浆中,从而实现脱硫。该法较新,应用较少,还有待于进一步研究和推广。

Ⅳ 微生物淋滤堆浸法名词解释

生物淋滤是指利用特定微生物或其代谢产物的氧化、还原、络合、吸附或溶解作用,将固相中某些不溶性成分(如重金属、硫及其它金属)分离浸提的一种技术。在去除污泥中的重金属方面有好的发展前景。
生物淋滤技术应用于难浸提矿石或贫矿中金属的溶出与回收又称微生物湿法冶金(B iohydrometallurgy)。20 世纪50 年代美国就开始利用生物淋滤法浸出铜矿,20 世纪60 年代加拿大浸出铀矿,以及20 世纪80 年代对难处理的金矿细菌氧化预处理的工业应用相继成功。全世界,通过该法开采的铜、铀、金分别占总量15%~30%、10%~15%、20%。它的研究和应用正扩展到环境污染治理等领域,例如,污水污泥或者其焚烧灰分中重金属去除,重金属污染土壤、河流底泥的生物修复;工业废弃物如粉煤灰中重金属脱毒与钛、铝、钴等贵重金属的回收;煤和石油中硫的脱除等。

Ⅳ 什么溶液可以把铜矿石粉中的铜完全溶解出来

现在的湿法炼铜可不是古代的了。而是采用加压浸出技术、生物技术堆浸(生物氧化堆浸提金工艺采用原矿直接筑堆氧化—氰化浸出工艺)的方法等提取铜的。生物堆浸用的是化能自养菌,可以对付不溶解在一般酸里的次生硫化矿等多种铜矿石。
堆浸用细菌是一些生长于矿坑酸性水中的特殊微生物,其种类很多,如氧化铁硫杆菌、氧化硫杆菌、兼性噬硫杆菌型耐热菌,硫化裂片菌属中一些嗜热菌、聚生硫杆菌等。然而,在生产实践中获得应用的主要是氧化铁硫杆菌。
你可以看看紫金矿业“硫化铜矿生物堆浸过程 ”一文:
http://wenku..com/view/78d3a95177232f60ddcca1bf.html
还有下文:
湿法炼铜给铜工业带来的影响:
(1) 可以处理低品位铜矿,美国采用堆浸处理的铜矿石品位甚至低到0.04%。过去认为无法处理的表外矿、废石、尾矿等均可作为铜资源被重新利用,因此大大扩大了铜资源的利用范围; )
(2) 湿法炼铜由于工艺过程简单,能耗低,因此生产成本低。1997年西方SX-EW 铜平均的生产成本为43美分/ 磅,这包括8美分/磅采矿费、15美分/磅浸出费用、18美分/磅的SX-EW费用、2美分/磅的管理费用。而1997年西方火法铜的平均生产成本为70美分/磅;
(3) 投资费用低、建设周期短。国外大型的湿法炼铜厂的单位投资费用为2300$/tCu,而火法铜的单位投资费用超过4500$/tCu。中国湿法炼铜厂由于设备简陋,单位投资费用只有1 ~1.2 万元/t;
(4) 没有环境污染问题。湿法炼铜工艺没有SO2烟气排放,硫化矿加压浸出时硫可以S 。的形式产出,避免了硫酸过剩问题。特别是地下溶浸技术不需要把矿石开采出来,不破坏植被和生态,从根本上改善了采矿工人的劳动条件;
(5)阴极铜产品质 量高。由于溶剂萃取技术对铜的选择性很好,因此铜电解液纯度很高,产出的阴极铜 质量可以达到99.999%,再加上采用了Pb-Ca-Sn合金阳极以及在电解液中加Co2+等措 施,有效地防止了铅阳极的腐蚀,保证了阴极产品的质量;
(6)生产规模可大可小, 这尤其适合于中国企业的特点。 正因为湿法炼铜有这样一些显着的优点才使其得以迅速的发展,当1997年下半年 到1998年由于亚州金融危机而引发了有色金属价格急剧下滑,铜价持续走低,西方一些铜公司关闭了他们成本较高的火法炼铜厂,但在此期间世界湿法炼铜产量仍然强劲地增长着,由此可以说明湿法炼铜技术的生命力。
过去认为浸出-萃取-电积工艺 只适于处理那些废石、氧化矿、低品位矿,即只适于处理那些火法冶金不好处理或不经济的矿石,但近几年由于生物技术、加压浸出技术的发展和工业化已经改变了人们这种认识,采用生物堆浸完全可以处理高品位的次生硫化矿,而且达到了很大的生产 规模,已成为一种很成熟的生产方法。采用加压浸出技术处理高品位的次生硫化矿也 已实现了工业化,并且达到了5 万t/aA级铜的生产规模,操作成本只有35美分/ 磅。
可以看到近年来湿法炼铜的主攻方向已经从氧化矿和废石转向了硫化矿,甚至把以黄 铜矿为主要成份的铜精矿作为了挑战的目标。相信在不久的将来人们可以实现采用湿 法冶金技术处理任何铜矿,而且在投资和成本上能与火法冶金展开竞争。

