导航:首页 > 生物信息 > 生物化学中活化分子位有哪些

生物化学中活化分子位有哪些

发布时间:2023-01-23 08:07:19

⑴ 求生物化学名词解释

第一章
1,氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。
2,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。
3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成
不需要从食物中获得的氨基酸。
4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。
5,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。
6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。
7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。
8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。
9,层析(chromatography):按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术。
10,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱
11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。
12,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。
13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。
14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。
15,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。
16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只是按照分子的大小,而不是根据分子所带的电荷大小分离的。
17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。
18,双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。
19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。
20,同源蛋白质(homologous protein):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。
第二章
1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构形的改变往往使分子的光学活性发生变化。
2,构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。
3,肽单位(peptide unit):又称为肽基(peptide group),是肽键主链上的重复结构。是由参于肽链形成的氮原子,碳原子和它们的4个取代成分:羰基氧原子,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位。
4,蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。
5,蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键维持的。
6,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。
7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm.
8, β-折叠(β-sheet): 蛋白质中常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(由N到C方向)或者是反平行排列(肽链反向排列)。
9,β-转角(β-turn):也是多肽链中常见的二级结构,是连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸。这两种转角中的第二个残侉大都是脯氨酸。
10,超二级结构(super-secondary structure):也称为基元(motif).在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。
11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合。
12,纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为 单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。
13,球蛋白(globular protein):紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水。典形的球蛋白含有能特异的识别其它化合物的凹陷或裂隙部位。
14,角蛋白(keratin):由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质。
15,胶原(蛋白)(collagen):是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成。原胶原蛋白是一种具有右手超螺旋结构的蛋白。每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的。
16,疏水相互作用(hydrophobic interaction):非极性分子之间的一种弱的非共价的相互作用。这些非极性的分子在水相环境中具有避开水而相互聚集的倾向。
17,伴娘蛋白(chaperone):与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构向的蛋白质。伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体。
18,二硫键(disulfide bond):通过两个(半胱氨酸)巯基的氧化形成的共价键。二硫键在稳定某些蛋白的三维结构上起着重要的作用。
19,范德华力(van der Waals force):中性原子之间通过瞬间静电相互作用产生的一弱的分子之间的力。当两个原子之间的距离为它们范德华力半径之和时,范德华力最强。强的范德华力的排斥作用可防止原子相互靠近。
20,蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照,热,有机溶济以及一些变性济的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。
21,肌红蛋白(myoglobin):是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质,它的氧饱和曲线为双曲线型。
22,复性(renaturation):在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象。
23,波尔效应(Bohr effect):CO2浓度的增加降低细胞内的pH,引起红细胞内血红蛋白氧亲和力下降的现象。
24,血红蛋白(hemoglobin): 是由含有血红素辅基的4个亚基组成的结合蛋白。血红蛋白负责将氧由肺运输到外周组织,它的氧饱和曲线为S型。
25,别构效应(allosteric effect):又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性丧失的现象。
26,镰刀型细胞贫血病(sickle-cell anemia): 血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状。其特点是病人的血红蛋白β—亚基N端的第六个氨基酸残缺是缬氨酸(vol),而不是下正常的谷氨酸残基(Ghe)。
第三章
1,酶(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质。酶不改变反应的平衡,只是
通过降低活化能加快反应的速度。
2,脱脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。
3,全酶(holoenzyme):具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。
4,酶活力单位(U,active unit):酶活力单位的量度。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25oC,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。
5,比活(specific activity):每分钟每毫克酶蛋白在25oC下转化的底物的微摩尔数。比活是酶纯度的测量。
6,活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量。
7,活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。
8,酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。
9,共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价方式进行的。
10,靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。
11,初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。
12,米氏方程(Michaelis-Mentent equation):表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km+[s])
13,米氏常数(Michaelis constant):对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。
14,催化常数(catalytic number)(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。
15,双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。
16,竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型。竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使Km增大而
υmax不变。
17,非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使Km不变而υmax变小。
18,反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。
19,丝氨酸蛋白酶(serine protease): 活性部位含有在催化期间起亲核作用的丝氨残基的蛋白质。
20,酶原(zymogen):通过有限蛋白水解,能够由无活性变成具有催化活性的酶前体。
21,调节酶(regulatory enzyme):位于一个或多个代谢途径内的一个关键部位的酶,它的活性根据代谢的需要而增加或降低。
22,别构酶(allosteric enzyme):活性受结合在活性部位以外的部位的其它分子调节的酶。
23,别构调节剂(allosteric molator):结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。
24,齐变模式(concerted model):相同配体与寡聚蛋白协同结合的一种模式,按照最简单的齐变模式,由于一个底物或别构调节剂的结合,蛋白质的构相在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换。这一模式提出所有蛋白质的亚基都具有相同的构象,或是T构象,或是R构象。
25,序变模式(sequential model):相同配体与寡聚蛋白协同结合的另外一种模式。按照最简单的序变模式,一个配体的结合会诱导它结合的亚基的三级结构的变化,并使相邻亚基的构象发生很大的变化。按照序变模式,只有一个亚基对配体具有高的亲和力。
26,同功酶(isoenzyme isozyme):催化同一化学反应而化学组成不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。
27,别构调节酶(allosteric molator):那称为别构效应物。结合在别构酶的调节部位,调节酶催化活性的生物分子。别构调节物可以是是激活剂,也可以是抑制剂。
第四章
1,维生素(vitamin):是一类动物本身不能合成,但对动物生长和健康又是必需的有机物,所以必需从食物中获得。许多辅酶都是由维生素衍生的。
2,水溶性维生素(water-soluble vitamin):一类能溶于水的有机营养分子。其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等。
3,脂溶性维生素(lipid vitamin):由长的碳氢链或稠环组成的聚戊二烯化合物。脂溶性维生素包括A,D,E,和K,这类维生素能被动物贮存。
4,辅酶(conzyme):某些酶在发挥催化作用时所需的一类辅助因子,其成分中往往含有维生素。辅酶与酶结合松散,可以通过透析除去。
5,辅基(prosthetic group):是与酶蛋白质共价结合的金属离子或一类有机化合物,用透析法不能除去。辅基在整个酶促反应过程中始终与酶的特定部位结合。
6,尼克酰胺腺嘌呤二核苷酸(NAD+)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+):含有尼克酰胺的辅酶,在某些氧化还原中起着氢原子和电子载体的作用,常常作为脱氢酶的辅。
7,黄素单核苷酸(FMN)一种核黄素磷酸,是某些氧化还原反应的辅酶。
8,硫胺素焦磷酸(thiamine phosphate):是维生素B1的辅形式,参与转醛基反应。
9,黄素腺嘌呤二核苷酸(FAD):是某些氧化还原反应的辅酶,含有核黄素。
10,磷酸吡哆醛(pyidoxal phosphate):是维生素B6(吡哆醇)的衍生物,是转氨酶,脱羧酶和消旋酶的酶。
11,生物素(biotin):参与脱羧反应的一种酶的辅助因子。
12,辅酶A(coenzyme A):一种含有泛酸的辅酶,在某些酶促反应中作为酰基的载体。
13,类胡萝卜素(carotenoid):由异戊二烯组成的脂溶性光合色素。
14,转氨酶(transaminase):那称为氨基转移酶,在该酶的催化下,一个α-氨基酸的氨基可转移给别一个α-酮酸。
第五章
1,醛糖(aldose):一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基。
2,酮糖(ketose):一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基。
3,异头物(anomer):仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体。
4,异头碳(anomer carbon):环化单糖的氧化数最高的C原子,异头碳具有羰基的化学反应性。
5,变旋(mutarotation):吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化。
6,单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。
7,糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。
8,糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键。
9,寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。
10,多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线形的或带有分支的。
11,还原糖(recing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。
12,淀粉(starch):一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。
13,糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。
14,极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部位,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。糊精的进一步降解需要α-(1→6)糖苷键的水解。
15,肽聚糖(peptidoglycan):N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。
16,糖蛋白(glycoprotein):含有共价连接的葡萄糖残基的蛋白质。
17,蛋白聚糖(proteoglycan):由杂多糖与一个多肽连组成的杂化的在分子,多糖是分子的主要成分。
第六章
1,脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。
2,饱和脂肪酸(saturated fatty acid):不含有—C=C—双键的脂肪酸。
3,不饱和脂肪酸(unsaturated fatty acid):至少含有—C=C—双键的脂肪酸。
4,必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸,亚麻酸。
5,三脂酰苷油(triacylglycerol):那称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和油是三脂酰甘油的混合物。
6,磷脂(phospholipid):含有磷酸成分的脂。Eg卵磷脂,脑磷脂。
7,鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇。鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其是在中枢神经系统的组织内含量丰富。
8,鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂。鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。
9,卵磷脂(lecithin):即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物。
10,脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物。
11,脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。
12,生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着画分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞内通讯有关的重要部位。
13,内在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白。
14,外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或内在的膜蛋白的离子相互作用和形成氢键与膜的内或外表面弱结合的膜蛋白。
15,流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。
16,通透系数(permeability coefficient):是离子或小分子扩散过脂双层膜能力的一种量度。通透系数大小与这些离子或分子在非极性溶液中的溶解度成比例。
17,通道蛋白(channel protein):是带有中央水相通道的内在膜蛋白,它可以使大小适合的离子或分子从膜的任一方向穿过膜。
18,(膜)孔蛋白(pore protein):其含意与膜通道蛋白类似,只是该术语常用于细菌。
19,被动转运(passive transport):那称为易化扩散。是一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上,然后被转运过膜,但转运是沿着浓度梯度下降方向进行的,所以被动转达不需要能量的支持。
20,主动转运(active transport):一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上然后被转运过膜,与被动转运运输方式相反,主动转运是逆着浓度梯度下降方向进行的,所以主动转运需要能量的驱动。在原发主动转运过程中能源可以是光,ATP或电子传递;而第二级主动转运是在离子浓度梯度下进行的。
21,协同运输(contransport):两种不同溶质的跨膜的耦联转运。可以通过一个转运蛋白进行同一方向(同向转运)或反方向(反向转运)转运。
22,胞吞(信用)(endocytosis):物质被质膜吞入并以膜衍生出的脂囊泡形成(物质在囊泡内)被带入到细胞内的过程。
第七章
1,核苷(nucleoside):是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物。核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接。
2,核苷酸(uncleoside):核苷的戊糖成分中的羟基磷酸化形成的化合物。
3,cAMP(cycle AMP):3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。
4,磷酸二脂键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与别一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二脂键。
5,脱氧核糖核酸(DNA):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是是通过3ˊ,5ˊ-磷酸二脂键连接的。DNA是遗传信息的载体。
6,核糖核酸(RNA):通过3ˊ,5ˊ-磷酸二脂键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。
7,核糖体核糖核酸(Rrna,ribonucleic acid):作为组成成分的一类 RNA,rRNA是细胞内最 丰富的 RNA .
8,信使核糖核酸(mRNA,messenger ribonucleic acid):一类用作蛋白质合成模板的RNA .
9, 转移核糖核酸(Trna,transfer ribonucleic acid):一类携带激活氨基酸,将它带到蛋白质合成部位并将氨基酸整合到生长着的肽链上RNA。TRNA含有能识别模板mRNA上互补密码的反密码。
10,转化(作用)(transformation):一个外源DNA 通过某种途径导入一个宿主菌,引起该菌的遗传特性改变的作用。
11,转导(作用)(transction):借助于病毒载体,遗传信息从一个细胞转移到另一个细胞。
12,碱基对(base pair):通过碱基之间氢键配对的核酸链中的两个核苷酸,例如A与T或U , 以及G与C配对 。
13,夏格夫法则(Chargaff’s rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),既嘌呤的总含量相等(A+G=T+C)。DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。另外,生长和发育阶段`营养状态和环境的改变都不影响DNA的碱基组成。
14,DNA的双螺旋(DNAdouble helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。
15.大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的。
16.DNA超螺旋(DNAsupercoiling):DNA本身的卷曲一般是DNA双`螺旋的弯曲欠旋(负超螺旋)或过旋(正超螺旋)的结果。
17.拓扑异构酶(topoisomerse):通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来改变DNA连环数的酶。拓扑异构酶Ⅰ、通过切断DNA中的一条链减少负超螺旋,增加一个连环数。某些拓扑异构酶Ⅱ也称为DNA促旋酶。
18.核小体(nucleosome):用

