导航:首页 > 生物信息 > 微生物新技术有哪些

微生物新技术有哪些

发布时间:2023-02-22 04:34:13

‘壹’ 120项生物医学新技术有哪些

生物医学新技术是医学生物学发展的支撑和基础.现代医学生物学的发展离不开生物医学技术的进展.从显微镜、离心机、电泳仪、同位素、X-Ray到现在的高通量、高灵敏的分析、测序、重组、克隆、转移、芯片、荧光、成像、纳米、合成、信息技术的发展,无一不引领着现在医学生物学的进步.没有生物医学技术的创新和进步,就不会有现在和未来医学生物学的发展.这里我们从Science,Nature,PNAS,Cell 以及国内外生物医学网站上摘录了近年120多项生物医学的新技术,供大家参考.此外,我们在CMBI特别报道专栏中也全文报道了新技术(379)、心血管成像(368)、彗星测定(366)、荧光蛋白(363)、人工生命(331)、代谢修复技术(376)、方法学(303)、系统生物学(272)、纳米医学(271)、生物标记(267)、抗体工程(251)、细胞与分子生物学方法(240)、活细胞成像(226)、组合化学(216)、虚拟细胞(199)、组织工 程(186)、DNA疫苗(176)、生物芯片(122)等近20项做了专题报道,约有7000篇文献. 人工生命(AL:Artificial life)是通过人工模拟生命系统,来研究生命的领域.人工生命的概念,包括两个方面内容:1)、属于计算机科学领域的虚拟生命系统,涉及计算机软件工程与人工智能技术,以及2)、基因工程技术人工改造生物的工程生物系统,涉及合成生物学技术.AL是首先由计算机科学家Christopher Langton在1987年在Los Alamos National Laboratory召开的"生成以及模拟生命系统的国际会议"上提出. 代谢修复技术:在调动泛素-蛋白体酶系统充分代谢、分解病原性蛋白质的同时,引导代谢产生的巨大能量释放细胞自我复制的潜能,最终通过细胞自我复制的方式完成组织、器官的自我修复,从而使系统功能恢复正常、机体重新获得健康的前沿生命科学.代谢修复技术发端于2004年诺贝尔化学奖成果. 虚拟细胞(virtualcell)亦称电子细胞(e2cell)"它是应用信息科学的原理和技术,通过数学的计算和分析,对细胞的结构和功能进行分析!整合和应用,以模拟和再现细胞和生命的现象的一门新兴学科"因此,虚拟细胞亦称人工细胞或人工生命" 生物芯片,又称DNA芯片或基因芯片,它们是DNA杂交探针技术与半导体工业技术相结合的结晶.该技术系指将大量探针分子固定于支持物上后与带荧光标记的DNA样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息.

