① 生物反应器的例子
这有个笼统的介绍看看对你有帮助没?
生物反应器听起来有些陌生,基本原理却相当简单。胃就是人体内部加工食物的一个复杂生物反应器。食物在胃里经过各种酶的消化,变成我们能吸收的营养成分。生物工程上的生物反应器是在体外模拟生物体的功能,设计出来用于生产或检测各种化学品的反应装置。或者说,生物反应器是利用酶或生物体(如微生物)所具有的生物功能,在体外进行生化反应的装置系统,是一种生物功能模拟机,如发酵罐、固定化酶或固定化细胞反应器等。
在固定化酶广泛应用的基础上,人们发现天然细胞本身就具有多功能的系列化反应系统采用物理或化学方法将细胞固定化,是利用酶或酶系的一条捷径。一个固定化细胞反应器犹如一台“生命活动功能推动机”。固定化细胞技术开始于70年代,其实际应用程度已超过固定化酶。如美国、欧洲、日本均采用固定化菌体柱床工艺大规模生产高果糖浆。
输卵管生物反应器
1993年英国罗斯林研究所Sang博士研究禽类蛋黄表达系统,在鸡蛋的蛋黄里表达了外源蛋白质,由于蛋黄蛋白质是在肝脏细胞表达的蛋白质,而且含量不高;因此,1994年中国科学院微生物研究所、中国转基因动物学会(筹)副秘书长曾(杰)邦哲提出了禽类转基因输卵管生物反应器,在国际上最早开展采用蛋清蛋白质基因侧翼序列表达外源药用蛋白质的研究,1994年11月(Glodegg Plan)和1995年3月及1996年转基因动物通讯、1995年7月上海首届国际生物技术与药物学术研讨暨展览会、1996年11月北京第1届国际暨第3届全国转基因动物学术研讨会(秘书长曾邦哲)、1997年生物技术通报发表,以及1999年在德国创建的系统生物科学与工程网站阐述了输卵管生物反应器(ovict bioreactor)概念、方法与技术研究。1996年创办第1届国际转基因学术研讨会期间,曾邦哲与加拿大、美国、英国、日本有关转基因禽类实验室联系,但国际上当时没有人开展这项课题,随后与美国Avigenics公司和Georgia大学R.Ivarie教授探讨了输卵管生物反应器的合作研究。1998年,美国Avigenics公司独立开展了规模化投资与研究开发输卵管生物反应器,因中国科学家曾邦哲已经去了以色列。2002年后,国际国内掀起了输卵管生物反应器的研究开发热潮,2003年Science发表了Gloden Egg的评述文章。目前,国际上已有十多家前景看好的公司以输卵管生物反应器作为拳头开发产品,约2003年英国罗斯林研究所也创建了公司,并由Sang博士主持研究课题,从禽类蛋黄表达系统转向了输卵管生物反应器。输卵管生物反应器将称为继哺乳动物乳腺生物反应器后最具发展前景的动物生物反应器。
转基因动物生物反应器的基因构建与表达
《国外医学》预防、诊断、治疗用生物制品分册1999年第22卷第5期
关键词: 转基因动物生物反应器 药物 基因构建 表达
摘要 近年来,生物学和分子生物学研究领域的成就促进了转基因动物生物反应器的蓬勃发展。用转基因动物生物反应器生产药用蛋白是生物技术领域里的又一次革命,它以一个全新生产珍贵药用蛋白的模式区别于传统药物的生产。本文着重介绍转基因动物生物反应器的基因构建以及转基因动物组织特异性表达的最新进展。
