导航:首页 > 生物信息 > 如何查看微生物的功能

如何查看微生物的功能

发布时间:2023-01-26 10:21:48

微生物有什么作用

微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有49.877%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病微生物的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。 微生物非常小,必须通过显微镜放大约1000倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。想象一下一滴牛奶,每毫升腐败的牛奶中约有5千万个细菌,或者讲每夸脱牛奶中细菌总数约为50亿。也就是一升牛奶中可有含有50亿个细菌。微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。
一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。微生物因为微生物很小,构造又简单,所以人们充分认识它,并发展成为一门学科,与其他学科比起来,还是很晚的。尽管如此,人们已经在广泛的应用微生物了。我国劳动人民很早就认识到微生物的存在和作用,也是最早应用微生物的少数国家之一。据考古学推测,我国在8000年前已经出现了曲蘖酿酒了,4000多年前我国酿酒已十分普遍,而且当时埃及人也已学会烤制面包和酿制果酒。 2500年前中国人民发明酿酱、醋,知道用曲治疗消化道疾病。公元6世纪(北魏时期),我国贾思勰的巨着《齐民要术》详细地记载了制曲、酿酒、制酱和酿醋等工艺。在农业上,虽然还不知道根瘤菌的固氮作用,但已经在利用豆科植物轮作提高土壤肥力。这些事实说明,尽管人们还不知道微生物的存在,但是已经在同微生物打交道了,在应用有益微生物的同时,还对有害微生物进行预防和治疗。为防止食物变质,采用盐渍、糖渍、干燥、酸化等方法。在我国隆庆年间就开始用人痘预防天花。人痘预防天花是我国对世界医学上的一大贡献,这种方法先后传到俄国、日本、朝鲜、土耳其及英国,1798年英国医生琴纳(Jenner)提出用牛痘预防天花。微生物学作为一门学科,是从有显微镜开始的,微生物学发展经历了三个时期:形态学时期、生理学时期和现代微生物学的发展。形态学时期微生物的形态观察是从安东·列文虎克(Antony Van Leeuwenhock 1632-1732)发明的显微镜开始的,它是真正看见并描述微生物的第一人,他的显微镜在当时被认为是最精巧、最优良的单式显微镜,他利用能放大50~300倍的显微镜,清楚地看见了细菌和原生动物,而且还把观察结果报告给英国皇家学会,其中有详细的描述,并配有准确的插图。1695年,安东·列文虎克把自己积累的大量结果汇集在《安东·列文虎克所发现的自然界秘密》一书里。他的发现和描述首次揭示了一个崭新的生物世界——微生物世界。这在微生物学的发展史上具有划时代的意义。
继列文虎克发现微生物世界以后的200年间,微生物学的研究基本上停留在形态描述和分门别类阶段。直到19世纪中期,以法国的巴斯德(Louis Pasteur,1822-1895)和德国的柯赫(Robert Koch,1843-1910)为代表的科学家才将微生物的研究从形态描述推进到生理学研究阶段,揭露了微生物是造成腐败发酵和人畜疾病的原因,并建立了分离、培养、接种和灭菌等一系列独特的微生物技术。从而奠定了微生物学的基础,同时开辟了医学和工业微生物等分支学科。巴斯德和柯赫是微生物学的奠基人。
微生物巴斯德原是化学家,曾在化学上做出过重要的贡献,后来转向微生物学研究领域,为微生物学的建立和发展做出了卓越的贡献。主要集中在下列三个方面:① 彻底否定
了“自然发生”学说。“自生说”是一个古老学说,认为一切生物是自然发生的。到了17世纪,虽然由于研究植物和动物的生长发育和生活循环,是“自生说”逐渐消弱,但是由于技术问题,如何证实微生物不是自然发生的仍是一个难题,这不仅是“自生说”的一个顽固阵地,同时也是人们正确认识微生物生命活动的一大屏障。巴斯德在前人工作的基础上,进行了许多试验,其中着名的曲颈瓶试验无可辩驳地证实,空气内确实含有微生物,他们引起有机质的腐败。巴斯德自制了一个具有细长而弯曲的颈的玻瓶,其中盛有有机物水浸液,经加热灭菌后,瓶内可一直保持无菌状态,有机物不发生腐败,一旦将瓶颈打断,瓶内浸液中才有了微生物,有机质发生腐败。巴斯德的试验彻底否定了“自生说”,并从此建立了病原学说,推动了微生物学的发展。 ② 免疫学——预防接种。Jenner虽然早在1798年发明了种痘法可预防天花,但却不了解这个免疫过程的基本机制,因此,这个发现没能获得继续发展。1877年,巴斯德研究了鸡霍乱,发现将病原菌减毒可诱发免疫性,以预防鸡霍乱病。其后它又研究了牛、羊炭疽病和狂犬病,并首次制成狂犬疫苗,证实其免疫学说,为人类防病、治病做出了重大贡献。 ③ 证实发酵是由微生物引起的。究竟发酵是一个由微生物引起的生物过程还是一个纯粹的化学反应过程,曾是化学家和微生物学家激烈争论的问题。巴斯德在否定“自生说”的基础上,认为一切发酵作用都可能与微生物的生长繁殖有关。经不断地努力,巴斯德终于分离到了许多引起发酵的微生物,并证实酒精发酵是由酵母菌引起的。还研究了氧气对酵母菌的发育和酒精发酵的影响。此外,巴斯德还发现乳酸发酵、醋酸发酵和丁酸发酵都是不同细菌所引起的。为进一步研究微生物的生理生化奠定了基础。 ④ 其它贡献。一直沿用至今天的巴斯德消毒法(60~65℃作短时间加热处理,杀死有害微生物的一种消毒法)和家蚕软化病问题的解决也是巴斯德的重要贡献,它不仅在实践上解决了当时法国酒变质和家蚕软化病的实际问题,而且也推动了微生物病原学说的发展,并深刻影响医学的发展。