‘贰’ 微生物技术有什么

当前,由于环境污染,生态资源遭到破坏,农产品质量不断下降,残留污染物所带来的“瓜不甜、果不香、菜无味”等致病致癌物质的增多,严重危害人类的生存,食品安全已成为日常生活中头等大事.怎样生产出无污染无毒副作用的绿色无公害食品,已成为各方探讨的焦点.传统种养殖方式受到新的挑战,微生物技术的应用是改变这一现状的有效途径,是时代的选择和农牧业可持续发展的需要. 微生物是一类形体微小的单细胞或个体结构比较简单的多细胞,甚至没有细胞结构的低等生物,是眼看不见,手摸不着,有生命的微小生物,只有借助于显微镜才能看到.微生物与人类的关系极为密切,每时每刻都以不同的方式影响着人类的生活.研究和应用微生物技术有助于消除环境污染,增进人类健康. 微生物分有益微生物和有害微生物,土壤中还有一种叫中庸微生物,中庸微生物是墙头草,没有立场和观点,当有益微生物占主导地位时,它即转变为有益微生物.EM、AM、CM等有效微生物均属有益微生物,是动植物和土壤中不可缺少的重要物质,土壤中有益微生物是土壤中的卫士和工程师,它们不断地分解着土壤中的有害物质,如化肥的残留物质,农药的残毒及不能被植物根系直接吸收利用的其它物质.没有微生物的不断增值和分解,动植物就很难生存. Em有效微生物是日本琉球大学比嘉照夫教授20世纪80年代初期研制的一种新型高科技复合微生物菌剂,由五科十属80多种有益微生物经过仔细筛选复合而成.主要有光合菌、酵母菌、乳酸菌等,光合菌以土壤接受的光和热为能源,以根系的有机物或有害气体(硫化氢)为食饵,产生氨基酸、核酸等代谢物,促进植物的生长发育,这些代谢物既可以直接被植物吸收,又可作为其它微生物繁殖活动的基质,提高植物的固氮能力.乳酸菌有很强的杀菌力,抑制有害微生物的繁殖,加剧有机物的腐败分解,减轻连作病害发生.酵母菌分泌激素,能促进根系生长和细胞分裂,还可以为其它微生物繁殖提供所需的基食.放线菌产生抗生素物质能抑制病原菌的繁殖,在和光合菌共生的条件下,放线菌的杀菌功效成倍提高,丝状菌对土壤中酯的生成有良好的作用,并有分解消除恶臭的效果. 光合菌、酵母菌、乳酸菌、放线菌等有益微生物在应用过程中各自发挥着自身作用,光合菌在其中起主导作用,是其它微生物赖以生存的基础.它们形成共存共荣的关系,抑制有害菌,增加有益菌,改善土壤环境,创造有利于作物正常生长发育的物质,阻碍抑制病害的发生.土壤中的微生物数量取决于土壤中的有机物质的含量和肥沃状况,有机质越多,微生物繁殖越快,土壤越肥沃,植物越健壮,根系病害越少. 微生物技术在世界上150多个国家和地区被广泛应用,应用面积最大的有巴西、泰国、日本、朝鲜等.巴西用EM生物制剂治理了湖水的污染,朝鲜五分之四的农田应用EM生物技术解决了粮食问题.我国已有三十多个省市地区的高等院校、科研单位在研究和应用. 中国科学院院士辛德惠先生指出:“生物技术在提高农业、牧业、林业、水产业的生产能力,治理环境,创造优化新环境,人的保健方面,都有着巨大的、不可替代的作用和潜力,EM技术必将对我国高产、优质、低耗、高效地发展农业、净化环境和提高人民健康水平方面做出难以估量的贡献! 1.常规现代农业的现状 1.1 长期以来,依赖化肥、激素,而且用量不断增加,有机肥用量逐年减少,污染严重.据世农组织统计1950-1985年的35年世界化肥用量增加8.29倍,而谷物增产仅1.68倍,我国每年化肥总用量4000万吨,用量增长幅度很大,而谷物增产由原来每公斤化肥挽回20公斤粮食下降到现在每公斤化肥只能挽回45公斤粮食.据有关资料报导我国氮肥的单季利用率仅30%,磷肥利用率10-20%,钾肥利用率35-50%,大部分挥发和随水流失,污染了江河湖泊和地下水.氮磷钾比例不当造成土壤板结,保墒保肥能力降低,从而造成作物徒长,落花落果和耐贮性下降等.另外还造成烧根、熏叶以及硝酸盐、亚硝酸盐等致病致癌物质在农产品中的积累.有机肥用量逐年减少,1979年有机肥利用率40.5%,而到1997年有机肥利用率仅为19.6%.19年间有机肥利用率下降21.9%.专家指出,以生物肥料、生物有机肥和叶面肥为代表的新型肥料,其发展前景相当广阔. 1.2 滥用农药、抗生素等,农药残留不断增加.我国每年农药总用量达50万吨,农药大量应用的结果杀伤了大量的天敌和土壤中的有益微生物,土壤中的有害微生物增多,病原菌增加,导致病害越来越重.同时,由于杀伤了天敌,使次要害虫上升为主要害虫,目前有360多种害虫对60多种农药产生了抗性.病虫害越重,农药的喷洒次数和用量越增加,(有些菜农不吃自己种的菜)这样,农产品的残留不断上升,据科技人员从上市蔬菜中检查,1977年农药残留为36%,1998年上升为44%,1999年上升为54%,22年农药残留增加18%,和1977年相比农药残留增加50%. 1.3 农产品质量下降,“瓜不甜、果不香、菜无味”是农药残留所致,现代疾病也越来越多.近年来国内外科学家通过广泛研究,发现抗生素在人体内的积累和抗药性的增加将会对人类的健康带来灾难性的后果.蔬菜中的硝酸盐含量不断增加,特别是叶菜类,硝酸盐,亚硝酸盐又是致癌物质,严重威胁着人们的健康.农业的恶性循环直接制约着农业生产的持续发展. 综上所述,农药化肥抗生素时代之后,将是一个崭新的微生物制剂应用时代,杨振宁先生曾说:“二十一世纪是微生物世纪”. EM生物技术不仅是一种微生物,也不是只有某几种特定的微生物,而是将许多种类的有用微生物作为一个功能群体来应用.如果学微生物的话,前景倒是不错,毕竟我们国家欠缺这方面的人才,但是我国的基础建设比较弱,以后应当出国深造一下,对在微生物上的发展有好处