以合理的费用获取大量在人体内原本稀少的血浆蛋白在不久前还只是幻想。然而,近年来生物学和分子生物学取得的显着进展终于使这种幻想成为现实。其中,将外源DVA用显微技术注入生殖细胞的原核,将重组DVA转入小鼠胚胎细胞和将DVA整合入宿主染色体和种系传递等重要发现,使用转基因(Tg)动物生产药用蛋白成为可能。此外,生物学技术的发展,如对卵细胞的获得、操作以及再植入和重组DNA等技术进步都为转基因动物生物反应器的成功提供了保证。
转基因动物生物反应器生产药用蛋白一般有两种技术路线。第一种是将目的基因在同源组织中表达蛋白质;第二种是将目的基因构建成杂合基因,转入动物胚胎,通过转基因动物的分泌器官收集并提纯药用蛋白。转基因动物分泌的蛋白经过后加工酷如人体天然蛋白的结构,也有完全相似的生物活性。
同源组织中表达蛋白质
目前,在同源组织中表达蛋白质最典型的例子是在动物的红细胞中表达人的血红蛋白。在人的血红蛋白基因编码序列里启动子有2个CACCC盒,而对应的猪的启动子里只有一个,另一个靠近它的是CGCCC盒。Sharma等[1]将猪的β-启动子与人的β编码基因融合,并将人的β-基因座调控区(β-LCR)和α、ε基因与融合基因的β基因连接在一起构成载体,转入猪胚胎细胞,从转基因猪分泌乳汁中得到的重组人血红蛋白含量高达32g/L。
在转基因动物的分泌器官中生产蛋白
转基因动物表达重组蛋白多以乳腺、唾液腺和膀胱为靶位。在这些表达器官中,通过构建合适的载体,选择适当的启动子和调控序列可产生比正常水平高得多的重组蛋白。不过,生产系统应尽可能与循环系统隔离,以减少表达产物对宿主动物的影响。
乳腺生物反应器
将所需目的基因构建入载体,加上适当的调控序列,转入动物胚胎细胞,使转基因动物分泌的乳汁中含有所需要药用蛋白。从融合基因转入胚胎细胞到收集蛋白质有一个过程,包括胚胎植入、分娩和转基因动物的生长。转基因动物从出生到第一次泌乳,猪、羊、牛各需12、14、16个月;并且只有雌性动物泌乳且不连续,一般可持续2、6、10个月。牛、羊等大型家畜能对药用蛋白进行正确的后加工,使之具有较高的生物活性,同时产奶量大,易于大规模生产,因而成为乳腺生物反应器理想的动物类型。
抗凝血酶Ⅲ 第一个进入临床试验的转基因蛋白产物是抗凝血酶Ⅲ,将半乳糖β-酪蛋白的启动子和含抗凝血酶Ⅲ基因序列相连,转入绵羊胚胎细胞,在转基因绵羊的乳液中得到有生物活性的蛋白产量可达7g/L[2]。目前该蛋白正用于冠状动脉旁路手术患者的二期临床验证。
β-乳球蛋白 在实验过程中人们发现牛的β-乳球蛋白(BLG)基因非常稳定,并能在乳腺中特异性表达。Hyttinen等[3]将含有5’端2.8kb和3’端1.9kb的牛BLG基因片段构建成载体,转入小鼠胚胎细胞,可在转基因小鼠的乳腺中特异表达高水平的BLG,此外,还发现CpG位点的甲基化程度与BLG的表达量有关,甲基化少的转基因小鼠乳液中BLG分泌量较大,可达1~2mg/ml,而其他转基因小鼠分泌量小于0.1mg/ml。
红细胞生成素(EPO) 目前国内外均采用CHO细胞表达生产人EPO,成本比较昂贵,而用转基因动物生产的EPO,可能是一条理想的途径。将EPO dNA分别以HindⅢ和BamHI酶切,1%琼脂糖凝胶电泳回收5.4kb的HinⅢ/BamHI片段,插入pGEM-7zf(+)载体,再将867bp的BLG启动子插入EPO基因之前EcoR、ClaI位点,构建表达载体pGEM-3zf(+)β-LG-EPO。通过显微注射方法得到转基因小鼠乳汗中的EPO含量可达0.5μg/ml[4]。