Ⅵ 生物炼铜是怎样做的

生物开矿技术是一种利用微生物开矿的湿式制铜技术。先在矿床上开凿“注入矿井”和“回收矿井”,然后向矿井注入铁酸化细菌和硫磺酸化细菌以加速金属成分溶解,再通过“回收矿井”回收有价金属。

Ⅶ 谁能解答以下有关《生物选矿》的问题急急急!~~~~~答好追加分!~~~~

生物冶金技术,又称生物浸出技术,通常指矿石的细菌氧化或生物氧化,由自然界存在的微生物进行。这些微生物被称作适温细菌,大约有0.5~2.0微米长、0.5微米宽,只能在显微镜下看到,靠无机物生存,对生命无害。这些细菌靠黄铁矿、砷黄铁矿和其他金属硫化物如黄铜矿和铜铀云母为生。

适温细菌和其他“靠吃矿石为生”细菌如何氧化酸性金属的机理不得而知。化学和生物作用将酸性金属氧化变成可溶性的硫酸盐,不可溶解的贵金属留在残留物中,铁、砷和其他贱金属,如铜、镍和锌进入溶液。溶液可与残留物分离,在溶液中和之前,采取传统的加工方式,如溶剂萃取,来回收贱金属,如铜。残留物中可能存在的金属,经细菌氧化后,通过氰化物提取。

生物湿法冶金

在自然界,微生物在多种元素的循环当中起着重要作用,地球上许多矿物的迁移和矿床的形成都和微生物的活动有关。生物湿法冶金是一种很有前途的新工艺,它不产生二氧化硫,投资少,能耗低,试剂消耗少,能经济地处理低品位、难处理的矿石。目前,这种方法仍处于发展之中,它还必须克服自身的一些局限性,如反应速度慢、细菌对环境的适应性差,超出了一定的温度范围细菌难以成活,经不起搅拌,等等。为此,一些科学家建议应从遗传工程方面开展工作,通过基因工程得到性能优良的菌种。

生物湿法冶金是二十年来冶金领域十分活跃的学科之一。与传统氧化工艺相比,生物氧化工艺其成本低,无污染,对低品位难处理的硫化矿矿产资源的有效开发利用有着广阔的工业应用前景。相信在不远的将来,生物湿法冶金一定会得到更加广泛的应用。

微生物浸矿是指用含微生物的溶剂从矿石中溶解有价金属的方法。用微生物处理的矿石多为用传统方法无法利用的低品位矿、废石、多金属共生矿等。微生物浸矿过程机理的研究已有很长的历史,在细菌的生长、硫化矿分解等方面已有较深刻的认识。细菌浸矿过程是细菌生长及包括化学反应,电化学、动力学现象的硫化矿氧化分解的复杂过程。

国外研究现状

难浸金矿的细菌氧化预处理,最先是1964年在法国提出。法国人首先尝试利用细菌浸取红土矿物中的金,取得了令人鼓舞的效果。1977年苏联最先发表了实验结果。北美最先用搅拌反应槽对难浸金矿石及精矿进行细菌氧化,对于搅拌反应槽式细菌氧化厂的投产和推广,具有奠基作用。1984~1985年,加拿大Giant