‘叁’ 微生物四大技术

生物是20世纪70年代初开始兴起的一门新兴的综合性应用学科。所谓生物工程,一般认为是以生物学(特别是其中的微生物学、遗传学、生物化学和细胞学)的理论和技术为基础,结合化工、机械、电子计算机等现代工程技术,充分运用分子生物学的最新成就,自觉地操纵遗传物质,定向地改造生物或其功能,短期内创造出具有超远缘性状的新物种,再通过合适的生物反应器对这类"工程菌"或"工程细胞株"进行大规模的培养,以生产大量有用代谢产物或发挥它们独特生理功能一门新兴技术。

‘肆’ 现在有哪些生物新技术

现在有哪些生物新技术
生物技术是以现代生命科学为基础,结合其他基础科学的,采用先进的科学技术手段,按照预先的设计改造生物体或加工生物原料,为人类生产出所需产品或达到某种目的。
生物技术的主要内容有:基因工程、细胞工程、酶工程(也有称作蛋白质工程)和发酵工程。所以,也有人将生物技术称作生物工程。
但是,生物技术和生物工程还是有区别,生物技术和生物工程同属理科,但是,生物技术更注重于操作和原理,而生物工程更注重于实际操作中的各种参数也就是有较多的工科内容在里面。
随着生物技术的发展,现代生物技术正在以上四大基础工程上稳步发展,最明显的特点是由以前的研究型向现在的应用性发展。
比如,以前是通过生物技术的手段去研究染色体上某位点基因的功能,而现在,则是在以前的基础上对这个基因进行改良或者创造新的基因来完善或加强生物的某些功能。
总之,有进步性的特点。
1)更加注重实际应用,实际生产决定研究方向,更多的人把精力放在了优良技术的创造。
2)操作先进化,以往的生物技术往往以酶工程和发酵工程为代表,获得的都是一些蛋白或者微生物产物,如青霉素的获得。但是现在更加注重基因工程和细胞工程,从微观去创新。
3)理论基础的多样化,现在学生物技术,不是掌握微生物学、动物学就可以了,还要有更多的如生化、分子生物学的基础才行。

‘伍’ 现代生物新技术

当今世界生命科学发展日新月异,生物高科技正发挥着巨大的作用,其内容亦开始出现在生物教学及高考试题中,这类试题具有时代性、探究性、开放性、创新性和综合性等特点,故高考要求层次较高。正确解答这类试题,首先要求考生熟悉试题涉及到的相关现代生物技术内容,然后联系所学的生物学知识进行综合分析、运用。

【知识概要】

Ⅰ.生物技术

生物技术也称为生物工程,是利用生物体或生物体的一部分制造产品,改造动植物及创造有特殊用途生物的方法。科学家们根据被操作的生物材料的性质把生物技术划分为基因工程、细胞工程、发酵工程和酶工程等。本部分内容在高三选修教材中有介绍,这里只对课本中的相关知识进行归纳整理,具体内容可参见课本中的相关章节。

一、基因工程

(一)定义:基因工程又叫做基因拼接技术或DNA重组技术。这种技术是在生物体外,通过对DNA分子进行人工“剪切”和“拼接”,对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组基因在受体细胞内表达,产生出人类所需要的基因产物。通俗地说,就是按照人们的意愿,把一种生物的个别基因复制出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。

(二)基因操作的工具:

1.基因剪刀-限制性内切酶

(1)存在:微生物中

(2)特点及作用:一种限制性内切酶只能识别特定的核苷酸序列,并能在特定的切点上切割DNA分子。

(3)种类:目前已发现了200多种。

2.基因的针线-DNA连接酶:作用是把两条DNA末端之间的缝隙“缝合”起来。

3.基因的运输工具-运载体

(1)作用:将外源基因导入受体细胞

(2)特点:能在宿主细胞内复制并稳定地保存;具有多个限制酶切点,以便与外源基因连接;具有某些标记基因,便于进行筛选。

(3)举例:经常使用的有质粒、噬菌体和动植物病毒等。

(三)基因操作的步骤:

1.提取目的基因

(1)目的:取得人们所需要的特定基因。

(2)方法:

①直接分离法:常用方法-鸟枪法(散弹射击法)