α1-抗胰蛋白酶 这也是一个利用BLG基因构建的重组蛋白。将BLG5’末端4.0kb序列与人的α1-抗胰蛋白酶(α1AT)基因的6.5kb片段(去掉第一个内含子)融合,再连接羊的BLG启动子,以pPOLYⅢ-Ⅰ为载体,转入羊的胚胎细胞,可在转基因羊分泌的乳液中得到含量高达60.0mg/ml的重组蛋白α1AT[5]。转基因在两年前进入了临床验证。
因子Ⅸ Schnieke等[6]将羊的BLG基因5’末端和人的因子Ⅸ cDNA 与含有BLG复制单元和3’末端的片段融合,将构建的杂合基因转入羊的胚胎细胞,从分泌的乳汁中得到125μg/ml的重组蛋白。黄淑帧教授等[7]构建了一个含有小鼠MAR元件、牛β-酪蛋白基因调控序列和hFⅨ微基因的hFⅨ乳腺组织特异性表达载体pMCⅨm,其中hF Ⅸ微基因包括全长hF Ⅸ cDNA ,800bp经过改造的内含子1序列和hFⅨ蛋白的信号肽序列。将线形化的表达载体pMC Ⅸm导入羊的受精卵。转基因羊分泌的乳汁中hFⅨ蛋白的含量约为95ng/ml。在另一实验中,Yull等[8]将BLG5’末端序列,fⅨ编码序列和缺失隐性3’端连接点的f Ⅸ3’末端不翻译区域的一个小片段融合,构成杂合基因,去掉SphI和SmaI位点,克隆入移去了pBJ41的SphI/EcoRV。转入小鼠胚胎细胞,得到的重组蛋白产量达0.06mg/ml。经过进一步研究,发现是转基因动物乳腺中对DNA的错误剪切使分泌量降低,从而增高重组蛋白产率。在乳腺组织中表达有完全活性的因子Ⅸ是比较成功的,尤其是乳腺组织对因子Ⅸ N端附近的一段含12个葡萄糖残基的序列进行γ-羧化以保持其活性,而在以前的天然蛋白中没有发现γ-羧化作用。
因子Ⅷ 人FⅧcDNA长约7.2kb,是目前为止表达的最长cDNA。将它插入小鼠的乳清酸性蛋白(WAP)基因中启动子(2.5kb)的下游,使之在乳腺中靶向分泌FⅧ重组蛋白。在WAP/FⅧcDNA构建的转基因小鼠中rFⅧ表达最低,而在转基因猪中可达1.0~2.7μg/ml[9]。
单克降抗体 Castilla等[10]将编码了重组单克降抗体(rMab)6A.C3的免疫球蛋白基因cDNA插入小鼠WAP dNA基因组的第一个外显子,使rMab 6A.C3的表达可以由WAP基因调控序列来控制,将构建的杂合基因注入小鼠胚胎细胞原核,使小鼠乳腺分泌有活性的单克降抗体,这种转基因表达产物将广泛应用于预防新生儿肠道感染。
C蛋白 同样在WAP基因的第一个外显子位点,Drews等[11]将人C蛋白cDNA插入,转入小鼠胚胎细胞,可得到产量达1.6mg/ml的重组蛋白。而将上述杂合基因转入猪的胚胎细胞,可使猪分泌出380μg/mlμg/ml·hr的外源蛋白,活性与人血浆中C蛋白的活性相同。由于C蛋白的抗凝活性依赖于轻链膜结合区域正确的γ-羧化,因此,转基因猪能分泌有活性的C蛋白表明猪的乳腺细胞可对C蛋白前体高速率地进行γ-羧化,以使成熟C蛋白有完整的活性。
膀胱生物反应器
膀胱反应器有着和乳腺反应器一样的优点:收集产物蛋白比较容易,不必对动物造成伤害。此外,该系统可从动物一出生就收集产物,不论动物的性别和是否正处于生殖期。膀胱生物反应器最显着的优势在于从尿中提取蛋白质比在乳汁中提取简便、高效。
膀胱生物反应器多用Uroplakin启动子启动人生长激素(hGH)的表达,产生 hGH特异性的高丰度RNA,这些RNA与蛋白分泌量高度相关。Uroplakin基因在多种哺乳动物体内有很高的保守性,如鼠、兔、牛、羊和人等。