Bay微生物技术公司对北美及澳大利亚的30多种金精矿进行了细菌氧化实验研究。1986年南非金科公司的Fairview金矿建立世界上第一个细菌氧化提金厂,实现了难浸金矿细菌氧化预处理法在世界上的首次商用。

近年来,在国外该技术的研究与应用已成为矿冶领域热点。堆浸在铜、金等金属的提取上获得工业应用。自1980年以来,智利、美国、澳大利亚等国相继建成大规模铜矿物堆浸厂。对于锌、镍、钴、铀等金属的生物提取技术亦得到研究。加拿大用细菌浸铀的规模最大、历史最久,安大略州伊利埃特湖区三铀矿公司1986年产铀360吨。美国在浸取铜矿石时用细菌法回收其中的铀,1983年产值已达9,000万美元。法国的埃卡尔耶尔铀矿采用细菌浸出,1975年产铀量达到35吨。葡萄牙在1959年就有1个铀矿采用细菌浸出进行生产,铀浸出率达60%~80%。

智利北部的Quebrada Blanca矿山是目前生物浸出实践中非常好的范例,并展示了生物湿法冶金在矿业中的成功发展。

国内研究现状

由福建紫金矿业股份有限公司、北京有色金属研究总院等单位联合承担的“十五”国家科技攻关计划“生物冶金技术及工程化研究”课题进行了评审验收。课题完成后,将在我国首次实现硫化铜矿石生物提铜工艺工业化,形成的生物堆浸提铜工程技术、高效浸矿菌株选育及活性控制技术,可推广应用于低品位难处理硫化铜矿及表外矿,将显着提升我国矿冶技术水平和国际竞争力。

福建紫金山铜矿是一个含砷低品位大型矿床,现已探明铜金属工业储量253万吨。但一直以来,由于原矿品位低、含砷量高,采用传统的浮选—火法炼铜工艺达不到预期目标,并会造成低品位铜矿资源的巨大浪费,于是紫金矿与北京有色金属研究总院合作、携手攻关,以紫金山铜矿为试验基地,对目前国际上最受青睐的湿法提铜工艺进行研究和开发。现在已建成了年产315吨电解铜工业试验厂,生产的电解铜达到国家一级电解铜标准。目前,紫金又开始着手建设年产1,000吨生物提铜工业试验厂,并力争在“十一五”期间建成年产1万吨电解铜的生物冶金工厂。项目建成后,紫金山铜矿将成为国内第一个具有工业规模的生物提铜基地。此外,紫金山铜矿还将利用这一新工艺着手进行生产有色金属纳米材料和其它新型粉体材料及复合粉体材料的研究,逐步实现传统矿业经济向新型经济产业迈进,力争在五年内把紫金矿业建设成为国内着名的高科技效益型矿业企业集团,并实现紫金山铜矿的全面开发。

由中南大学邱冠周教授为首席科学家的“微生物冶金的基础研究”项目针对我国有色金属矿产资源品位低、复杂、难处理的特点,围绕硫化矿浸矿微生物生态规律、遗传及代谢调控机制;微生物-矿物-溶液复杂界面作用与电子传递规律;微生物冶金过程多因素强关联3个关键科学问题开展研究。“微生物冶金的基础研究”分别获得2002年度“中国高等学校十大科技进展”和2002年度湖南省科技进步一等奖;2005年10月下旬,科技部正式行文,“微生物冶金的基础研究”被正式列入国家重点基础研究(“973”计划)项目。该项目的正式启动,标志着我国微生物冶金技术进入突破性研究阶段。随着项目研究的深入,不仅将在冶金基础理论上取得突破,建立21世纪有色冶金的新学科—微生物冶金学;而且对解决我国特有的低品位、复杂矿产资源加工难题,扩大我国可开发利用的矿产资源量,提高现代化建设矿产资源保障程度,促进走可持续发展新型工业之路,实施西部大开发战略等都具有重要的作用。