柯赫是着名的细菌学家,由于他曾经是一名医生,因此对病原细菌的研究做出了突出的贡献:①具体证实了炭疽病菌是炭疽病的病原菌;②发现了肺结核病的病原菌,这是当时死亡率极高的传染性疾病,因此柯赫获得了诺贝尔奖;③提出了证明某种微生物是否为某种疾病病原体的基本原则——柯赫原则:首先在患病肌体里存在着一种特定的病原菌,并可以从该肌体里分离得到纯培养;然后用得到的纯培养接种敏感动物,表现出特有的性状;最后从被感染的敏感动物中又一次获得与原病原菌相同的纯培养。由于柯赫在病原菌研究方面的开创性工作,自19世纪70年代至20世纪20年代成了发现病原菌的黄金时代,所发现的各种病原微生物不下百余种,其中还包括植物病原菌。柯赫除了在病原菌方面的伟大成就外,在微生物基本操作技术方面的贡献更是为微生物学的发展奠定了技术基础,这些技术包括:①用固体培养基分离纯化微生物的技术,这是进行微生物学研究的基本前提,这项技术一直沿用至今;②配制培养基,也是当今微生物研究的基本技术之一。这两项技术不仅是具有微生物研究特色的重要技术,而且也为当今动植物细胞的培养做出了十分重要的贡献。巴斯德和柯赫的杰出工作,使微生物学作为一门独立的学科开始形成,并出现以他们为代表而建立的各分支学科,例如细菌学(巴斯德、柯赫等)、消毒外科技术(J. Lister),免疫学(巴斯德、Metchnikoff、Behring、Ehrlich等)、土壤微生物学(Beijernck Winogradsky 等)、病毒学(Ivanowsky、Beijerinck等)、植物病理学和真菌学(Bary、Berkeley等)、酿造学(Hensen、Jorgensen 等)以及化学治疗法(Ehrlish 等)。微生物学的研究内容日趋丰富,使微生物学发展更加迅速。
微生物20世纪上半叶微生物学事业欣欣向荣,微生物学沿着两个方向发展,即应用微生物学和基础微生物学。在应用方面,对人类疾病和躯体防御机能的研究,促进了医学微生物学和免疫学的发展。青霉素的发现(Fleming,1929)和瓦克斯曼(Waksman)对土壤中放线菌的研究成果导致了抗生素科学的出现,这是工业微生物学的一个重要领域。 环境微生物学在土壤微生物学研究的基础上发展起来。微生物在农业中的应用使农业微生物学和兽医微生物学等也成为重要的应用学科。应用成果不断涌现,促进了基础研究的深入,于是细菌和其它微生物的分类系统在20世纪中叶出现了,对细胞化学结构和酶及其功能的研究发展了微生物生理学和生物化学,微生物遗传和变异的研究导致了微生物遗传学的诞生。微生物生态学在20世纪60年代也形成了一个独立学科。20世纪80年代以来,在分子水平上对微生物研究迅速发展,分子微生物学应运而生。在短短的时间内取得了一系列进展,并出现了一些新的概念,较突出的有,生物多样性、进化、三原界学说;细菌染色体结构和全基因组测序;细菌基因表达的整体调控和对环境变化的适应机制;细菌的发育及其分子机理;细菌细胞之间和细菌同动植物之间的信号传递;分子技术在微生物原位研究中的应用。经历约150年成长起来的微生物学,在21世纪将为统一生物学的重要内容而继续向前发展,其中两个活跃的前沿领域将是分子微生物遗传学和分子微生物生态学。 微生物产业在21世纪将呈现全新的局面。微生物从发现到现在短短的300年间,特别是20世纪中叶,已在人类的生活和生产实践中得到广泛的应用,并形成了继动、植物两大生物产业后的第三大产业。这是以微生物的代谢产物和菌体本身为生产对象的生物产业,所用的微生物主要是从自然界筛选或选育的自然菌种。21世纪,微生物产业除了更广泛的利用和挖掘不同生境(包括极端环境)的自然资源微生物外,基因工程菌将形成一批强大的工业生产菌,生产外源基因表达的产物,特别是药物的生产将出现前所未有的新局面,结合基因组学在药物设计上的新策略将出现以核酸(DNA或RNA)为靶标的新药物(如反义寡核苷酸、肽核酸、DNA疫苗等)的大量生产,人类将完全征服癌症、艾滋病以及其他疾病。此外,微生物工业将生产各种各样的新产品,例如降解性塑料、DNA芯片、生物能源等,在21世纪将出现一批崭新的微生物工业,为全世界的经济和社会发展做出更大贡献。
中国是具有5000年文明史的古国,中国劳动人民对微生物的认识和利用是最早的几个国家之一。特别是在制酒、酱油、醋等微生物产品以及用种痘、麦曲等进行防病治疗等方面具有卓越的贡献。但微生物作为一门科学进行研究,中国起步较晚。中国学者开始从事微生物学研究在20世纪之初,那时一批到西方留学的中国科学家开始较系统的介绍微生物知识,从事微生物学研究。1910-1921年微生物间伍连德用近代微生物学知识对鼠疫和霍乱病原的探索和防治,在中国最早建立起卫生防疫机构,培养了第一支预防鼠疫的专业队伍,在当时这项工作居于国际先进地位。20世纪20-30年代,中国学者开始对医学微生物学有了较多的试验研究,其中汤飞凡等在医学细菌学、病毒学和免疫学等方面的某些领域做出过较高水平的成绩,例如沙眼病原体的分离和确认是具有国际领先水平的开创性工作。 20世纪30年代开始在高校设立酿造科目和农产品制造系,以酿造为主要课程,创建了一批与应用微生物学有关的研究机构,魏岩寿等在工业微生物方面做出了开拓性工作。戴芳澜和俞大绂等是中国真菌学和植物病理学的奠基人;陈华癸和张宪武等对根瘤菌固氮作用的研究开创了中国农业微生物学;高尚荫创建了中国病毒学的基础理论研究和第一个微生物学专业。但总的来说,在新中国成立之前,我国微生物学的力量较弱且分散,未形成中国自己的队伍和研究体系,也没有中国自己的现代微生物工业。微生物新中国成立以后,微生物学在中国有了划时代的发展,一批主要进行微生物学研究的单位建立起来了,一些重点大学创设了微生物学专业,培养了一大批微生物学人才。
现代化的发酵工业、抗生素工业、生物农药和菌肥工作已经形成一定的规模,特别是改革开放以来,中国微生物学无论在应用和基础理论研究方面都取得了重要的成果,例如中国抗生素的总产量已跃居世界首位,中国的两步法生产维生素C的技术居世界先进水平。近年来,中国学者瞄准世界微生物学科发展前沿,进行微生物基因组学的研究,现已完成痘苗病毒天坛株的全基因组测序,最近又对中国的辛德毕斯毒株(变异株)进行了全基因组测序。1999年又启动了从中国云南省腾冲地区热海沸泉中分离得到的泉生热袍菌全基因组测序,目前取得可喜进展。中国微生物学进入了一个全面发展的新时期。但从总体来说,中国的微生物学发展水平除个别领域或研究课题达到国际先进水平,为国外同行承认外,绝大多数领域与国外先进水平相比,尚有相当大的差距。因此如何发挥中国传统应用微生物技术的优势,紧跟国际发展前沿,赶超世界先进水平,还需作出艰苦的努力。
健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。
在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。微生物以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组,研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大! 从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。 为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程。