⑵ 生物化学题目,列举5个活化单位

选择题1 就是应该是mRNA上的碱基顺序决定蛋白质一级结构的 第2题填空题 确实是4个 请注意它说的是 “消耗高能磷酸键” aa的活化是消耗了2个高能磷酸键的,虽然是用了一个ATP 但是它 脱了两个PPi 所以是消耗了两个高能磷酸键 再加上进位和移位的两。

⑶ 生物化学中甘油活化形式

L-α-磷酸甘油

⑷ 生物化学中,活化单位-反应底物是什么意思

请问您指的活化单位是什么?
反应底物是指在酶促反应中被酶催化的反应物,所以酶促反应也叫底物反应
酶促反应:生物体内大部分化学反应绝大多数都为酶促反应

⑸ 生物化学中生物化学中生物化学中什么叫活力单位

酶的活力单位:在特定的条件下,1 min能转化1μmol底物的酶量,即1IU=1μmol/min

⑹ 生物化学基础

1.糖酵解:总反应为:葡萄糖+2ATP+2ADP+2Pi+2NAD+ ——>2丙酮酸+4ATP+2NADH+2H++2H2O
糖有氧氧化:CO2和水
1分子葡萄糖净得ATP数 36ATP
2.1 糖酵解 胞质
(1)葡萄糖磷酸化
葡萄糖氧化是放能反应,但葡萄糖是较稳定的化合物,要使之放能就必须给与活化能来推动此反应,即必须先使葡萄糖从稳定状态变为活跃状态,活化一个葡萄糖需要消耗1个ATP,一个ATP放出一个高能磷酸键,大约放出30.5kj自由能,大部分变为热量而散失,小部分使磷酸与葡萄糖结合生成葡萄糖-6-磷酸。催化酶为己糖激酶。
(2)葡萄糖-6-磷酸重排生成果糖-6-磷酸。催化酶为葡萄糖磷酸异构酶。
(3)生成果糖-1、6-二磷酸。催化酶为6-磷酸果糖激酶-1。
1个葡萄糖分子消耗了2个ATP分子而活化,经酶的催化生成果糖-1,6-二磷酸分子。
(4)果糖-1、6-二磷酸断裂成3-磷酸甘油醛(glyceraldehyde 3-phosphate)和磷酸二羟丙酮,催化酶为醛缩酶。
(5)磷酸二羟丙酮很快转变为3-磷酸甘油醛。催化酶为丙糖磷酸异构酶。
以上为第一阶段,1个6C的葡萄糖转化为2个3C化合物PGAL,消耗2个ATP用于葡萄糖的活化,如果以葡萄糖-1-磷酸形式进入糖酵解,仅消耗一个ATP。这一阶段没有发生氧化还原反应。
(6)3-磷酸甘油醛氧化生成1、3-二磷酸甘油酸(1,3-diphosphoglycerate),释放出两个电子和一个H+, 传递给电子受体NAD+,生成NADH+ H+,并且将能量转移到高能磷酸键中。催化酶为3-磷酸甘油脱氢酶。
(7)不稳定的1、3-二磷酸甘油酸失去高能磷酸键,生成3-磷酸甘油酸(3-phosphoglycerate),能量转移到ATP中,一个1、3-二磷酸甘油酸生成一个ATP。催化酶为磷酸甘油酸激酶。此步骤中发生第一次底物水平磷酸化
(8)3-磷酸甘油酸重排生成2-磷酸甘油酸(2-phosphoglycerate)。催化酶为磷酸甘油酸变位酶。
(9)2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸PEP(phospho-enol-pyruvate)。催化酶为烯醇化酶。
(10)PEP将磷酸基团转移给ADP生成ATP,同时形成丙酮酸。催化酶为丙酮酸激酶。此步骤中发生第二次底物水平磷酸化。
以上为糖酵解第二个阶段。一分子的PGAL(phosphoglyceraldehyde)在酶的作用下生成一分子的丙酮酸。在此过程中,发生一次氧化反应生成一个分子的NADH,发生两次底物水平的磷酸化,生成2分子的ATP。这样,一个葡萄糖分子在糖酵解的第二阶段共生成4个ATP和2个NADH+H+,产物为2个丙酮酸。在糖酵解的第一阶段,一个葡萄糖分子活化中要消耗2个ATP,因此在糖酵解过程中一个葡萄糖生成2分子的丙酮酸的同时,净得2分子ATP,2分子NADH,和2分子水。
2 三羧酸循环 线粒体基质
(1)乙酰-CoA进入三羧酸循环
乙酰CoA具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合。首先柠檬酸合酶的组氨酸残基作为碱基与乙酰CoA作用,使乙酰CoA的甲基上失去一个h+,生成的碳阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰CoA中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。该反应由柠檬酸合成酶(citrate synthase)催化,是很强的放能反应。
由草酰乙酸和乙酰CoA合成柠檬酸是三羧酸循环的重要调节点,柠檬酸合成酶是一个变构酶,ATP是柠檬酸合成酶的变构抑制剂,此外,α-酮戊二酸(α-ketoglutarate)、NADH能变构抑制其活性,长链脂酰CoA也可抑制它的活性,AMP可对抗ATP的抑制而起激活作用。
(2)异柠檬酸形成
柠檬酸的叔醇基不易氧化,转变成异柠檬酸(isocitrate)而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一可逆反应。
(3)第一次氧化脱羧
在异柠檬酸脱氢酶作用下,异柠檬酸的仲醇氧化成羰基,生成草酰琥珀酸(oxalosuccinic acid)的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸(α-ketoglutarate)、NADH和co2,此反应为β-氧化脱羧,此酶需要Mg2+作为激活剂。
此反应是不可逆的,是三羧酸循环中的限速步骤,ADP是异柠檬酸脱氢酶的激活剂,而ATP,NADH是此酶的抑制剂。
(4)第二次氧化脱羧
在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰CoA(succincyl CoA)、NADH·H+和CO2,反应过程完全类似于丙酮酸脱氢酶系催化的氧化脱羧,属于α�氧化脱羧,氧化产生的能量中一部分储存于琥珀酰CoA的高能硫酯键中。