生长激素 Kerr等[12]将pUPII-LacI用质粒的Kpn i进行消化,用T4DNA多聚酶切去3’端,然后用BamHI消化,分离出3.6kb的5’端小鼠UPII基因片段,此片段含有膀胱反应器特异性表达所需的大部分序列。将此片段与位于无启动子的pOGH质粒纯化SaI和BamHI位点间的hGH结构基因的5’端连接,得到pUPII-hGH质粒,能表达该质粒的组织分布有限。将得到的pUPII- hGH质粒用HindIII和EcoRI消化,得出一段5.7kb的UPII-hGH融合基因可用于显微注射,在膀胱上皮细胞中合成hGH,收集转基因动物尿液,从中提取重组蛋白。但在这一途径中转基因动物会因hGH的作用逐渐肥胖,并导致雌性动物不育症。乳腺生物反应器也能表达hGH。用同源重组方法将hGH基因导入210kb的人α-乳球蛋白位置依赖性YAC载体,将重组的YAC dNA显微注入大鼠胚胎,转基因大鼠的乳汁中含有高水平的hGH,含量可达0.25~8.9mg/ml[13]。
翻译与修饰
转基因动物分泌的蛋白,特别是糖链成分的结构与人体蛋白有差异。因此研究分泌蛋白的修饰就显得很重要。在乳腺生物反应器中,蛋白质翻译前修饰的主要方式是在多个位点对乳腺中的蛋白前体进行信号肽剪切和对糖链进行修饰。例如,从山羊乳液中得到的长效组织型纤溶酶原激活剂与人体内和相比较,含有少量的异种(外源)低聚糖,同时,唾液酸、N-乙酰葡萄糖胺和半乳糖含量明显减少,关且出现缺少蛋白质C127的N-乙酰半乳糖胺。此外,从猪乳液中得到的C蛋白中是没有的;从羊乳液中得到的重组α1-抗胰蛋白酶多聚肽也反映了唾液酸酸化程度的差异;在山羊乳腺中观察到了重组抗凝血酶Ⅲ上低聚甘露糖与特异天冬酰胺的位点特异性聚合等等。研究小鼠乳液中的重组γ-干扰素可对翻译前修饰有更好的理解,γ-干扰素有大量的位点特异性变化,在N端连接位点进行复杂的唾液酸酸化和连接核心岩藻多聚糖,其次是低聚甘露糖。与从小鼠细胞中取得的蛋白质相比,分泌的重组蛋白没有GalNAc、NeuGC和Gal∞l 、3Gal-βl、 4GlcNAc残基。这些蛋白特异性的糖基化类型可与细胞上的受体结合并清除病人体内的重组蛋白,因此可能会影响疗效,最终的结果尚有待验证。
同源组织表达蛋白质的优点是可对表达产物进行调控并校正珠蛋白链的翻译过程,避免无效的翻译前修饰,使产物蛋白尽可能与人体天然蛋白相似,降低人体内的排斥反应,提高药物蛋白疗效。目前,蛋白分离技术飞速发展,大大提高了蛋白质分离的可行性和分离效率。第二种技术路线中目前以乳腺生物反应器较为多见,因为乳汁易得到,且乳汁中的特异蛋白含量较大,对蛋白水解酶的降解作用也比较稳定。乳汁是一种混合物,含3%~6%的总蛋白,3%~5%的脂类,对蛋白提纯技术要求比较高。另一方面,药用蛋白是在动物乳腺中产生。因此只有含转基因型人雌性动物在泌乳期才能生产药用蛋白,可用的动物数目有限,且生产期较短。膀胱生物反应器的优点在于含有转基因型的两性动物都可用,产后收集时间长,提取产物蛋白浓度双乳液中的含量低得多,尽管收集的尿液多且时间长,生产单位数量的药用蛋白在乳腺和膀胱生物反应器中的成本是差不多的
问题与展望