② 选择一种微生物的功能如何获得此功能的微生物

选择一种微生物的功能按照微生物的代谢特征获得此功能的微生物。根据查询相关资料显示,按照微生物的代谢特征,分离出特定功能的微生物,并进行纯化直获得此功能的微生物。

③ 微生物营养六大要素的生理功能

分类: 教育/科学 >> 科学技术
解析:

1)微生物需要的营养物质

营养物质应满足微生物的生长、繁殖和完成各种生理活动的需要。它们的作用可概括为形成结构(参与细胞组成)、提供能量和调节作用(构成酶的活性和物质运输系统)。

微生物的营养物质有六大类要素,即水、碳源、氮源、无机盐、生长因子和能源。

① 水

水是微生物的重要组成部分,在代谢中占有重要地位。水在细胞中有两种存在形式:结合水和游离水。结合水与溶质或其他分子结合在一起,很难加以利用。游离水(或称为非结合水)则可以被微生物利用。

② 碳源

碳在细胞的干物质中约占50%,所以微生物对碳的需求最大。凡是作为微生物细胞结构或代谢产物中碳架来源的营养物质,称为碳源。

作为微生物营养的碳源物质种类很多,从简单的无机物(CO2、碳酸盐)到复杂的有机含碳化合物(糖、糖的衍生物、脂类、醇类、有机酸、芳香化合物及各种含碳化合物等)。但不同微生物利用碳源的能力不同,假单孢菌属可利用90种以上的碳源,甲烷氧化菌仅利用两种有机物:甲烷和甲醇,某些纤维素分解菌只能利用纤维素。

大多数微生物是异养型,以有机化合物为碳源。能够利用的碳源种类很多,其中糖类是最好的碳源。

异养微生物将碳源在体内经一系列复杂的化学反应,最终用于构成细胞物质,或为机体提供生理活动所需的能量。所以,碳源往往也是能源物质。

自养菌以CO2、碳酸盐为唯一或主要的碳源。CO2是被彻底氧化的物质,其转化成细胞成分是一个还原过程。因此,这类微生物同时需要从光或其他无机物氧化获得能量。这类微生物的碳源和能源分别属于不同物质。

③ 氮源

凡是构成微生物细胞的物质或代谢产物中氮元素来源的营养物质,称为氮源。细胞干物质中氮的含量仅次于碳和氧。氮是组成核酸和蛋白质的重要元素,氮对微生物的生长发育有着重要作用。从分子态的N2到复杂的含氮化合物都能够被不同微生物所利用,而不同类型的微生物能够利用的氮源差异较大。

固氮微生物能利用分子态N2合成自己需要的氨基酸和蛋白质,也能利用无机氮和有机氮化物,但在这种情况下,它们便失去了固氮能力。此外,有些光合细菌、蓝藻和真菌也有固氮作用。

许多腐生细菌和动植物的病原菌不能固氮,一般利用铵盐或其他含氮盐作氮源。硝酸盐必须先还原为NH+4后,才能用于生物合成。以无机氮化物为唯一氮源的微生物都能利用铵盐,但它们并不都能利用硝酸盐。