α-酮戊二酸脱氢酶系也由三个酶(α-酮戊二酸脱羧酶、硫辛酸琥珀酰基转移酶、二氢硫辛酸脱氢酶)和五个辅酶(tpp、硫辛酸、hscoa、NAD+、FAD)组成。
此反应也是不可逆的。α-酮戊二酸脱氢酶复合体受ATP、GTP、NADH和琥珀酰CoA抑制,但其不受磷酸化/去磷酸化的调控。
(5)底物磷酸化生成ATP
在琥珀酸硫激酶(succinate thiokinase)的作用下,琥珀酰CoA的硫酯键水解,释放的自由能用于合成GTP(三磷酸鸟苷 guanosine triphosphate),在细菌和高等生物可直接生成ATP,在哺乳动物中,先生成GTP,再生成ATP,此时,琥珀酰CoA生成琥珀酸和辅酶A。
(6)琥珀酸脱氢
琥珀酸脱氢酶(succinate dehydrogenase)催化琥珀酸氧化成为延胡索酸(fumarate)。该酶结合在线粒体内膜上,而其他三羧酸循环的酶则都是存在线粒体基质中的,这酶含有铁硫中心和共价结合的FAD,来自琥珀酸的电子通过FAD和铁硫中心,然后进入电子传递链到O2,丙二酸是琥珀酸的类似物,是琥珀酸脱氢酶强有力的竞争性抑制物,所以可以阻断三羧酸循环。
(7)延胡索酸的水化
延胡索酸酶仅对延胡索酸的反式(反丁烯二酸) 双键起作用,而对顺丁烯二酸(马来酸)则无催化作用,因而是高度立体特异性的。
(8)生成苹果酸(malate)
(9)草酰乙酸再生
在苹果酸脱氢酶(malic dehydrogenase)作用下,苹果酸仲醇基脱氢氧化成羰基,生成草酰乙酸(oxalocetate),NAD+是脱氢酶的辅酶,接受氢成为NADH·H+(图4-5)。
三羰酸循环总结:
乙酰CoA+3NAD++FAD+GDP+Pi—→2CO2+3NADH+FADH2+GTP+2H+ +CoA-SH
①CO2的生成,循环中有两次脱羧基反应(反应3和反应4)两次都同时有脱氢作用,但作用的机理不同,由异柠檬酸脱氢酶所催化的β�氧化脱羧,辅酶是NAD+,它们先使底物脱氢生成草酰琥珀酸,然后在Mn2+或Mg2+的协同下,脱去羧基,生成α-酮戊二酸。
α-酮戊二酸脱氢酶系所催化的α�氧化脱羧反应和前述丙酮酸脱氢酶系所催经的反应基本相同。
应当指出,通过脱羧作用生成CO2,是机体内产生CO2的普遍规律,由此可见,机体CO2的生成与体外燃烧生成CO2的过程截然不同。
②三羧酸循环的四次脱氢,其中三对氢原子以NAD+为受氢体,一对以FAD为受氢体,分别还原生成NADH+H+和FADH2。它们又经线粒体内递氢体系传递,最终与氧结合生成水,在此过程中释放出来的能量使adp和pi结合生成ATP,凡NADH+H+参与的递氢体系,每2H氧化成一分子H2O,每分子NADH最终产生2.5分子ATP,而FADH2参与的递氢体系则生成1.5分子ATP,再加上三羧酸循环中有一次底物磷酸化产生一分子ATP,那么,一分子柠檬酸参与三羧酸循环,直至循环终末共生成10分子ATP。
③乙酰CoA中乙酰基的碳原子,乙酰CoA进入循环,与四碳受体分子草酰乙酸缩合,生成六碳的柠檬酸,在三羧酸循环中有二次脱羧生成2分子CO2,与进入循环的二碳乙酰基的碳原子数相等,但是,以CO2方式失去的碳并非来自乙酰基的两个碳原子,而是来自草酰乙酸。
④三羧酸循环的中间产物,从理论上讲,可以循环不消耗,但是由于循环中的某些组成成分还可参与合成其他物质,而其他物质也可不断通过多种途径而生成中间产物,所以说三羧酸循环组成成分处于不断更新之中。
例如 草酰乙酸——→天门冬氨酸
α-酮戊二酸——→谷氨酸
草酰乙酸——→丙酮酸——→丙氨酸
其中丙酮酸羧化酶催化的生成草酰乙酸的反应最为重要。
因为草酰乙酸的含量多少,直接影响循环的速度,因此不断补充草酰乙酸是使三羧酸循环得以顺利进行的关键。
三羧酸循环中生成 的苹果酸和草酰乙酸也可以脱羧生成丙酮酸,再参与合成许多其他物质或进一步氧化。
3 氧化磷酸化 线粒体内膜
(一)α-磷酸甘油穿梭作用
这种作用主要存在于脑、骨骼肌中,载体是α-磷酸甘油。
胞液中的NADH在α-磷酸甘油脱氢酶的催化下,使磷酸二羟丙酮还原为α-磷酸甘油,后者通过线粒体内膜,并被内膜上的α-磷酸甘油脱氢酶(以FAD为辅基)催化重新生成磷酸二羟丙酮和FADH2,后者进入琥珀酸氧化呼吸链。葡萄糖在这些组织中彻底氧化生成的ATP比其他组织要少,1摩尔G→36摩尔ATP。
(二)苹果酸-天冬氨酸穿梭作用
主要存在肝和心肌中。1摩尔G→38摩尔ATP
胞液中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原成苹果酸,后者借助内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的催化下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成3分子ATP。草酰乙酸经谷草转氨酶催化生成天冬氨酸,后者再经酸性氨基酸载体转运出线粒体转变成草酰乙酸。
3.(1)在构成基因的核苷酸序列中存在着一些最终翻译成蛋白的碱基段,每三个连续碱基(即三联“ 密码子”) 编码相应的氨基酸。其中有一个起始“密码子”--AUG/ATG和三个终止“ 密码子”,终止“ 密码子”提供 终止信号。当细胞机器沿着核酸合成蛋白链并使其不断延伸的过程中遇到终密码子时,蛋白的延伸反应终止,一个成熟(或提前终止的突变)蛋白产生。因此开放阅读框是基因序列的一部分,包含一段可以编码蛋白的 碱基序列。由于拥有特殊的起始密码子和直到可以从该段碱基序列产生合适大小蛋白才出现的终止密码子,该段碱基序列编码一个蛋白。
开放阅读框是基因序列的一部分,包含一段可以编码蛋白的碱基序列,不能被终止子打断。当一个新基因被识别,其DNA序列被解读,人们仍旧无法搞清相应的蛋白序列是什么。这是因为在没有其它信息的前提下,DNA序列可以按六种框架阅读和翻译(每条链三种,对应三种不同的起始密码子)。
(2)