②人工合成法:有两条途径,一个反转录酶法,二是合成法。

2.目的基因与运载体结合

(1)含义:是不同来源的DNA重新组合的过程。

(2)过程:切割质粒;切割目的基因;结合形成重组DNA分子(重组质粒)。

3.将目的基因导入受体细胞

(1)常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞等。

(2)方法:主要是借鉴细菌或病毒侵染细胞的途径

4.目的基因的检测和表达

(四)基因工程的成果与发展

1.与医药卫生

(1)生产基因工程药品

①优点:高质量、低成本

②举例:胰岛素、干扰素、乙肝疫苗等60多种

(2)基因诊断

①含义:用放射性同位素、荧光分子等标记的DNA分子做探针,利用DNA分子杂交原理,鉴定被检测标本上的遗传信息,达到检测疾病的目的。

②举例:用DNA探针检测出肝炎患者的病毒,为诊断提供了一种快速简便方法。

③成果:已能够检测出肠道病毒、单纯疱疹病毒等多种病毒;在诊断遗传病方面发展尤为迅速;在肿瘤诊断中的应用取得重要成果。

(3)基因治疗

①含义:把健康的外源基因导入有基因缺陷的细胞中,达到治疗疾病的目的。

②举例:半乳糖血症(病因、研究成果)

③发展前景:许多遗传病及疑难病症将被人类征服。

2.与农牧业、食品工业

(1)农业:培育高产、优质或具特殊用途的动植物新品种。

(2)畜牧养殖业:培育体型巨大(如超级小鼠、超级绵羊、超级鱼等)、品质优良(如具有抗病能力、高产仔率、高产奶率和高质量的皮毛等)的转基因动物;利用外源基因在哺乳动物体内的表达获得人类所需要的各种物质,如激素、抗体及酶类等。

(3)食品工业:为人类开辟新的食物来源。

3.与环境保护

(1)用于环境监测:用DNA探针可检测饮水中病毒的含量

①方法:使用一个特定的DNA片段制成探针,与被检测的病毒DNA杂交,从而把病毒检测出来。

②特点:快速、灵敏

(2)用于被污染环境的净化:分解石油的“超级细菌”;“吞噬”汞和降解土壤中DDT的细菌;能够净化镉污染的植物;构建新的杀虫剂;回收、利用工业废物等。

二、细胞工程

(一)定义:应用细胞生物学和分子生物学的原理和方法,通过某种工程学手段,在细胞整体水平或细胞器水平上,按照人们的意愿来改变细胞内遗传物质或获得细胞产品的一门综合科学技术。

(二)种类:

1.植物细胞工程

(1)理论基础:植物细胞的全能性

①定义:生物体的细胞具有使后代细胞形成完整个体的潜能,细胞的这种特性,叫做细胞的全能性。

②原理:生物体的每一个细胞都包含有该物种所特有的全套遗传物质,都有发育成完整个体所必需的全部基因。

③未表现而分化的原因:基因在特定的时间和空间条件下选择性表达的结果。

④实现条件:离体状态、一定的营养物质、激素和其他外界条件。

(2)技术手段:

①植物组织培养:

a.过程:取材、去分化(或脱分化)形成愈伤组织、再分化形成试管苗、移栽发育成完整植物体。

b.应用:快速繁殖,培育无病毒植物(参见必修教材第一册);生产药物、食品添加剂、香料、色素和杀虫剂等;制作人工种子;转基因植物的培育。

②植物体细胞杂交:

a.定义:是用来自两个不同植物的体细胞融合成一个杂种细胞,并且把杂种细胞培育成新的植物体的方法。

b.操作步骤:用酶解法(纤维素酶、果胶酶)去掉细胞壁(目的是获得原生质体)、诱导原生质体融合(物理法:离心、振动、电刺激等;化学法:聚乙二醇等试剂作诱导剂诱导融合)、将杂种细胞进行组织培养等。

c. 特点:可克服远缘杂交不亲合的障碍,大大扩展了可用于杂交的亲本组合范围。

2.动物细胞工程:

技术手段包括:

(1)动物细胞培养:

①培养液成分:葡萄糖、氨基酸、无机盐、维生素等(与植物不同)

②过程:参见高三选修教材中的相关内容。

③应用:大规模生产蛋白质生物制品,如病毒疫苗、干扰素、单克隆抗体等;烧伤病人的皮肤移植;检测有毒物质;生理、病理、药理方面的研究等。

(2)动物细胞融合:

①原理:与植物原生质体融合的原理基本相同

②诱导方法:与植物原生质体诱导融合方法类似,还常用灭活的病毒做诱导剂。

(3)单克隆抗体:

①定义:化学性质单一、特异性强的抗体

②应用:生物学基础理论的研究;疾病诊断、治疗、预防;单克隆抗体的商品化; 正在研究单克隆抗体治疗癌症

4.胚胎移植技术:略

5.核移植:略

三、发酵工程

定义:采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。

参考资料:http://www.ycy.com.cn/stu/3ztfd/sw/13.asp?js=22

‘陆’ 生物技术有哪些新技术与方法

基因工程,酶工程,细胞培养,动物克隆,大到工厂化的生物发酵。

‘柒’ 微生物的培养技术及应用有哪些

微生物的培养技术及应用有好氧培养和厌氧培养。

应用是不断发现和广泛应用各种抗生素,对细菌细胞和病毒形态的研究已经达到亚显微结构的水平,从而进一步理解它们的活动规律,进一步阐明了细菌内、外毒素的性质、组成和作用机理,显着地改进了分离培养技术,大大提高了从病人标本中分离弯曲菌或类杆菌的阳性率。

好氧培养也称好气培养。就是说这种微生物在培养时,需要有氧气加入,否则就不能生长良好。在实验室中,斜面培养是通过棉花塞从外界获得无菌的空气。三角烧瓶液体培养多数是通过摇床振荡,使外界的空气源源不断地进入瓶中。

微生物培养技术

厌氧培养也称厌气培养。这类微生物在培养时,不需要氧气参加。在厌氧微生物的培养过程中,最重要的一点就是要除去培养基中的氧气。研制开发免疫原性好,副作用小的新型微生物,研制特异,灵敏,简便,快速的微生物学诊断方法及技术。

‘捌’ 微生物学中哪几项技术是独特的简述其原理和方法及对现代生物学发展所作的贡献。谢谢!!!急求!!!

微生物工程工艺原理_电子书.rar免费下载

链接:https://pan..com/s/184QnDM-fZbtWDqAOzMsEKQ

提取码:w5d8

“它应用微生物野生菌或工程菌为工业、农业、医药、环保等大规模生产服务的一门工程技术,它是直接建立在微生物工业基础上的,伴随着微生物工业的飞速发展而急速发展壮大起来的一门学科。由于微生物工业与化学工程的紧密结合使微生物工程又不断的得到了新的发展。微生物工程已经涉及到了诸多领域,包括:生物化工原料的清洁生产、食品与饮料、医药产品、生物燃料、微生物采油、生物材料、磁性材料等。

‘玖’ 微生物育种技术有哪些

其方法通常为自然选育和人工选育两类,可单独使用,也可交叉进行。
DNA Shuffling技术
编辑

随着PCR技术的发展和应用,1994年美国的stemmer提出了一个全新的人工分子进化技术——DNA Shuffling(又称洗牌技术),该技术能模拟生物在数百年间发生的分子进化过程,并可在短的实验循环中定向筛选出特定基因编码的酶蛋白活性提高几百倍甚至上万倍的功能性突变基因。其基本原理是将来源不同但功能相同的一组同源基因,用DNA核酸酶I进行消化 产生随机小片段,由这些小片段组成一个文库,使之互为引物和模板,进行PCR扩增,当一个基因拷贝片段作为另一个基因拷贝的引物时,引起模板转换,重组因而发生,导入体内后,选择正突变体作新一轮的体外重组。一般通过2-3次循环,课获得产物大幅度提高的重组突变体。
2自然选育
编辑

对自然界中的微生物,在未经人工诱变或杂交处理的情况下进行分离和纯化(见微生物的分离和纯化),然后进行纯培养和测定(见微生物测定法),择优选取微生物的菌种。这种方法简单易行,但获得优良菌种的几率小,一般难以满足生产的需要。
3人工选育
编辑