有机氮源有蛋白胨、牛肉膏、酵母膏、玉米浆等,工业上能够用黄豆饼粉、花生饼粉和鱼粉等作为氮源。有机氮源中的氮往往是蛋白质或其降解产物。

氮源一般只提供合成细胞质和细胞中其他结构的原料,不作为能源。只有少数细菌,如硝化细菌利用铵盐、硝酸盐作氮源和能源。

④ 无机盐

无机盐也是微生物生长所不可缺少的营养物质。其主要功能是:① 构成细胞的组成成分;② 作为酶的组成成分;③ 维持酶的活性;④ 调节细胞的渗透压、氢离子浓度和氧化还原电位;⑤ 作为某些自氧菌的能源。

磷、硫、钾、钠、钙、镁等盐参与细胞结构组成,并与能量转移、细胞透性调节功能有关。微生物对它们的需求量较大(10-4~10-3 mol/L),称为“宏量元素”。没有它们,微生物就无法生长。铁、锰、铜、钴、锌、钼等盐一般是酶的辅因子,需求量不大(10-8~10-6 mol/L),所以,称为“微量元素”。不同微生物对以上各种元素的需求量各不相同。铁元素介于宏量和微量元素之间。

在配制培养基时,可通过添加有关化学试剂来补充宏量元素,其中首选是K2HPO4和MgSO4,它们可提供需要量很大的元素:K、P、S和Mg。微量元素在一些化学试剂、天然水和天然培养基组分中都以杂质等状态存在,在玻璃器皿等实验用品上也有少量存在,所以,不必另行加入。

⑤ 生长因子

一些异养型微生物在一般碳源、氮源和无机盐的培养基中培养不能生长或生长较差。当在培养基中加入某些组织(或细胞)提取液时,这些微生物就生长良好,说明这些组织或细胞中含有这些微生物生长所必须的营养因子,这些因子称为生长因子。

生长因子可定义为:某些微生物本身不能从普通的碳源、氮源合成,需要额外少量加入才能满足需要的有机物质,包括氨基酸、维生素、嘌呤、嘧啶及其衍生物,有时也包括一些脂肪酸及其他膜成分%A

④ 从种植业看微生物在大自然生态链中扮演什么角色

(一)微生物在自然生境、动植物及人体中的生态分布、组织结构及功能 1.从宏观上说微生物所具有的个体微小、代谢营养类型多样、适应能力强和迁移能力强的特点,使 微生物空间分布具有极其广泛性。 (1)在自然环境水体、土壤、大气中的分布。 (2)在其他生物难于生存的极端环境中(高温、低温、低pH、高PH、高盐、高压及高幅射等的)分布。 (3)在动物体中的分布。 (4)在植物体中的分布。 (5)在工农业产品中的分布。 (6)在人体中的分布。 2.生境中微生物的组织层次结构及相互作用。 (1)生态环境中的微生物存在着与动物、植物相似的从个体、种群、群落和生态系统(以微生物为主体 的生态系统)的组织层次。 (2)微生物具有明显的群体性。种群是一种重要的组织层次,种群的相互作用是理解微生物相互作用 的基础,其作用包括中立生活、偏利作用、协同作用、互惠共生、寄生、捕食、偏害作用和竞争 (3)群落结构、功能与相互作用。群落是一定区域内或一定生境中各种微生物种群相互松散结合的一 种结构和功能单位。在一个生态系统中不同群落也存在着各种不同的相互作用。 3.栖居微生物与生境的相互关系。 (1)微生物与其栖居自然环境的相互关系。微生物在自然环境中的存在分布是历史传承、现实选择及 微生物适应进化的结果,主要方面是生态位上生物和非生物环境对微生物的选择。 (2)动物体中微生物对动物是益害共存,但更主要的是互惠共生关系,研究其互惠共生关系,有助于 对有益微生物的利用。 (3)植物体中微生物对植物也是益害共存,有些成为病原微生物,有些则可以促进植物的生长发育。 抑害增益是利用这种相互关系的出发点。 (4)生物性霉腐是造成食品、粮食霉变的重要原因,产生大量生物毒素是重要的食品公共健康问题。 (5)人体正常的微生物区系是个体防御病原微生物的一道屏障,但在特殊条件下也可以成为病原微生 物。 4.极端环境微生物研究中最重要的3个方面是生态分布、适应机制及开发应用。 5.聚焦生态系统,剖析微生物在系统中的特殊地位和重要作用。 (1)微生物主要作为分解者在生态系统中捞演重要角色。 ①微生物是有机物的主要分解者。 ②微生物是物质循环的重要成员。 ③微生物是生态系统中的初级生产者。 ④微生物是物质和能量的贮存者。 ⑤微生物是地球生物演化中的先锋种类。 (2)微生物在生物地球化学循环中的重要作用。 ①生物地球化学循环是生态系统乃至整个生物圈物质循环的一个重要组成部分。生命物质的主要组 成元素,少量元素和迹量元素表现出从快到慢,不同的循环速率。 ②微生物参与的生物地球化学循环是总生物地球化学循环的一部分,主要是微生物对有机物的矿化 作用。 ③微生物对有机物的矿化作用推动微生物参与碳循环、氮循环、硫循环、磷循环及铁循环。 ④微生物在C、N、S、P循环中具有不同方式与特点。(二)微生物与环境保护是微生物生物体及其机能在环境保护中的应用 1.微生物对污染物的降解、转化是微生物消除污染、修复污染环境的基础和前提条件。 (1)生物降解是微生物对环境污染物的分解作用,是传统分解作用的拓展和延伸。 (2)质粒在微生物对污染物降解中的重要作用,降解遗传信息主要分布在质粒和染色体上。 2.污染介质的微生物处理是通过微生物作用使废水、废气、固体废弃物中的污染物在反应器中得到 降解,矿化成H2O、CO2及其他氧化性物质,以达到消除污染,无害化的目的。 3.工、农业废弃物的资源化转化,转化成新的化学晶、能源及单细胞蛋白。 4.氮、磷去除技术是利用特定微生物类群在特定条件下去除污水中氮和磷。 5.污染环境的生物修复是利用微生物的降解作用修复较大面积污染环境,特别是修复受难降解污染 物污染的环境,如土壤、水体(包括地下水)、海滩等。 6.环境污染的微生物监测是利用在污染压迫下微生物群落结构、生理功能的变化来监测环境污染, 微生物的特殊性使微生物在监测中有特殊作用。