⑺ 生物化学与分子生物学的知识点

一、蛋白质的结构与功能

1.凯氏定氮法:由于体内的含氮物质以蛋白质为主,各种蛋白质的含氮量很接近,平均为16%,只要测定生物样品中的含氮量,就可推算出蛋白质的大致含量:

100克样品中蛋白质的含量(g%)=每克样品含氮克数×6.25×100

2.蛋白质的生物学重要性(一广三多):分布广、种类多、含量多、功能多。

3.组成人体蛋白质的20种氨基酸均属于L—?—氨基酸(Gly除外)。硒代半胱氨酸在某些情况下也可用于合成蛋白质。

注:将氨基酸含C基团置于竖线上,H原子位于竖线右侧的为L型

4.20种L—?—氨基酸分类及其缩写、符号。

(1)非极性脂肪族氨基酸:侧链为非极性的疏水基团,水中溶解度小,等电点近中性

(2)极性中性氨基酸:侧链基团有极性,水中溶解度大,等电点近中性

(3)芳香族氨基酸:侧链含有苯环

(4)酸性氨基酸:侧链含有两个羧基,等电点低

(5)碱性氨基酸:侧链含有氨基,胍基或咪唑基,等电点高

5.脯氨酸是一种α—亚氨基酸,可以看成是α—氨基酸的侧链取代了自身氨基上的一个氢原子

6.半胱氨酸的巯基失去质子的倾向性较其他氨基酸大,而两个半胱氨酸巯基之间可脱氢形成二硫键

7.必需氨基酸:“甲(Met)撷(Val)来(Lys)一(Ile)本(Phe)亮(Lue)色(Trp)书(Thr)”;条件必需氨基酸:Cys、Tyr;儿童必需氨基酸:Arg、His

8.在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,呈电中性。此时溶液的pH值称为该氨基酸的等电点(pI)。pI=(pK1+pK2)/2

9.酸性氨基酸的等电点取两羧基的pK值的平均值;碱性氨基酸的等电点取两氨基的pK值的平均值。

10.含有共轭双键的色氨酸、酪氨酸的最大吸收峰在280nm附近。大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法。

11.氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处,而且吸收峰值与氨基酸释放出的氨量成正比,作为氨基酸定量分析方法。

12.所谓主链骨架原子即N(氨基氮)、Cα(α—碳原子)和CO(羧基碳)3个原子依次重复排列。

13.参与肽键的6个原子C?1、C、O、N、H、C?2位于同一平面,C?1和C?2在平面上所处的位置为反式构型,此同一平面上的6个原子构成肽单元(peptideunit)

14.α—螺旋的走向是右手螺旋,每3.6个氨基酸残基螺旋上升一圈,螺距约0.54nm;每个肽键的N-H与第四个肽键的C=O形成氢键,氨基酸残基侧链伸向外侧。如:头发的角蛋白、肌肉的肌球蛋白、血凝块的纤维蛋白。