据邱冠周教授说,微生物冶金技术将提高矿产资源的利用率两倍以上。以铜为例,中国铜的保有储量6,917万吨,传统的采选冶技术资源开发率只有28%左右,而利用微生物冶金技术开发率则接近100%,等于实际可利用铜将增加数千万吨。目前,世界上微生物冶金技术已在铜、金、铀的提取方面有所应用,国外微生物冶金处理对象主要是次生矿和氧化矿。中国在微生物冶金应用方面才刚刚起步,由于国内有90%为复杂低品位原生硫化矿,因此这一技术应用前景十分广阔。

生物冶金技术引起了业界和国家有关部门的高度重视。一座规模年产5,000吨、年创经济价值9,000万元的示范工程正在广东金雁铜业公司兴建。微生物冶金过程反应温和、环境友好,不产生传统选冶过程的废气、废渣、废水污染,可以显着改善生态环境。尤其重要的是将矿产资源利用率提高了34倍,就可使我国实际可利用铜金属量从1,431万吨增加至4,150万吨以上,铜保有储量的服务年限从13年延长至50年!

生物冶金优缺点

生物浸出技术的主要优点有:1)提高金和贱金属的回收率;2)从商业角度证实下游技术如溶剂萃取、电积法可用于经生物技术处理过的溶液现物生产贱金属;3)生产过程的简单化降低了前期投入和运营费用,缩短了建设时间,维修简单方便;4)生产在常压和室温(约为25摄氏度)条件下进行,不用冷却设备,节约了投资和运营资本;5)生物浸出的废弃物为环境所接受,节约了处理废弃物的成本,生物浸出的废弃物的预防措施也很少;6)细菌易于培养,可承受生产条件的变化,对水的要求也很低,每百万水溶液中可溶解固体物2万份。

生物浸出技术的缺点是:1)罐浸出的时间通常为4~6天,与焙烧和高压氧化的几小时相比,时间较长;2)难以处理碱性矿床和碳酸盐型矿床。

生物冶金的应用

目前生物冶金的研究对象主要是利用铁、硫氧化细菌进行铜、铀、金、锰、铅、镍、铬、钴、铋、钒、镉、镓、铁、砷、锌、铝、银、锗、钼、钪等几乎所有硫化矿的浸出。

随着表层矿的逐渐减少,深层矿绝大多数为不易处理的,生物提取技术对上述绝大多数项目都是适用的。该技术在前期投资和运营费用方面的优势及对环境无害的特点决定了该技术的应用范围和前景。

通过对金属硫化物矿和精矿的生物浸取,不但可提取金,还可提取残金属,如铜、镍、锌、钴、钼。在生物提取过程中,贱金属溶入酸性溶液中,可通过湿法冶金技术获取。在复杂难选冶的金矿中,贱金属的提取可影响整个项目的经济可行性。

生物提取技术对用常规方法难以分离的多金属矿、精矿和含多种金属的尾矿也有效。澳大利亚一家矿业公司正在对一含有铅、铜、钴、锌、镍和银的多金属精矿进行实验。

钴常与黄铁矿伴随。对黄铁矿生物处理浸出钴后采用传统方式获取。

锌也可用生物提取方式从金属矿化物精矿中获得,该过程可用于复杂成分硫化物的加工。

实验结果显示采用连续的生物浸出黄铜矿在技术上是可行的。在密闭循环过程中铜的回收率为95%,镍和钴的回收率达到了97%。这些结果为在墨西哥的Penole建立日处理为吨级的示范工厂提供了动力。。

生物治金在经济可行性上可有效地与焙烧竞争。故可以相信在不久的将来生物冶金技术可很好地应用。采矿项目中环境因素占很大比重,这又可以加速生物冶金技术的应用,因为该技术的产品或为沉淀物或为想获得的金属。生物浸出,充分利用了自然有机体在控制的条件下对硫化物的加速递降分解。除了电积法过程有部分氧气参与外,并无有害气体和废弃物直接进入环境。该技术的环境优势可节省审批的时间,减少项目商业化从设计到投产的时间。

生物冶金技术对贱金属精矿的处理,最早可应用于通过焙烧不能获得金属或因焙烧污染环境导致严重罚款的矿床,这些通常被称做“不洁”精矿。如铜矿便含有锌、砷等杂质。在生产铜精矿时,为了达到冶炼标准,减少上述杂质对铜精矿的污染,导致了铜回收率的降低。采用生物冶金技术,对铜、锌精矿的浸取就可避免金属回收率的降低。采用生物技术处理铜一锌精矿,既可避免因焙烧而导致的环境处罚,又可提取锌而增加经济效益。