在转基因动物生物反应器的应用中,有些问题尚待解决。比如,由于转基因动物的基因是镶嵌整合型的,因此它的下一代并不都转基因型。但是在绵羊,猪和山羊中观察到只要转基因型从起始个体传给了下一代,这种转基因型就可以稳定地遗传好几代。而其他一些因素,如外源基因的整合率低,胚胎移植的受孕率低等都使有效的转基因动物大大减少。同时,由于对调控表达水平的程序,指导进行精确的组织特异性和发育调控表达的程序,以及调控和编码内含子序列间可能的相互作用的认识尚不充分[14],容易引起异位点表达;由于现在的技术还不能控制整合的位点,因此存在对内源基因进行插入诱变的可能性,转基因型的表达会受整合的不同位点的影响。这些因素使得在家畜长成前,要用小鼠对新基因构型进行常规试验。
转基因动物生产的药用蛋白可用于预防和治疗疾病,其转运系统及口服用药引起的耐受性等问题都在作进一步研究。以转基因家畜生产珍贵的药用蛋白具有重大的经济价值和社会效益,这项生物技术最终将会得到广泛应用。
② 高中生物,关于生物反应器的概念。。。
生物反应器 是指任何提供生物活性环境的制造或工程设备。它是一种生物功能模拟机。
它不是个动物,比如我们的胃:通过胰蛋白酶,胃蛋白酶 等分解食物得到我们人体所需的产物。生物反应器也是通过酶或微生物 来得到产物,生物反应器只提供一个场所。像发酵罐,添加原料还得 加入酵母菌才能发酵。 好处:1.成本低2.设备简单3.效率高4.产品作用效果显着5.减少工业污染。(这里面很多网络复制的)
下面我直接举个例子来说明生物反应器的好处:以前技术设备落后,很多药物的产生是靠动物培养,把灭活的病毒打入马的腹腔 经过一段时间抽出来提取,产量低,时间长,也就是效率很低,就像家庭式的小作坊,远远不能满足人们需求。 后来利用了生物反应器 才实现的大规模生产。
③ 生物反应器是什么
生物反应器
生物反应器
名称
名称: 生物反应器
主题词或关键词: DNA 生命科学 细菌 胰岛素
内容
内容
生物反应器听起来有些陌生,基本原理却相当简单。胃就是人体内部加工食物的一个复杂生物反应器。食物在胃里经过各种酶的消化,变成我们能吸收的营养成分。生物工程上的生物反应器是在体外模拟生物体的功能,设计出来用于生产或检测各种化学品的反应装置。或者说,生物反应器是利用酶或生物体(如微生物)所具有的生物功能,在体外进行生化反应的装置系统,是一种生物功能模拟机,如发酵罐、固定化酶或固定化细胞反应器等。
在固定化酶广泛应用的基础上,人们发现天然细胞本身就具有多功能的系列化反应系统采用物理或化学方法将细胞固定化,是利用酶或酶系的一条捷径。一个固定化细胞反应器犹如一台“生命活动功能推动机”。固定化细胞技术开始于70年代,其实际应用程度已超过固定化酶。如美国、欧洲、日本均采用固定化菌体柱床工艺大规模生产高果糖浆。
例如
蚯蚓生物反应器
茹洪江
时尚的环保明星——蚯蚓
垃圾是城市的副产品,城市的规模越大,生产的垃圾就越多。处理过量的垃圾是各国面临的一个日益严重的社会问题。中国的这些垃圾大多被填埋处理,不仅浪费了大量资源,而且垃圾得不到完全降解,容易产生二次污染。
现在,一项新的垃圾生物处理技术在日本、美国等发达国家开始逐渐盛行,这项技术利用了我们非常熟悉的古老生物——蚯蚓。蚯蚓的消化道是一个天然的有机废弃物处理厂。通过不断地吞食消化,蚯蚓可以把垃圾变成于人类有益的东西:蚯蚓肠道中能分泌出多种生物活性成分,一些矿物质经过蚯蚓处理后会变成易被植物吸收的养料,蚓粪酸碱度适宜,具有保水、保肥性能,含有植物所需的微量元素,是绿色环保的生物肥料。在能够形成良性循环的处理垃圾的生态系统中,蚯蚓是当之无愧的主角。