15.β—折叠结构呈折纸状,氨基酸残基侧链交替位于锯齿状结构的上下方,肽链之间的肽键N-H和C=O形成氢键。

16.β—转角常见于肽链进行180°回折的转角上,第一个残基C=O与第四个残基N—H形成氢键。第二个残基通常为脯氨酸。

17.模体(motif):两个或两个以上具有二级结构的肽段,在空间上相互接近,形成一个有规则的二级结构组合,又称超二级结构。有三种形式:αα、βαβ、ββ20.锌指是常见的模体例子,由1个α—螺旋和2个反向平行的β—折叠组成,N端有一对Cys,C端有一对His,在空间上形成容纳Zn2+的洞穴。

18.分子量较大的'蛋白质常可折叠成多个结构较为紧密且稳定的区域,并各行其功能,称为结构域(domain)。结构域具有相对独立的空间构象和生物学功能。

19.在分子伴侣(一类蛋白质)的辅助下,合成中的蛋白质才能折叠成正确的空间构象。

20.有些蛋白质分子含有二条或多条多肽链,每一条多肽链都有完整的三级结构,称为蛋白质的亚基。单一的亚基一般没有生物学功能,完整的四级结构是其发挥生物学功能的保证。同聚体、异聚体

21.按蛋白质组成成分将蛋白质分为单纯蛋白质和结合蛋白质(非蛋白质部分称为辅基);按蛋白质形状将蛋白质分为纤维状蛋白质和球状蛋白质。

22.蛋白质家族(proteinfamily):氨基酸序列相似而且空间结构与功能也十分相近的蛋白质。属于同一蛋白质家族的成员,称为同源蛋白质(homologousprotein)

23.蛋白质超家族(superfamily):2个或2个以上的蛋白质家族之间,其氨基酸序列的相似性并不高,但含有发挥相似作用的同一模体结构。

24.蛋白质一级结构是高级结构和功能的基础:

(1)一级结构是空间构象的基础;

(2)一级结构相似的蛋白质具有相似的高级结构和功能;(3)氨基酸序列提供重要的生物进化信息;

(4)重要蛋白质的氨基酸序列改变可引起疾病。蛋白质分子发生变异所导致的疾病,称为分子病。

25.蛋白质的功能依赖特定空间结构

(1)血红蛋白亚基与肌红蛋白结构相似

(2)血红蛋白亚基构象变化可影响亚基与氧结合

(3)蛋白质构象改变可引起疾病(蛋白质构象疾病)

26.协同效应:一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体结合能力的现象。正协同效应/负协同效应

27.别构效应:寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象

28.当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点pI。

29.表面电荷和水化膜是维持蛋白质胶体稳定的因素

30.蛋白质的变性(denaturation):在某些物理和化学因素作用下,蛋白质特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。

本质:主要发生非共价键和二硫键的破坏,不涉及一级结构中氨基酸序列的改变。

导致变性的因素:如加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等变性的表现:溶解度降低、粘度增加、结晶能力消失、生物活性丧失、易被蛋白酶水解

31.若蛋白质变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢复其原有的构象和功能,称为复性(renaturation)。

32.消除蛋白质在溶液中的稳定因素后,蛋白质疏水侧链暴露在外,肽链融汇相互缠绕继而聚集,因而从溶液中析出,称为蛋白质沉淀。

33.蛋白质的凝固作用:蛋白质变性后的絮状物加热可变成比较坚固的凝块,不易再溶于强酸和强碱中

34.由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm波长处有特征性吸收峰。

35.蛋白质和多肽分子中肽键在稀碱溶液中与硫酸铜共热,呈现紫色或红色,称为双缩脲反应。

36.盐析是将(NH4)2SO4、Na2SO4、NaCl等加入蛋白质溶液,使表面电荷被中和以及水化膜被破坏而导致蛋白质沉淀。

37.丙酮(乙醇)沉淀蛋白质:0~4℃低温下进行;用量一般10倍于蛋白质溶液体积;沉淀后应立即分离。

38.免疫沉淀法是利用特异抗体识别相应的抗原蛋白,并形成抗原抗体复合物的性质,从蛋白质混合溶液中分离获得抗原蛋白。

39.透析(dialysis)是利用透析袋把大分子蛋白质与小分子化合物分开的方法。

40.应用正压或离心力使蛋白质溶液透过有一定截留分子量的超滤膜,达到浓缩蛋白质溶液的目的称为超滤法。

41.蛋白质在高于或低于其pI的溶液中为带电的颗粒,在电场中能向正极或负极移动。这种通过蛋白质在电场中泳动而达到分离各种蛋白质的技术,称为电泳(elctrophoresis)

42.SDS-聚丙烯酰胺凝胶电泳(SDS—PAGE):大量的SDS(带大量负电荷)结合蛋白质,使所有蛋白质颗粒表面覆盖一层SDS分子,导致蛋白质分子间的电荷差异消失,泳动速率仅与颗粒大小有关;聚丙烯酰胺凝胶具有分子筛作用48.等电聚焦电泳(IFE):在聚丙烯酰胺凝胶内制造一个线性pH梯度,当蛋白质泳动到与其自身pI值相等的pH区域时,其净电荷为零而不再移动。

43.双向电泳(2—DGE):先进行等电聚焦电泳(按pI),然后再进行SDS-PAGE(按分子大小),经染色得到的电泳图是个二维分布的蛋白质图。

二、核酸的结构与功能

1.脱氧核糖—→核酸—→DNA双螺旋—→

超螺旋—→染色质—→染色体

2.核糖的C—1’原子和嘌呤的N—9或者嘧啶的N—1原子形成β—N—糖苷键,核糖和碱基处在反式构象。

3.核苷C—5’原子上的羟基可与磷酸反应,脱水后形成磷脂键,生成脱氧核苷酸。

4.脱氧核苷酸通过3’,5’磷酸二酯键的连接形成多聚核苷酸,只能从3’—OH端延长,具有5’—→3’的方向性。

5.DNA的一级结构是构成DNA自5’端到3’端脱氧核苷酸的排列顺序;DNA的二级结构是双螺旋结构;DNA的高级结构是超螺旋结构。

6.DNA双螺旋结构的特点:

(1)DNA由两条反向平行的多聚核苷酸链组成,形成右手螺旋结构;

(2)脱氧核糖与磷酸构成的骨架位于外侧,DNA表面存在大沟和小沟;

(3)DNA双链之间形成互补碱基对;

(4)碱基对的疏水作用(堆积力)和氢键共同维护DNA双螺旋结构的稳定。

7.DNA双螺旋结构是在相对湿度为92%时的结构,称为B型DNA;而在相对湿度低于75%时,DNA空间结构参数发生变化,称为A型DNA;自然界还发现一种左手螺旋的Z型DNA。

8.B型DNA双螺旋螺距为3.54nm,直径为2.37nm;每个螺旋有10.5个碱基对,每两个碱基对之间的相对旋转角度为36°,每两个相邻碱基对平面之间的垂直距离为0.34nm。

9.DNA双链可以盘绕形成超螺旋结构。正超螺旋、负超螺旋。

10.原核生物的DNA是环状的双螺旋分子。

11.染色质的基本组成单位是核小体,它是由DNA和H1、H2A、H2B、H3、H4等5种组蛋白共同构成。

12.DNA是遗传信息的物质基础:

(1)DNA是生物遗传信息的载体;