分诱变育种和杂交育种两种。
诱变育种

以诱发基因突变为手段的微生物育种技术。1927年,H.J. 马勒发现X射线有增加突变率的效果;1944年,C.奥尔巴克首次发现氮芥子气的诱变效应;随后,人们陆续发现许多物理的(如紫外线、γ射线、快中子等)和化学的诱变因素。化学诱变因素分为3种:①诱变剂与一个或多个核酸碱基发生化学变化,使DNA复制时碱基置换而引起变异,如羟胺亚硝酸、硫酸二乙酯、甲基磺酸乙酯、硝基胍、亚硝基甲基脲等;②诱变剂是天然碱基的结构类似物,在复制时参入DNA分子中引起变异,如5-溴尿嘧啶、5-氨基尿嘧啶、8-氮鸟嘌呤和2-氨基嘌呤等;③诱变剂在DNA分子上减少或增加1~2个碱基,使碱基突变点以下全部遗传密码的转录和翻译发生错误,从而导致码组移动突变体的出现,如吖啶类物质和一些氮芥衍生物(ICR)等。诱变育种操作简便,突变率高,突变谱广,它不仅能提高产量,改进质量,还可扩大产品品种和简化工艺条件。如1943年从自然界分离到的青霉素产生菌的效价只有20单位/毫升,经过一系列的诱变育种后,效价已达40000单位/毫升;金霉素产生菌经诱变后,发酵液中又积累了去甲基金霉素;谷氨酸棒杆菌1299经紫外线诱变后,有的能产赖氨酸,有的能产缬氨酸,增加了产品的种类;土霉素产生菌经诱变后,选到了能减少泡沫的突变菌株,从而提高了发酵罐的利用率。诱变育种的不足是缺乏定向性。
杂交育种

不同基因型的品系或种属间,通过交配或体细胞融合等手段形成杂种,或者是通过转化和转导形成重组体,再从这些杂种或重组体或是它们的后代中筛选优良菌种。通过这种方法可以分离到具有新的基因组合的重组体,也可以选出由于具有杂种优势而生长旺盛、生物量多、适应性强以及某些酶活性提高的新品系。杂交育种的方式因实验菌株的生殖方式不同而异,如有性杂交、准性重组、原生质体融合、转化、转导、杂种质粒的转化等;但是,选择亲株、分离群体后代的培养、择优去劣和杂种遗传分析的过程基本是相同的。杂交法一般指有交配反应的菌株进行交配或接合而形成杂种。这种方法适用范围很广,在酒类、面包、药用和饲料酵母的育种,链霉菌和青霉菌抗生素产量的提高,曲霉的酶活性增强等方面均已获得成功。
体细胞融合是在不具性反应的品系或种属间细胞融合和染色体重组,先用酶溶解细胞壁,再用氯化钙-聚乙二醇处理原生质体,促使融合,获得杂种。此法在工业微生物的菌种改良中有积极作用。
转化和转导首先应用于细菌,现已广泛用于链霉菌和酵母菌等。随着重组DNA技术的发展,重组质粒的构建和转化系统的确立,已可将目的基因转移到受体细胞内,得到能产生具有重要经济价值的生物活性物质(如疫苗、酶等)的株系。
微生物与酿造工业、食品工业、生物制品工业等的关系非常密切,其菌株的优良与否直接关系到多种工业产品的好坏,甚至影响人们的日常生活质量,所以培育优质、高产的微生物菌株十分必要。微生物育种的目的就是要把生物合成的代谢途径朝人们所希望的方向加以引导,或者促使细胞内发生基因的重新组合优化遗传性状,人为地使某些代谢产物过量积累,获得所需要的高产、优质和低耗的菌种。作为途径之一的诱变育种一直被广泛应用。目前,国内微生物育种界主要采用的仍是常规的物理及化学因子等诱变方法。此外,原生质体诱变技术已广泛地应用于酶制剂、抗生素、氨基酸、维生素等的菌种选育中,并且取得了许多有重大应用意义的成果。
4诱变育种
编辑