⑤ 什么是微生物菌剂以及它的功能

不知道您问的微生物菌剂是不是农业用微生物菌剂,微生物菌剂是个统称,有很多种微生物,每一种功能都不同,我可以给您介绍十几种常用的沃宝微生物菌剂及其作用,供您参考。
一、沃宝枯草芽孢杆菌:增加作物抗逆性、固氮。
二、沃宝巨大芽孢杆菌:钾,释放出可溶磷钾元素及钙、硫、镁、铁、锌、钼、 锰等中微量元素。
三、地衣芽孢杆菌:抗病、杀灭有害菌,
四、苏云金芽孢杆菌:杀虫(包括根结线虫),对鳞翅目等节肢动物有特异性的毒 杀活性。
五、侧孢芽孢杆菌:促根、杀菌及降解重金属。
六、胶质芽孢杆菌:有溶磷、释钾和固氮功能,分泌多种酶,增强作物对一些病 害的抵抗力。
七、泾阳链霉菌:具有增强土壤肥力、刺激作物生长的能力。
八、菌根真菌:扩大根系吸收面,增加对原根毛吸收范围外的元素(特别是磷)的 吸收能力。
九、棕色固氮菌:固定空气中的游离氮,增产。
十、光合菌群:是肥沃土壤和促进动植物生长的主力部队。
十一、凝结芽孢杆菌:可降低环境中的氨气、硫化氢等有害气体。提高果实中氨 基酸的含量。
十二、米曲霉:使秸秆中的有机质成为植物生长所需的营养,提高土壤有机质, 改善土壤结构。
十三、淡紫拟青霉:对多种线虫都有防治效能,是防治根结线虫最有前途的生防 制剂。

⑥ 微生物有哪些功能

二氧化硫是一种有毒的气体,它能引起人的哮喘病、肺水肿,当浓度高时人会窒息而死。一些工厂排出的废烟中常含有它,它是造成空气污染的主要物质,在美国、英国、日本发生的几次严重的大气污染事件无不与二氧化硫有关。准确报告空气中的二氧化硫的浓度是一件很重要的工作。真菌和藻类的共生体地衣对少量的二氧化硫十分敏感,通过人工培养地衣的生长情况,就能很方便地判断空气污染的情况。利用海洋中的发光细菌也能探测大气中的毒气存在。判断水的污染程度对工农业生产和日常生活都是非常必要的。有一种两端都长有鞭毛的纟于回螺菌,它在污水中便失去了运动性,培养它们来检验污水是很灵敏的。噬细菌、蛭弧菌、乳节水霉都能作为污水的示菌。有种短柄毒霉对有毒的砷化合物高度敏感,物料中含百分之几的三氧化二砷它也能够测出来。

石油是重要的燃料,在国民经济中起着极其重要的作用。石油都埋在地下很深的地方,为了开采它,人们还得先进行勘探,看它藏在哪块地的下边。勘探时需要打井钻眼,把地下的土样拿来化验。这都需要大量的人力和物力。随着人们对微生物的了解,利用很简单的培养微生物的方法也能找出石油的藏身之地。原来油田虽然在地下,但油层中有许多烃类物质由于扩散作用能渗透到地壳表面,这就露出了油田的蛛丝马迹。这些烃类是一些微生物的好食品,烃类越多它们繁殖越快。这时只要从地面找出这些微生物,经过人工培养并测定它们的数量就可以得知这块地下有无油田。1957年国际上用微生物法勘探了16个地区,就有10个地区有油田矿藏。

⑦ 微生物在食品中的作用 5000/字 谢谢

微生物的作用

微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。
微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物非常小,必须通过显微镜放大约1000 倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。想象一下一滴牛奶,每毫升腐败的牛奶中约有5千万个细菌,或者讲每夸脱牛奶中细菌总数约为50亿。也就是一滴牛奶中可有含有50 亿个细菌。
微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。
微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。
随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。
以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大!
从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。
工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。
据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。
经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及中国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。
在全面推进经济发展的同时,滥用资源、破坏环境的现象也日益严重。面对全球环境的一再恶化,提倡环保成为全世界人民的共同呼声。而生物除污在环境污染治理中潜力巨大,微生物参与治理则是生物除污的主流。微生物可降解塑料、甲苯等有机物;还能处理工业废水中的磷酸盐、含硫废气以及土壤的改良等。微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。
在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。
有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。
食品因富含有微生物可依赖生长的营养成分,因此会不同程度的受微生物污染。如何控制好微生物对食品的污染,已成为人们关注的话题。下面就食品加工中如何控制好微生物污染提出几种方法:
对食品加工来讲,通过控制病原体所需的营养成分来控制病原体难以达到目的,因为除特别情形之外,大多数食品为病原体生长提供了充足的营养。食品加工可以通过分别控制食品中水分活度和pH值,或通过特定的包装技术调节气体来控制病原体的生长。