(2)DNA是生命遗传的物质基础;

(3)DNA是个体生命活动的信息基础;

(4)DNA具有高度稳定性,能保持遗传的相对稳定性;

(5)DNA具有高度复杂性,可以发生各种重组和突变,适应环境。

13.大部分真核细胞mRNA的5’端有一反式的7—甲基鸟嘌呤—三磷酸核苷,称为5’—帽结构。原核生物mRNA没有这种特殊的帽结构。

14.真核细胞mRNA的3’端,有一段由80至250个腺苷酸连接而成多聚腺苷

酸结构,称为多聚腺苷酸尾(poly—A)。

15.5’—帽结构和3’—poly—A共同负责mRNA从细胞核向细胞质的转运,维持mRNA的稳定性以及翻译起始的控制。

16.tRNA的3’端连接氨基酸。

17.rRNA与核糖体蛋白共同构成核糖体。

18.非编码RNA分为长链非编码RNA(lncRNA)和短链非编码RNA(sncRNA)。参与转录调控、翻译调控、RNA的剪切和修饰、mRNA的稳定、蛋白质的稳定和转运、染色体的形成和结构稳定。

19.催化性小RNA也称核酶,是细胞内具有催化功能的一类小分子RNA。

小干扰RNA(siRNA)能以单链形式与外源基因表达的mRNA结合,并诱导其降解。微RNA(miRNA)主要通过结合mRNA而选择性调控基因的表达。

20.嘌呤和嘧啶含有共轭双键,故核酸(碱基、核苷、核苷酸)在260nm波长处有强烈紫外光吸收。

21.DNA变性:某些理化因素会导致DNA双链互补碱基对之间的氢键发生断裂,双链解离为单链。表现为粘度降低,增色效应。

22.DNA解链过程中,更多共轭双键暴露,使DNA在260nm波长处的吸光度增加的现象称为DNA的增色效应。

23.DNA复性:变性条件缓慢地除去后,两条解离的互补链可重新配对,恢复原来的双螺旋结构。

24.tRNA二级结构为三叶草结构,三级结构为倒“L”型结构。其中从5’—→3’依次为DHU环、反密码子环、TΨC环。

25.碱基对之间的氢键维持DNA双螺旋横向稳定;碱基堆积力维持DNA双螺旋纵向稳定。

三、酶

1.酶是由活细胞产生的,对其底物具有高度特异性和高度催化效能的蛋白质。

2.生物催化剂包括酶(蛋白质)、核酶(RNA)、脱氧核酶(DNA)。

3.仅含有蛋白质的酶为单纯酶;结合酶则是由酶蛋白(蛋白质部分)和辅助因子(非蛋白质部分)共同组成。酶蛋白和辅助因子结合在一起称为全酶。

4.酶蛋白决定酶促反应的特异性,辅助因子决定酶促反应的类型。

5.与酶蛋白结合疏松(非共价键)的辅助因子称辅酶;与酶蛋白结合紧密(共价键)的辅助因子称辅基。另一说法:有机物或金属有机物类型的辅助因子称为辅酶。

6.金属酶:金属离子与酶结合紧密,提取过程中不易丢失;金属激活酶:金属离子与酶的结合是可逆结合

7.酶的活性中心或活性部位是酶分子中能与底物特异性结合并催化底物转化为产物的具有特定三维结构的区域。

8.与酶活性密切相关的化学基团称为酶的必须基团,包括:

结合基团:识别与结合底物和辅酶,形成酶—底物过渡态化合物;

催化基团:催化底物发生化学反应转化为产物。

9.酶活性中心的三维结构是裂缝或凹陷,多由氨基酸残基的疏水基团组成。

10.酶活性中心外的必须基团维持酶活性中心的空间构象,又或是调节剂的结合部位。

11.酶的催化效率通常比非催化反应高108~1020倍,比一般催化剂高107~1013。

12.一种酶仅作用于一种或一类化合物,或一定的化学键,催化一定的化学反应并产生一定的产物,称为酶的特异性或专一性。

13.有的酶仅作用于特定结构的底物分子,进行一种专一的反应,生成一种特定结构的产物,称为绝对专一性。

14.有些酶对底物的专一性不是依据整个底物分子结构,而是依据底物分子中特定的化学键或特定的基团,因而可以作用于含有相同化学键或相同化学基团的一类化合物,称为相对专一性。

15.有些酶只能催化一种光学异构体或立体异构体进行反应,称为空间结构专一性。

16.活化能是指在一定的温度下,1摩尔底物从基态转变为过渡态所需要的自由能。活化能是决定化学速率的内因,是化学反应的能障。

17.酶—底物结合的诱导契合假说(inced-fithypothesis):酶在发挥催化作用前须先与底物结合,酶与底物相互接近时,两者在结构上相互诱导、相互变形和相互适应,进而结合并形成酶—底物复合物。

18.邻近效应:酶在反应中将各底物结合到酶的活性中心,使它们相互接近并形成有利于反应的正确定向关系,即将分子间的反应变成类似于分子内的反应,从而提高反应速率。

19.酶的催化机制:酸—碱催化、共价催化、亲核和亲电催化。

20.米氏方程推导所基于的假设:

21反应是单底物反应;○2测定的反应速率是初速率;○3当[S]>>[E]时,在初速率范围○内底物的消耗很少

⑻ 生物化学题目,列举5个活化单位,,活化单位指的是什么

生物化学题目,列举5个活化单位,,活化单位指的是什么?
氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上.
必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸.
非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成不需要从食物中获得的氨基酸.
等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值.
茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应.
肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键.
肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物.
蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序.
层析(chromatography):按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术.
离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱
透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术.