用生物浸取处理难以达到冶炼标准的复杂贱金属精矿,已由该技术处理镍—钴精矿的实验证实。

另一可商业化的领域是对含砷的铜精矿的处理。含砷铜精矿焙烧费用昂贵,因为需要回收和处理砷。采用生物技术,砷可变成稳定的铁砷化合物。目前该方法只在难选冶的含金砷黄铁矿精矿的生物氧化中广泛应用。

矿业中日益增加的有利于环境清洁的加工技术要求是生物冶金技术商业化的强大动力。长期半工业化实验工厂的研究和独立的经济核算证明了该技术的技术可行性和经济可行性。大规模示范工厂的建立将证明这些发现,并将推动生物冶金技术提取贱金属精矿走向商业化。

生物冶金技术在黄金领域中的主要应用是作为预处理工艺用于难处理金矿资源的开发上。生物氧化提金技术。

未来,生物湿法冶金由于其利于环境保护、基建投资少、在某些情况下运作成本低等优越性,将获得进一步的发展。可能获得工业应用的领域有下列:

(1)基础金属浮选硫化精矿的细菌槽浸;

(2)难处理金矿的细菌堆浸氧化预处理;

(3)氧化矿的生物浸出;

(4)用微生物从水溶液中提取金属。

21世纪是生物技术的世纪,生物技术的发展与进步必将影响人类活动的各个领域,对冶金自然会有进一步的渗透和影响。生物冶金技术为人类解决当今世界所面临的矿产资源和环境保护等诸多重大问题提供了有力的手段,显示出难以估计的巨大潜力。

Ⅷ 什么是生物浸矿技术

微生物浸矿工艺包括堆浸法、地浸法、槽浸法以及搅拌浸出法等。

(1)堆浸法:堆浸一般都在地面以上进行。该工艺通常利用斜坡地形。将待处理大块矿石 (未经破碎或经过一段粗碎)堆置在不透水的地基上,形成矿石堆,在矿堆表面设置喷淋管路,向矿堆中连续或间断地喷洒微生物浸出剂进行浸出,并在地势较低的一侧建筑集液池收集浸出液。其流程示意图如图1所示。

图1 土堆浸流程示意图

(2)地浸法:微生物地浸工艺也叫微生物溶浸采矿。这种浸矿工艺是由地面钻孔至金属矿体,然后从地面将微生物浸出剂注入到矿体中,原地溶浸有用矿物,最后用泵将浸出液抽回地面,回收溶解出来的金属。为了使微生物在地下能正常生长并完成浸矿作用,除了在浸出剂中加入足够的微生物营养物质以外,还必须通过专用钻孔向矿体内鼓入压缩空气,为微生物提供所需要的氧气和二氧化碳。

(3)槽浸法:是一种渗滤型浸出作业,通常在浸出池或浸出槽中进行,槽浸也是因此而得名。微生物槽浸工艺多用来处理品位较高的矿石或精矿,待处理矿石的粒度一般为~3mm或~5mm。每一个浸出池(或槽)一次装矿石数十t至数百t,浸出周期为数十天到数百天。其流程示意图如图2所示。

图2 微生物槽浸示意图

(4)搅拌浸出法:微生物搅拌浸出一般用于处理富矿或精矿。在进行浸出前,先将待处理矿石磨到一200目占90%以上的细度。为了保证浸出矿浆中微生物具有较高的活性,矿浆的固体浓度大都保持在20%以下。