1 控制pH
每种微生物生长都有最低、最佳、最高pH值,酵母菌和霉菌可在低pH下生长,当pH值为 4.6或以下时可抑制致病菌生长和产生毒素。但有些病原体,特别是艾希氏大肠杆菌0157:H7,虽然在酸性条件下生长被抑制,仍可存活较长时间。pH 是一种抑制病菌生长的方法,而不能破坏现存的致病菌。但是,在低pH值保持时间较长时,很多微生物将被破坏。

pH 4.6 是酸性食品和低酸食品的分界限。有些食品开始是低酸食品,加工后成为酸性食品。天然酸性食品是那些自然含酸的食品,大部分水果属天然酸性的食品。但有些热带水果如菠萝,根据生长条件pH可能大于4.6。低酸食品包括含蛋白质食品、各种蔬菜、淀粉质食品及其它多种食品。

酸化是直接向低酸食品加酸的过程。目标通常为 pH 4.6或更低。这些食品称为酸化食品,要符合相应的法规如FDA 21CFR PART 114。 有些情况食品虽然经过加酸,但最终pH仍高于4.6,这就需要其他方法来加以控制,如冷藏。

发酵是使用某些无害微生物来促进食品化学变化的过程。这些微生物作用的结果是产生酸或乙醇。细菌一般产生醋酸或乳酸,酵母菌一般产生乙醇。

通过发酵产生酸或乙醇有两个目的。一是赋予食品特定的品质以产生预期的味道或均匀结构。酸奶就是通过发酵加工具有独特的香味和结构。另一个目的是食品防腐,如腌渍产品,但这类发酵食品的pH一般达不到4.6或以下,所以在冷藏温度下贮存才是安全的。

1.1 酸化

酸化是直接向低酸食品加酸的过程。向产品中加酸有几种不同方法:一种方法称为直接酸化,即在生产低酸食品过程中,在单个制成品容器中加入预先确定数量的酸。用此方法,重要的是加工者控制酸与食品比例,酸化蔬菜最常用的方法。另一种方法是批酸化,顾名思义,酸和食品大批混合后让其平衡,然后包装酸化食品。添加的酸有很多种,主要有醋酸、乳酸和柠檬酸,根据预期成品的特性而选用。

除用酸酸化食品外,可用天然酸性食品如蕃茄作为添加配料,来酸化低酸食品。使用蕃茄的产品包括装有整形芹菜、洋葱或辣椒意大利面条酱。罐装蕃茄通常pH为约4.2,而其它蔬菜为低酸性。

如制成食品的pH不同于酸性原料的pH,则认为该食品是酸化的,并适用于法规。例如,蕃茄原料pH是4.2,如制成品pH是4.5则食品已经酸化了,因为蕃茄中的部分酸被用来酸化蔬菜。或者,如制成品pH仍为4.2,则用来酸化蔬菜的蕃茄中的酸量没有明显变化,在这种情况下该产品不适用于酸化食品法规,并且认为不是配制成的酸性食物。这样的食品包括有芥木、蕃茄酱、沙拉调料和其它调味品,都是货架稳定的食品。

酸化食品加工者需科学地设定加工过程以保证最终pH肯定低于4.6。加工者需对每批制成品测试平衡后的pH ,因为所有配料达到自然pH平衡,这对较大颗粒食品可能需长达10天长的时间。需经几天达到平衡pH的产品在这段时间里可能需要冷藏,以防止肉毒梭菌或其它病原体的生长。为加速测试过程,可将产品混成均匀糊状。均质含油的食品时,均质前应将油除去。另一种方法是在产品加油前测试pH,因为油不影响最终pH。

按配方配制的酸化食品和酸性食品的,必须进行充分地热处理以灭活腐败微生物和病原体的繁殖体。其原因有两个,一是防止腐败导致经济损失,另外是腐败生物的繁殖可使pH升高,危及产品的安全。

1.2 测量pH值

如加工者要进行酸化处理,必须有某种测量pH的方法。加工者多数选用pH计,但也可使用指示溶液、试纸或进行滴定,确保最终pH低于4.0。

1.3 发酵

葡萄酒和啤酒,是用酵母菌使产品发酵产生乙醇,乙醇使产品防腐。在酸泡菜、发酵香肠、奶酪、甜酸泡菜、橄榄和酪乳的生产中,发酵时细菌产生了乳酸。霉菌也用于某些食品的发酵,主要是为了味道和其它特性,如酱油。

发酵一方面需要促进好的微生物生长,同时一方面阻止会引起腐败的不良微生物生长。通常的作法是向食品中加盐或发酵剂,或在某些情形中将其轻微地酸化。发酵剂可以是酵母菌或细菌。

在很多发酵产品中,一个普遍现象就是没有消除产酸细菌的加工过程。所以大部分发酵产品必须保持冷藏,以保证发酵细菌不会使产品腐败。

2 控制水分活度

2.1 常见食品的水分活度

如同pH,每种微生物体有其生长的最低、最佳、最高水分活度。酵母菌和霉菌可在低水分下生长,但是0.85是病原体生长的安全界限。0.85是根据金黄色葡萄球菌产生毒素的最低水分活度得来的。

常见食品的水分活度。水分活度分类控制要求:0.85以上水份较大的食品要求冷藏或其他措施控制病原体生长;0.6—0.85中等水份食品不需要冷藏控制病原体,由于因酵母和霉菌引起的腐败而限制货架期;0.6以下低水份食品有较长货架期,也不需要冷藏,这些食品称为低水分食品。

大部分生肉、水果和蔬菜属于水份较高的食品(水分活度高于0.85 )。值得注意的是面包,多数人认为它是干燥,货架稳定的产品。实际上,它有相当高的水分活度,它只是因pH、水分活度的多重屏障,而使之安全,并且霉菌比病原体更容易生长,换言之,它变危险之前就长霉变绿了。