⑼ 生物化学名解

文字太多,我上传了网络文库,敬请网络文库,搜索 “生物化学名词解释”
或是写出你的邮箱,我发给你.
生物化学名词解释
第一章 氨基酸和蛋白质
氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上.
必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸.
非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成不需要从食物中获得的氨基酸.
等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值.
茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应.
肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键.
肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物.
蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序.
层析(chromatography):按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术.
离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱
透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术.
凝胶过滤层析(gel filtrationchromatography):也叫做分子排阻层析.一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术.
亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术.
高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术.
凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术.
SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳.SDS-PAGE只是按照分子的大小,而不是根据分子所带的电荷大小分离的.
等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了.
双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离).经染色得到的电泳图是二维分布的蛋白质图.
Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程.N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环.
同源蛋白质(homologous protein):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白.
第二章 蛋白质的空间结构
构形(configuration):有机分子中各个原子特有的固定的空间排列.这种排列不经过共价键的断裂和重新形成是不会改变的.构形的改变往往使分子的光学活性发生变化.
构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布.一种构象改变为另一种构象时,不要求共价键的断裂和重新形成.构象改变不会改变分子的光学活性.
肽单位(peptide unit):又称为肽基(peptide group),是肽键主链上的重复结构.是由参于肽链形成的氮原子,碳原子和它们的4个取代成分:羰基氧原子,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位.
蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列.常见的有二级结构有α-螺旋和β-折叠.二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的.
蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象.三级结构是在二级结构的基础上进一步盘绕,折叠形成的.三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键维持的.
蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构.实际上是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构.
α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的.每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键.在古典的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm.
β-折叠(β-sheet): 蛋白质中常见的二级结构,是由伸展的多肽链组成的.折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的.氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(由N到C方向)或者是反平行排列(肽链反向排列).
β-转角(β-turn):也是多肽链中常见的二级结构,是连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基.含有5个以上的氨基酸残基的转角又常称为环(loop).常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸.这两种转角中的第二个残侉大都是脯氨酸.
超二级结构(super-secondary structure):也称为基元(motif).在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体.
结构域(domain):在蛋白质的三级结构内的独立折叠单元.结构域通常都是几个超二级结构单元的组合.
纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为 单个细胞或整个生物体提供机械强度,起着保护或结构上的作用.
球蛋白(globular protein):紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水.典形的球蛋白含有能特异的识别其它化合物的凹陷或裂隙部位.
角蛋白(keratin):由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质.
胶原(蛋白)(collagen):是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成.原胶原蛋白是一种具有右手超螺旋结构的蛋白.每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的.
疏水相互作用(hydrophobic interaction):非极性分子之间的一种弱的非共价的相互作用.这些非极性的分子在水相环境中具有避开水而相互聚集的倾向.
伴娘蛋白(chaperone):与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构向的蛋白质.伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体.
二硫键(disulfide bond):通过两个(半胱氨酸)巯基的氧化形成的共价键.二硫键在稳定某些蛋白的三维结构上起着重要的作用.
范德华力(van der Waals force):中性原子之间通过瞬间静电相互作用产生的一弱的分子之间的力.当两个原子之间的距离为它们范德华力半径之和时,范德华力最强.强的范德华力的排斥作用可防止原子相互靠近.
蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象.蛋白质在受到光照,热,有机溶济以及一些变性济的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失.
肌红蛋白(myoglobin):是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质,它的氧饱和曲线为双曲线型.
复性(renaturation):在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象.
波尔效应(Bohr effect):CO2浓度的增加降低细胞内的pH,引起红细胞内血红蛋白氧亲和力下降的现象.
血红蛋白(hemoglobin): 是由含有血红素辅基的4个亚基组成的结合蛋白.血红蛋白负责将氧由肺运输到外周组织,它的氧饱和曲线为S型.
别构效应(allosteric effect):又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性丧失的现象.
镰刀型细胞贫血病(sickle-cell anemia): 血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状.其特点是病人的血红蛋白β—亚基N端的第六个氨基酸残缺是缬氨酸(vol),而不是下正常的谷氨酸残基(Ghe).
第三章 酶
酶(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质.酶不改变反应的平衡,只是
通过降低活化能加快反应的速度.
脱脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分.
全酶(holoenzyme):具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子.
酶活力单位(U,active unit):酶活力单位的量度.1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25oC,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量.
比活(specific activity):每分钟每毫克酶蛋白在25oC下转化的底物的微摩尔数.比活是酶纯度的测量.
活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量.
活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分.活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成.
酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用.
共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物.许多酶催化的基团转移反应都是通过共价方式进行的.
靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态.
初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计.
米氏方程(Michaelis-Mentent equation):表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km+[s])
米氏常数(Michaelis constant):对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度.
催化常数(catalytic number)(Kcat):也称为转换数.是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量.催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total).或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔]).
双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图.一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图.x和y轴上的截距分别代表米氏常数和最大反应速度的倒数.
竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型.竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位.这种抑制使Km增大而υmax不变.
非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用.这种抑制使Km不变而υmax变小.
反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用.这种抑制使Km和υmax都变小但υmax/Km不变.
丝氨酸蛋白酶(serine protease): 活性部位含有在催化期间起亲核作用的丝氨残基的蛋白质.
酶原(zymogen):通过有限蛋白水解,能够由无活性变成具有催化活性的酶前体.
调节酶(regulatory enzyme):位于一个或多个代谢途径内的一个关键部位的酶,它的活性根据代谢的需要而增加或降低.
别构酶(allosteric enzyme):活性受结合在活性部位以外的部位的其它分子调节的酶.
别构调节剂(allosteric molator):结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂.
齐变模式(concerted model):相同配体与寡聚蛋白协同结合的一种模式,按照最简单的齐变模式,由于一个底物或别构调节剂的结合,蛋白质的构相在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换.这一模式提出所有蛋白质的亚基都具有相同的构象,或是T构象,或是R构象.
序变模式(sequential model):相同配体与寡聚蛋白协同结合的另外一种模式.按照最简单的序变模式,一个配体的结合会诱导它结合的亚基的三级结构的变化,并使相邻亚基的构象发生很大的变化.按照序变模式,只有一个亚基对配体具有高的亲和力.
同功酶(isoenzyme isozyme):催化同一化学反应而化学组成不同的一组酶.它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异.
别构调节酶(allosteric molator):那称为别构效应物.结合在别构酶的调节部位,调节酶催化活性的生物分子.别构调节物可以是是激活剂,也可以是抑制剂.
第四章 维生素和辅酶
维生素(vitamin):是一类动物本身不能合成,但对动物生长和健康又是必需的有机物,所以必需从食物中获得.许多辅酶都是由维生素衍生的.
水溶性维生素(water-soluble vitamin):一类能溶于水的有机营养分子.其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等.
脂溶性维生素(lipid vitamin):由长的碳氢链或稠环组成的聚戊二烯化合物.脂溶性维生素包括A,D,E,和K,这类维生素能被动物贮存.
辅酶(conzyme):某些酶在发挥催化作用时所需的一类辅助因子,其成分中往往含有维生素.辅酶与酶结合松散,可以通过透析除去.
辅基(prosthetic group):是与酶蛋白质共价结合的金属离子或一类有机化合物,用透析法不能除去.辅基在整个酶促反应过程中始终与酶的特定部位结合.
尼克酰胺腺嘌呤二核苷酸(NAD+)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+):含有尼克酰胺的辅酶,在某些氧化还原中起着氢原子和电子载体的作用,常常作为脱氢酶的辅.
黄素单核苷酸(FMN)一种核黄素磷酸,是某些氧化还原反应的辅酶.
硫胺素焦磷酸(thiamine phosphate):是维生素B1的辅形式,参与转醛基反应.
黄素腺嘌呤二核苷酸(FAD):是某些氧化还原反应的辅酶,含有核黄素.
磷酸吡哆醛(pyidoxal phosphate):是维生素B6(吡哆醇)的衍生物,是转氨酶,脱羧酶和消旋酶的酶.
生物素(biotin):参与脱羧反应的一种酶的辅助因子.
辅酶A(coenzyme A):一种含有泛酸的辅酶,在某些酶促反应中作为酰基的载体.
类胡萝卜素(carotenoid):由异戊二烯组成的脂溶性光合色素.
转氨酶(transaminase):那称为氨基转移酶,在该酶的催化下,一个α-氨基酸的氨基可转移给别一个α-酮酸.
第五章 糖类
醛糖(aldose):一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基.
酮糖(ketose):一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基.
异头物(anomer):仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体.
异头碳(anomer carbon):环化单糖的氧化数最高的C原子,异头碳具有羰基的化学反应性.
变旋(mutarotation):吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化.
单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖.
糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物.
糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键.
寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物.
多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物.多糖链可以是线形的或带有分支的.
还原糖(recing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖.
淀粉(starch):一类多糖,是葡萄糖残基的同聚物.有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连.
糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连.
极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部位,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在.糊精的进一步降解需要α-(1→6)糖苷键的水解.
肽聚糖(peptidoglycan):N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同的肽交叉连接形成的大分子.肽聚糖是许多细菌细胞壁的主要成分.
糖蛋白(glycoprotein):含有共价连接的葡萄糖残基的蛋白质.
蛋白聚糖(proteoglycan):由杂多糖与一个多肽连组成的杂化的在分子,多糖是分子的主要成分.
第六章 脂类化合物
脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链.脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分.
饱和脂肪酸(saturated fatty acid):不含有—C=C—双键的脂肪酸.
不饱和脂肪酸(unsaturated fatty acid):至少含有—C=C—双键的脂肪酸.
必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸,亚麻酸.
三脂酰苷油(triacylglycerol):那称为甘油三酯.一种含有与甘油脂化的三个脂酰基的酯.脂肪和油是三脂酰甘油的混合物.
磷脂(phospholipid):含有磷酸成分的脂.Eg卵磷脂,脑磷脂.
鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇.鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其是在中枢神经系统的组织内含量丰富.
鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂.鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分.
卵磷脂(lecithin):即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物.
脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物.
脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡).
生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着画分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞内通讯有关的重要部位.
内在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白.
外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或内在的膜蛋白的离子相互作用和形成氢键与膜的内或外表面弱结合的膜蛋白.
流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型.在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性.有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜.另外脂和膜蛋白可以进行横向扩散.
通透系数(permeability coefficient):是离子或小分子扩散过脂双层膜能力的一种量度.通透系数大小与这些离子或分子在非极性溶液中的溶解度成比例.
通道蛋白(channel protein):是带有中央水相通道的内在膜蛋白,它可以使大小适合的离子或分子从膜的任一方向穿过膜.
(膜)孔蛋白(pore protein):其含意与膜通道蛋白类似,只是该术语常用于细菌.
被动转运(passive transport):那称为易化扩散.是一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上,然后被转运过膜,但转运是沿着浓度梯度下降方向进行的,所以被动转达不需要能量的支持.
主动转运(active transport):一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上然后被转运过膜,与被动转运运输方式相反,主动转运是逆着浓度梯度下降方向进行的,所以主动转运需要能量的驱动.在原发主动转运过程中能源可以是光,ATP或电子传递;而第二级主动转运是在离子浓度梯度下进行的.
协同运输(contransport):两种不同溶质的跨膜的耦联转运.可以通过一个转运蛋白进行同一方向(同向转运)或反方向(反向转运)转运.
胞吞(信用)(endocytosis):物质被质膜吞入并以膜衍生出的脂囊泡形成(物质在囊泡内)被带入到细胞内的过程.
第七章 核酸
核苷(nucleoside):是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物.核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接.
核苷酸(uncleoside):核苷的戊糖成分中的羟基磷酸化形成的化合物.
cAMP(cycle AMP):3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的.
磷酸二脂键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键.该酯键成了两个醇之间的桥梁.例如一个核苷的3ˊ羟基与别一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二脂键.
脱氧核糖核酸(DNA):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是是通过3ˊ,5ˊ-磷酸二脂键连接的.DNA是遗传信息的载体.
核糖核酸(RNA):通过3ˊ,5ˊ-磷酸二脂键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸.
核糖体核糖核酸(Rrna,ribonucleic acid):作为组成成分的一类 RNA,rRNA是细胞内最 丰富的 RNA .
信使核糖核酸(mRNA,messenger ribonucleic acid):一类用作蛋白质合成模板的RNA .