Ⅸ 生物炼铜的介绍

矿堆浸铜法是一种已被人们沿用了几百年的生物炼铜法,直到最近,生物工程学家才认识到是微生物在帮助我们从矿石中提取铜。

Ⅹ 微生物在开矿冶炼中的作用

生物冶金

生物冶金是指在相关微生物存在时,由于微生物的催化氧化作用,将矿物中有价金属以离子形式溶解到浸出液中加以回收,或将矿物中有害元素溶解并除去的方法。许多微生物可以通过多种途径对矿物作用,将矿物中的有价元素转化为溶液中的离子。利用微生物的这种性质,结合湿法冶金等相关工艺,形成了生物冶金技术。浸矿微生物主要有氧化铁硫杆菌(thiobacillusferrooxidans)、氧化硫硫杆菌(thiobacillusthiooxidant)、硫化芽孢杆菌(sulfobacillus)、氧化铁杆菌(ferrobacillusferrooxi dant)、高温嗜酸古细菌(thermoacidophilicarchae bacteri a)、微螺球菌属(1eptospirillum)等。在有关生物冶金的报道Thiobacillusferrooxidans(氧化亚铁硫杆菌)为浸矿菌种的论文占绝大多数,但从研究者对浸矿细菌的分离及培养方法来看,应该是多个菌种的富集混合菌。它们有些生长在常温环境,有些则能在50~70℃或更高温度下生长。硫化矿氧化过程中会产生亚铁离子和元素硫及其相关化合物,浸矿微生物一般为化能自氧菌,它们以氧化亚铁或元素硫及其相关化合物获得能量,吸收空气中的氧及二氧化碳,并吸收溶液中的金属离子及其它所需物质,完成开尔文循环生长。

用于浸矿的几十种细菌,按其生长的最佳温度可以分为三类,即中温菌、中等嗜热菌与高温菌。
硫化矿生物浸出过程包括微生物的直接作用和间接作用,同时还具有原电池效应及其它化学作用。直接作用是指浸出过程中,微生物吸附于矿物表面通过蛋白分泌物或其他代谢产物直接将硫化矿氧化分解。间接作用则指微生物将硫化矿物氧化过程产生的及其它存在于浸出体系的亚铁离子,氧化成三价铁离子,产生的高铁离子具有强氧化作用,其对硫化矿进一步氧化,硫化矿物氧化析出有价金属及铁离子,铁离子被催化氧化,如此反复。根据矿石的配置状态,生物冶金工业化生产主要有3种。

(1)堆浸法。这种方法常占用大面积地面,所需劳动力较多,但可处理较大数量的矿石,一次可处理几千至几十万吨。

(2)池浸法。在耐酸池中,堆集几十至几百吨矿石粉,池中充满含菌浸提液,再加以机械搅拌以加快冶炼速度。这种方法虽然只能处理少量的矿石,但却易于控制。

(3)地下浸提法。这是一种直接在矿床内浸提金属的方法。其方法是在开采完毕的场所和部分露出的矿体上浇淋细菌溶浸液,或者在矿区钻孔至矿层,将细菌溶浸液由钻孔注入,通气,待溶浸一段时间后,抽出溶浸液进行回收金属处理。这种方法的优点是,矿石不需要开采选矿,可节约大量人力和物力,减轻环境污染。

应用微生物浸矿,其优势在于:反应温和,环境友好,能耗低,流程短,特别适于贫矿、废矿、表外矿及难采、难选、难冶矿的堆浸和就地浸出,在矿石日益贫杂及环境问题日益突出的今天,微生物浸矿技术将是有效的金属元素提取、环境保护及废物利用的手段。近年来,国外该技术的研究已成为矿冶领域热点,细菌浸出已发展成了一种重要的矿物加工手段,利用此法可以来浸出铜、铅、锌、金、银、锰、镍、铬、钼、钴、铋、钒、硒、砷、镉、镓、铀等几十种贵重和稀有金属。

我国生物冶金研究的发展

中国是世界上最早采用生物冶金技术的国家,早在公元前2世纪,就记载了用铁从硫酸铜溶液中置换铜的化学作用,堆浸在当时就是生产铜的普遍做法。不过是在采铜、铁过程中不自觉地利用了自发生长的某些自养细菌浸矿。西汉《淮南万毕术》里有“白青(硫酸铜)得铁则化为铜”的描述。在公元11世纪大量应用了这种工艺,北末时代,又记载有“胆水浸铜”,产铜占当时总产量的15%~25%,仅江西铅山铜采矿场就年产19×104kg,安徽铜官山采场还超过铅山。