有些独特风味的产品如酱油外表像是高水分产品,但因盐、糖或其它成分结合了水分,它们的水分活度很低,其水分活度在0.80左右。因果酱和果冻的水分活度可满足酵母菌和霉菌生长,它们需在将包装前轻微加热将酵母菌霉菌杀灭以防止腐败。

2.2 控制水分活度

降低食品中水分有两种传统方法,即干燥和加盐或糖结合水分子。

干燥是食品防腐最古老的方法之一。除防腐之外,干燥产生了食品的自身特性,如同发酵。世界上很多地方还在用开放式空气干燥,一般而言有四种基本干燥方法:热空气干燥,用于固体食品如蔬菜、水果和鱼;喷雾干燥,用于流体和半流体如牛奶;真空干燥,用于流体如果汁;冷冻干燥,用于多种产品。

另一种降低食品水分活度的方法是加盐或糖。这种类型食品的例子有酱油、果酱和腌鱼,这不需要非常特殊的设备。对流体或半流体产品,如酱油或果酱,用配方加工控制。对固体食品如鱼或熏火腿,可用盐干燥,即放入盐溶液或浸入盐水中。

控制水分活度分两步。第一,科学地设定可保证水分活度为0.85或更低的干燥、盐渍或加工配方,然后严格地执行。第二,可取制成品样品测试其水分活度。

3 控制包装

包装不同于其它控制方法,虽然包装有时用于控制微生物生长,但对腐败生物体的控制是有限的,不能作为可控制致病菌生长的单一方法,但通过改变包装有助于产品安全性。

从食品安全角度看,包装有两个功能:可防止食品污染,也可增加食品控制的有效性。

3.1 包装类型

很多产品是真空包装。真空包装是在将封口前用机械抽出包装中空气。产品放在低透氧性袋中,再放在真空机内用机械抽出袋中空气然后进行热封口。薄膜紧贴在产品上。袋中不残留空气或气体。

充气包装产品可包装于充气包装中。充气包装包括一次充气和封口处理。所充的气体有三种,可单独或混合使用,包括氮气、二氧化碳和氧气。这些气体都有各自不同功能:氮气取代氧气,因而减弱了需氧腐败生物的生长;二氧化碳能使很多微生物致死,破坏腐败生物以延长货架期;氧气是需氧腐败生物体生命线。但含有一定氧气可增加抑制肉毒梭菌的安全性,通常为浓度约2%至4%的氧。然而,包装中存在的氧可使腐败微生物生长,并消耗氧气以至降低至2 %安全浓度之下,这样产品的保质期受到限制。

3.2 控制气体包装

控制气体包装是一个动态过程,包装中使用氧清除剂,在整个货架期内保持包装中的气体。吸收氧气有利于较长货架期产品,因为大部分包装对氧气都有某种程度的通透性。

不同的包装膜具有不同的透氧性。这些包装用于货架期较长产品的贮存。这类包装用于蔬菜如生菜。当植物体呼吸时,它们吸入氧气排出二氧化碳。如果薄膜限制了现有氧气的含量,则可降低呼吸的速度并延长货架期。

减氧包装——所有这些不同包装形式归为一类称为减氧包装。使用减氧包装可防止腐败生物的生长,因而延长产品的货架期。同时还对产品品质有其它益处,如减轻酸败和褪色。使用这种包装应注意,货架期较长的产品为病原体生长和产生毒素提供了更多的时间。氧浓度低时,比需氧腐败生物而言,更有利于有利于厌氧和兼性厌氧病原体的生长。因此,有可能在腐败前就已产生毒素。

3.3 肉毒梭菌的控制

重点要关注的是肉毒梭菌,除非有其它对肉毒梭菌的控制措施,否则不能使用这些包装技术。这些控制措施包括:水分活度低于0.93并且充分冷藏以控制其它病原体;pH低于4.6;盐分高于10%,数量较多的竞争微生物;在最终容器中热处理;在冷冻条件下贮存和销售。每种控制措施自身都能有效地控制肉毒梭菌生长。

真空包装生肉和禽肉,如同发酵奶酪,是利用竞争微生物抑制肉毒梭菌产生毒素的例子。像发酵产品如奶酪,发酵剂增殖产酸可防止肉毒梭菌生长。

零售和家庭冰箱的温度常常不能控制在能充分阻止肉毒梭菌生长的温度。单独通过真空包装、部分蒸煮、冷藏保存不能作为唯一的屏障。因此为了产品的安全,在加工、贮存和销售过程中必须严格控制冷藏。

⑧ 微生物生态功能分类

土壤微生物,海洋微生物,环境生物学,水微生物,宇宙微生物等,一般上是根据微生物的进化水平和各种性状上的明显差别,可把它分为原核生物(包括真细菌和古生菌)、真核微生物、和非细胞微生物三大类群。