1.1物理诱变
1.1.1紫外照射
紫外线照射是常用的物理诱变方法之一,是诱发微生物突变的一种非常有用的工具。DNA 和RNA 的嘌呤和嘧啶最大的吸收峰在260nm,因此在260nm 的紫外辐射是最有效的致死剂。紫外辐射的作用已有多种解释,但比较确定的作用是使DNA 分子形成嘧啶二聚体[1]。二聚体的形成会阻碍碱基间正常配对,所以可能导致突变甚至死亡[2]。
紫外照射诱变操作简单,经济实惠,一般实验室条件都可以达到,且出现正突变的几率较高,酵母菌株的诱变大多采用这种方法。
1.1.2电离辐射
γ- 射线是电离生物学上应用最广泛的电离射线之一,具有很高的能量,能产生电离作用,可直接或间接地改变DNA 结构。其直接效应是可以氧化脱氧核糖的碱基,或者脱氧核糖的化学键和糖- 磷酸相连接的化学键。其间接效应是能使水或有机分子产生自由基,这些自由基可以与细胞中的溶质分子发生化学变化,导致DNA 分缺失和损伤[2]。
除γ- 射线外的电离辐射还有X- 射线、β- 射线和快中子等。电离辐射有一定的局限性,操作要求较高,且有一定的危险性,通常用于不能使用其他诱变剂的诱变育种过程。
1.1.3离子注入
离子注入是20 世纪80 年代初兴起的一项高新技术,主要用于金属材料表面的改性。1986 年以来逐渐用于农作物育种,近年来在微生物育种中逐渐引入该技术[3]。
离子注入时,生物分子吸收能量,并且引起复杂的物理和化学上的变化,这些变化的中间体是各类活性自由基。这些自由基,可以引起其它正常生物分子的损伤,可使细胞中的染色体突变,DNA 链断裂,也可使质粒DNA 造成断裂。由于离子注入射程具有可控性,随着微束技术和精确定位技术的发展,定位诱变将成为可能[4]。
离子注入法进行微生物诱变育种,一般实验室条件难以达到,目前应用相对较少。
1.1.4 激光
激光是一种光量子流,又称光微粒。激光辐射可以通过产生光、热、压力和电磁场效应的综合应用,直接或间接地影响有机体,引起细胞染色体畸变效应、酶的激活或钝化,以及细胞分裂和细胞代谢活动的改变。光量子对细胞内含物中的任何物质一旦发生作用,都可能导致生物有机体在细胞学和遗传学特性上发生变异。不同种类的激光辐射生物有机体,所表现出的细胞学和遗传学变化也不同[5]。
激光作为一种育种方法,具有操作简单、使用安全等优点,近年来应用于微生物育种中取得不少进展。
1.1.5 微波
微波辐射属于一种低能电磁辐射,具有较强生物效应的频率范围在300MHz~300GHz,对生物体具有热效应和非热效应。其热效应是指它能引起生物体局部温度上升。从而引起生理生化反应;非热效应指在微波作用下,生物体会产生非温度关联的各种生理生化反应。在这两种效应的综合作用下,生物体会产生一系列突变效应[6]。
因而,微波也被用于多个领域的诱变育种,如农作物育种、禽兽育种和工业微生物育种,并取得了一定成果。
1.1.6 航天育种
航天育种,也称空间诱变育种,是利用高空气球、返回式卫星、飞船等航天器将作物种子、组织、器官或生命个体搭载到宇宙空间,利用宇宙空间特殊的环境使生物基因产生变异,再返回地面进行选育,培育新品种、新材料的作物育种新技术。空间环境因素主要有微重力,空间辐射,以及其它诱变因素如交变磁场,超真空环境等,这些因素交互作用导致生物系统遗传物的损伤,使生物发生诸如突变、染色体畸变、细胞失活、发育异常等。
航天育种较其它育种方法特殊,是航天技术与微生物育种技术的有机结合,技术含量高,成本高,个体研究者或一般研究单位都难以实现,只能与航天技术相结合,由国家来完成。
1.1.7 常压室温等离子体诱变育种
常压低温等离子体(Atmospheric and Room Temperature Plasma)简称为ARTP,指能够在大气压下产生温度在25-40 °C之间的、具有高活性粒子(包括处于激发态的氦原子、氧原子、氮原子、OH自由基等)浓度的等离子体射流。ARTP技术作为一种新型的物理方法,在微生物诱变育种领域有着广阔的应用前景。
等离子体中适当剂量的活性粒子作用于微生物,能够使微生物细胞壁/膜的结构及通透性改变,并引起基因损伤,菌株出现遗传物质损伤后,微生物启动SOS修复机制,其诱导产生DNA聚合酶Ⅳ和V,它们不具有3ˊ核酸外切酶校正功能,于是在DNA链的损伤部位即使出现不配对碱基,复制仍能继续前进。在此情况下允许错配可增加存活的机会。ARTP对遗传物质造成的损伤,多样性较高;又SOS诱导修复本身为容错性修复,因此,ARTP多样性的损伤将可能在修复过程中包容于DNA链中,在微生物进行复制修复时,其可能带来多样性的错配可能。
ARTP应用于微生物突变育种,成本低、操作方便,没有很多物理诱变设备(如离子束注入等)所需的离子或电子加速、真空和制冷等附属设备;ARTP对遗传物质的损伤机制多样,具有较高的正突变率,突变性能多样,对于真菌、细菌、藻类等都有效果;ARTP对环境无污染,保证操作者的人身安全,无论用何种气体放电,其均无有害气体产生。[1]
5化学诱变
编辑