近年来,我国微生物浸出的研究和及工业化应用有了相当的发展。在浸矿微生物研究方面,张东晨、张明旭等对质粒在硫杆菌中普遍存在的观点提出了质疑,其研究结果表明,氧化亚铁硫杆菌对Fe2+、S等的氧化能力可能只是与拟核染色体DNA有关,而氧化亚铁硫杆菌的遗传物质就是拟核染色体DNA。徐晓军、孟运生等报道了经紫外线诱变的浸矿细菌,对黄铜矿的浸出率比原始菌提高了46%以上,到达浸出终点的时间比原始菌缩短了5~10d,浸矿细菌能更好地氧化浸出黄铜矿。赵清、刘相梅等利用DNA体外重组技术,构建了含有强启动子、可在tra基因诱动下转移的组成型表达的抗砷质粒pSDRA4。通过接合转移的方式将其导入专性自养极端嗜酸性喜温硫杆菌AcidithiobacilluscⅡIdW中,构建了冶金工程菌Acidithiobacilluscal s(pSDRA4),经检测,重组质粒在喜温硫杆菌中具有较好的稳定性,在无选择压力条件下传代50次基本保持稳定(重组质粒保留76%以上),经抗砷性能检测,与野生菌相比,构建的喜温硫杆菌工程菌抗砷能力明显提高,从0mmol/L提高到45mmol/L。在工业化应用方面,生物浸出技术成功运用于江西德兴铜矿,并建成年产2000t电铜的堆浸厂。在广东大宝山建立了我国第一个生物浸铜中试基地。福建紫金山建成千吨级生物提铜堆浸厂。由北京有色金属研究总院与福建紫金山矿业有限公司承担的国家十五攻关项目“生物冶金技术工程化”,将在福建紫金山建成万吨级的生物提铜堆浸厂。同时,金精矿生物预氧化提金在山东莱州已开始工业应用。镍、锌等硫化矿的生物冶金亦得到不同程度的发展。

总体来说,我国生物冶金的工业应用规模较小、应用矿山较少、矿种单一,需加大力度发展。由于国内有90%的原生硫化矿为复杂低品位,因此这一技术应用前景十分广阔。目前,以中南大学邱冠周教授为首席科学家已正式启动“微生物冶金的基础研究”,该项目以教育部为依托、由中南大学为第一承担单位,北京有色金属研究总院、山东大学、中国科学院过程工程研究所、北京矿冶研究总院和长春环境研究院等单位协作承担,这标志着我国有色金属矿产选冶领域的基础研究进入了与国际一流水平同步的发展阶段。

生物冶金发展趋势及研究方向

生物冶金是近代学科交叉发展生物工程技术和传统矿物加工技术相结合的一种新工艺。生物工程应用于矿物加工无疑具有重要意义,目前发展趋势、研究方向和需要解决的问题主要有:①受极端条件的微生物选育;②基因工程菌的构建;③生物浸出机理;④低浓度溶液中镍、钴等金属的提取新技术;⑤浸出过程的优化与控制;⑥异养菌浸矿的研究;⑦高效反应器的研制;⑧地下生物溶浸技术的开发;⑨贵金属和稀有金属的生物吸附研究;⑩煤中硫的生物脱除的研究;铝土矿脱硅的研究;非金属矿(如高岭土)脱铁的研究;生物选矿药剂的研究。

阅读全文

与生物堆浸是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1401
沈阳初中的数学是什么版本的 浏览:1347
华为手机家人共享如何查看地理位置 浏览:1039
一氧化碳还原氧化铝化学方程式怎么配平 浏览:881
数学c什么意思是什么意思是什么 浏览:1405
中考初中地理如何补 浏览:1296
360浏览器历史在哪里下载迅雷下载 浏览:698
数学奥数卡怎么办 浏览:1384
如何回答地理是什么 浏览:1020
win7如何删除电脑文件浏览历史 浏览:1052
大学物理实验干什么用的到 浏览:1481
二年级上册数学框框怎么填 浏览:1696
西安瑞禧生物科技有限公司怎么样 浏览:962
武大的分析化学怎么样 浏览:1244
ige电化学发光偏高怎么办 浏览:1334
学而思初中英语和语文怎么样 浏览:1647
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1483
数学中的棱的意思是什么 浏览:1054