⑨ 微生物营养的二,微生物的营养物质及其生理功能

通过了解微生物的化学组成,可见微生物在新陈代谢活动中,必须吸收充足的水分以及构成细胞物质的碳源和氮以及钙,镁,钾,铁等多种多样的矿质无素和一些必须的生长辅助因子,才能正常地生长发育. 水分是微生物细胞的主要组成成分,大约占鲜重的70%~90%.不同种类微生物细胞含水量不同.同种微生物处于发育的不同时期或不同的环境其水分含量也有差异,幼龄菌含水量较多,衰老和休眠体含水量较少.微生物所含水分以游离水和结合水两种状态存在,两者的生理作用不同.结合水不具有一般水的特性,不能流动,不易蒸发,不冻结,不能作为溶剂,也不能渗透.游离水则与之相反,具有一般水的特性,能流动,容易从细胞中排出,并能作为溶剂,帮助水溶性物质进出细胞.微生物细胞游离态的水同结合态的比例为4:1.
微生物细胞中的结合态水约束于原生质的胶体系统之中,成为细胞物质的组成成份,是微生物细胞生活的必要条件.游离水是细胞吸收营养物质和排出代谢产物的溶剂及生化反应的介质;一定量的水分又是维持细胞渗透压的必要条件.由于水的比热高又是热的良导体,能有效地调节细胞内的温度.微生物如果缺乏水分,则会影响代谢作用的进行. 凡是可以被微生物利用,构成细胞代谢产物碳素来源的物质,统称为碳源物质.碳源物质通过细胞内的一系列化学变化,被微生物用于合成各代谢产物.微生物对碳素化合物的需求是极为广泛的,根据碳素的来源不同,可将碳源物质分为无机碳源物质和有机碳源物质.糖类是较好的碳源,尤其是单糖(葡萄糖,果糖),双糖(蔗糖,麦芽糖,乳糖),绝大多数微生物都能利用.此外,简单的有机酸,氨基酸,醇,醛,酚等含碳化合物也能被许多微生物利用.所以我们在制作培养基时常加入葡萄糖,蔗糖作为碳源.淀粉,果胶,纤维素等,这些有机物质在细胞内分解代谢提供小分子碳架外,还产生能量供合成代谢需要的能量,所以部分碳源物质既是碳源物质,同时又是能源物质.
在微生物发酵工业中,常根据不同微生物的需要,利用各种农副产品如玉米粉,米糠,麦麸,马铃薯,甘薯以及各种野生植物的淀粉,作为微生物生产廉价的碳源.这类碳源往往包含了几种营养要素. 微生物细胞中大约含氮5%~13%,它是微生物细胞蛋白蛋和核酸的主要成分.氮素对微生物的生长发育有着重要的意义,微生物利用它在细胞内合成氨基酸和碱基,进而合成蛋白质,核酸等细胞成分,以及含氮的代谢产物.无机的氮源物质一般不提供能量,只有极少数的化能自养型细菌如硝化细菌可利用铵态氮和硝态氮在提供氮源的同时,通过氧化产生代谢能.
微生物营养上要求的氮素物质可以分为三个类型:
1.空气中分子态氮 只有少数具有固氮能力的微生物(如自生固氮菌,根瘤菌)能利用.
2.无机氮化合物 如铵态氮(NH4+),硝态氮(NO3-)和简单的有机氮化物(如尿素),绝大多数微生物可以利用.
3.有机氮化合物 大多数寄生性微生物和一部分腐生性微生物需以有机氮化合物(蛋白质,氨基酸)为必需的氮素营养..
在实验室和发酵工业生产中,我们常常以铵盐,硝酸盐,牛肉膏,蛋白胨,酵母膏,鱼粉,血粉,蚕蛹粉,豆饼粉,花生饼粉作为微生物的氮源. 微生物细胞中的矿物元素约占干重的3%~10%左右,它是微生物细胞结构物质不可缺少的组成成分和微生物生长不可缺少的营养物质.许多无机矿物质元素构成酶的活性基团或酶的激活剂;并具有调节细胞的渗透压,调节酸碱度和氧化还原电位以及能量的转移等作用.微生物需要的无机矿质元素分为常量元素和微量元素.
常量矿质元素是磷,硫,钾,钠,钙,镁,铁等.磷,硫的需要量很大,磷是微生物细胞中许多含磷细胞成分,如核酸,核蛋白,磷脂,三磷酸腺苷(ATP),辅酶的重要元素.硫是细胞中含硫氨基酸及生物素,硫胺素等辅酶的重要组成成分.钾,钠,镁是细胞中某些酶的活性基团,并具有调节和控制细胞质的胶体状态,细胞质膜的通透性和细胞代谢活动的功能.
微量元素有钼,锌,锰,钴,铜,硼,碘,镍,溴,钒等,一般在培养基中含有0.1mg/L或更少就可以满足需要. 生长因子是微生物维持正常生命活动所不可缺少的,微量的特殊有机营养物,这些物质在微生物自身不能合成,必须在培养基中加入.缺少这些生长因子就会影响各种酶的活性,新陈代谢就不能正常进行.
生长因子是指维生素,氨基酸,嘌呤,嘧啶等特殊有机营养物.而狭义的生长因子仅指维生素.这些微量营养物质被微生物吸收后,一般不被分解,而是直接参与或调节代谢反应.
在自然界中自养型细菌和大多数腐生细菌,霉菌都能自己合成许多生长辅助物质,不需要另外供给就能正常生长发育.

阅读全文

与如何查看微生物的功能相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1400
沈阳初中的数学是什么版本的 浏览:1347
华为手机家人共享如何查看地理位置 浏览:1038
一氧化碳还原氧化铝化学方程式怎么配平 浏览:881
数学c什么意思是什么意思是什么 浏览:1404
中考初中地理如何补 浏览:1295
360浏览器历史在哪里下载迅雷下载 浏览:697
数学奥数卡怎么办 浏览:1384
如何回答地理是什么 浏览:1020
win7如何删除电脑文件浏览历史 浏览:1050
大学物理实验干什么用的到 浏览:1480
二年级上册数学框框怎么填 浏览:1696
西安瑞禧生物科技有限公司怎么样 浏览:961
武大的分析化学怎么样 浏览:1244
ige电化学发光偏高怎么办 浏览:1333
学而思初中英语和语文怎么样 浏览:1646
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1482
数学中的棱的意思是什么 浏览:1054