⑽ 生物化学

18碳的脂肪酸:

  1. 首先,脂肪酸要经过活化作用:消耗两分子的ATP

  2. 脂肪酸每次β氧化脱下一个乙酰CoA的过程,会生成一个NADH和一个FADH2

  3. 脱下的乙酰CoA进入三羧酸循环,生成3分子DNAH,一分子FADH2和一分子GTP

    一分子NADH经过氧化磷酸化生成2.5分子ATP,一分子FADH2经过氧化磷酸化生成1.5分子ATP,GDP相当于ATP

    所以每次β氧化生成4分子ATP,每次三羧酸循环产生10分子ATP

    又因为18碳的脂肪酸可以经过8次β氧化,产生9分子乙酰CoA,所以总ATP为:

    8×4+9×10-2=120分子ATP

第二题看不太清。是原核细菌蛋白质的生物合成吗?

一般分为:

  1. 氨基酸的活化:氨基酸 +ATP-E → 氨基酰-AMP-E + PPi

  2. 活化氨基酸的转运:氨基酰-AMP-E + tRNA→氨基酰-tRNA + AMP+E

  3. 肽链合成的起始:

    (1)核糖体30S小亚基附着于mRNA起始信号部位:原核生物中每一个mRNA都具有其核糖体结合位点,它是位于AUG上游8-13个核苷酸处的一个短片段叫做SD序列。这段序列正好与30S小亚基中的16S rRNA3’端一部分序列互补,因此SD序列也叫做核糖体结合序列,这种互补就意味着核糖体能选择mRNA上AUG的正确位置来起始肽链的合成,该结合反应由起始因子3(IF-3)介导,另外IF-1促进IF-3与小亚基的结合,故先形成IF3-30S亚基-mRNA三元复合物。

    (2)30S前起始复合物的形成:在起始因子2作用下,甲酰蛋氨酰起 始tRNA与mRNA分子中的AUG相结合,即密码子与反密码子配对,同时IF3从三元复合物中脱落,形成30S前起始复合物,即IF2-3S亚基-mRNA-fMet-tRNAfmet复合物,此步需要GTP和Mg2+参与。

    (3)70S起始复合物的形成:50S亚基上述的30S前起始复合物结合,同时IF2脱落,形成70S起始复合物,即30S亚基-mRNA-50S亚基-mRNA-fMet-tRNAfmet复合物。

  4. 肽链合成的延长:在多肽链上每增加一个氨基酸都需要经过进位,转肽和移位三个步骤。

进位:与mRNA下一个密码相对应的氨基酰tRNA进入核蛋白体的A位。此步骤需GTP,Mg2+,和EF-T参与。

成肽:由转肽酶(transpeptidase)催化的肽键形成过程。即在转肽酶的催化下,将给位上的tRNA所携带的甲酰蛋氨酰基或肽酰基转移到受位上的氨基酰tRNA上,与其α-氨基缩合形成肽键。此步骤需Mg2+,K+。

移位:在移位因子(移位酶)EF-G的作用下,核糖体沿mRNA(5’-3’)作相对移动,使原来在A位点的肽酰-tRNA回到P位点,已失去蛋氨酰基或肽酰基的tRNA从核蛋白体E位上脱落。

5.肽链合成的终止:

核蛋白体沿mRNA链滑动,不断使多肽链延长,直到终止信号进入A位。

阅读全文

与生物化学中活化分子位有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:832
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017