2.1.1 烷化剂
烷化剂能与一个或几个核酸碱基反应,引起DNA 复制时碱基配对的转换而发生遗传变异,常用的烷化剂有甲基磺酸乙酯、亚硝基胍、乙烯亚胺、硫酸二乙酯等。
甲基磺酸乙酯(ethylmethane sulphonate,EMS) 是最常用的烷化剂,诱变率很高。它诱导的突变株大多数是点突变,该物质具有强烈致癌性和挥发性,可用5%硫代硫酸钠作为终止剂和解毒剂。
N- 甲基- N'- 硝基- N- 亚硝基胍(NTG) 是一种超诱变剂,应用广泛,但有一定毒性,操作时应该注意。在碱性条件下,NTG 会形成重氮甲烷(CH2N2),它是引起致死和突变的主要原因。它的效应很可能是CH2N2 对DNA 的烷化作用引起的[2]。
硫酸二乙酯(DMS) 也很常用,但由于毒性太强,目前很少使用。乙烯亚胺,生产的较少,很难买到。使用浓度0.0001%~0.1%,高度致癌性,使用时需要使用缓冲液配置。
2.1.2 碱基类似物
碱基类似物分子结构类似天然碱基,可以掺入到DNA 分子中导致DNA 复制时产生错配,mRNA 转录紊乱,功能蛋白重组,表型改变。该类物质毒性相对较小,但负诱变率很高,往往不易得到好的突变体。主要有5- 氟尿嘧啶(5- FU) 、5- 溴尿嘧啶(5- BU) 、6- 氯嘌呤等。程世清等[25]用5- BU 对产色素菌(分枝杆菌T17- 2- 39) 细胞进行诱变,生物量平均提高22.5%.
2.1.3 无机化合物
诱变效果一般,危险性较小。常用的有氯化锂,白色结晶,使用时配成0.1%~0.5%的溶液,或者可以直接加到诱变固体培养基中,作用时间为30min~2d。亚硝酸易分解,所以现配现用。常用亚硝酸钠和盐酸制取,将亚硝酸钠配成0.01~0.1mol/L 的浓度,使用时加入等浓度等体积的盐酸即可。
2.1.4 其他
盐酸羟胺,一种还原剂,作用于C 上,使G- C 变为A- T。也较常用,使用浓度为0.1%~0.5%,作用时间60min~2h。
此外,诱变时将两种或多种诱变因子复合使用,或者重复使用同一种诱变因子,效果更佳。顾正华等[7]以谷氨酸棒杆菌ATCC- 13761 为出发菌株,经DMS 和NTG 多次诱变处理,获得一株L- 组氨酸产生菌。
2、诱变剂
2.1 诱变剂的选择
在选择诱变剂时,需要注意诱变剂的专一性,即某一诱变剂或诱变处理优先使基因组的某些部分发生突变而别的部分即使有也很少发生突变。对诱变剂专一性的分子基础不十分了解万尽管有关的修复途径必定对此有影响,但它们的关系并不那么简单,其它各种因素,包括诱变处理的环境条件也能影响突变类型。
工业遗传学家很难正确地预言改良某一菌种时需要何种类型的分子水平的突变。因此,为了产生类型尽可能多的突变体,最适当的方法是采用几种互补类型的诱变处理。远紫外无疑是所有诱变剂中最为合适的,似乎可以诱导所有已知的损伤类型。采取有效、安全的预防方法也很容易。在化学诱变剂中,液体试剂比粉末试剂更易进行安全操作。的另一个不利因素是它有产生紧密连锁的突变丛的趋势,尽管这种效应在某些体系中能成为有利条件。最后,必须认识到可能某些特异菌系用某些诱变剂是不能被诱变的。当然这一点通过测定易检出的突变体,如抗药性突变体或原养型回复突变体的诱变动力学可以相当容易地得到验证。[8]
2.2 诱变剂的剂量
从随机筛选的最佳效果看,诱变剂的最适剂量就是在用于筛选的存活群体中得到最高比例的所需要的突变体,因为这会使在测定效价的阶段更省力。
因此在菌株改良以前,为了决定所用诱变剂的最适剂量,并为突变性的增强技术打下基础,聪明的做法通常是测定不同诱变剂处理不同菌种时的突变动力学。用高单位突变本身来测定最适剂量有时是不可能的,因为这种突变的检测很困难。但如使用容易检出的标记如耐药标记,只要估计到方法的局限性,还是可以提供一些有价值的资料的。

阅读全文

与微生物新技术有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:830
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017