在发达国家,蚯蚓处理垃圾已经进入了家庭,并成为一种时尚。随着应用蚯蚓规模的不断扩大,可以自动控制温度和湿度的蚯蚓生物反应器也问世了。
适宜中国城市生活垃圾处理的蚯蚓
国外的蚯蚓生物反应器对于垃圾分类的要求非常严格,像城市污泥,动物粪便等不同的废弃物要由不同的反应器来处理,这样的蚯蚓生物反应器技术我们不能照搬,因为我们的垃圾还没有实现分类收集,各种物质混杂,蚯蚓对此无能为力。中国农业大学的孙振军教授把研制适合中国情况的蚯蚓生物反应器作为自己的科研方向。
蚯蚓生物反应器运行的前提是有大量蚯蚓。孙振军将经过2000次杂交培育出的日本的赤子爱胜蚓与美国的加州红蚓混群养殖,分代选育,采用自然杂交,饵料诱导的方法,培育出了繁殖率又高、又适合于中国城市生活垃圾的改良型赤子爱胜蚓。
通过长期摸索,孙教授掌握了蚯蚓的生活习性。他知道,赤子爱胜蚓在26 ℃左右最活跃,在湿度70%左右时活性最好,酸碱度应偏弱酸。他通过对各种环境因子的改变来控制蚯蚓的活跃程度,并使蚯蚓在反应器中最大密度地存在——蚯蚓的密度越高,越能提高反应器的效率。
创造中国蚯蚓反应器的技术路线
蚯蚓为什么能够消化垃圾,国际上说法不一。有人说蚯蚓利用的是废弃物中的一些营养物质,有人说它采食的是废弃物中的微生物,还有人认为两者兼有。不同的认识,导致了生物反应器设计上的不同技术路线。孙教授的实验证明,蚯蚓是以真菌类和细菌类为主要食物的,能够消化废弃物是它们和某些微生物共同作用的结果——微生物把垃圾中的有机废弃物变成腐烂的蚯蚓可以吞食的物质,更重要的是,大量的微生物就包含在这些物质当中,蚯蚓主要通过吞食微生物获取营养。
这样,孙教授改变了国际上研究反应器只单纯研究蚯蚓的通行做法,把垃圾预处理与蚯蚓生物反应器组合成为一个系统。他们先对垃圾进行简单处理,把其中的玻璃、塑料、金属和橡胶挑出,剩下的有机物再进行发酵。这不仅克服了因国内垃圾不分类而不适用蚯蚓处理的难题,而且,通过发酵,垃圾内部可以产生60℃~70℃的高温,进一步调控后,正好可以提供蚯蚓进食的最佳温度,大大提高了反应器的效率。
中国第一台大型蚯蚓生物反应器
蚯蚓生物反应器在实验室已经研究成功,下一步的工作就是要把这项科研成果尽快转化为产品。
唐山的刘富礼,他的蚯蚓养殖厂年产蚯蚓3万多公斤。近年来,市场竞争激烈,刘富礼渴望高科技含量的新技术。
刘富礼找到了孙振军,双方决定合作,共同开发蚯蚓生物反应器产品。
这时,蚯蚓生物反应器的研制被唐山市列入科技攻关的重点项目,科技主管部门给予大力支持。原来,位居全国第三大奶牛县区的唐山市丰润区正在筹建奶业高科技园,他们对6万余头牛存下的大量粪便一直没有找到理想的处置办法,蚯蚓生物反应器让他们有了主张。
应用单位、生产单位和研究人员三方协作,2002年5月,长20米、宽为2.5米的大型蚯蚓生物反应器在河北唐山诞生了,它每天可处理有机废弃物6吨,同时产出生物肥料4~5吨。与国外同类产品相比,这台生物反应器结构更简单,成本更低,更适合在中国推广应用。
目前,科研人员已经研制出多种蚯蚓生物反应器,有适合于家庭使用的小型简易反应器,也有适合于社区和动物养殖厂、甚至垃圾处理场的大型生物反应器。蚯蚓生物反应器的诞生将使我国的垃圾生物处理技术达到一个新的水平。
④ 什么是生物反应器
生物反应器,是指利用酶或生物体(如微生物、动植物细胞等)所具有的特殊功能,在体外进行生物化学反应的装置系统。
生物反应器与化学反应器不同。化学反应器从原料进入到产物生成,常常需要加压和加热,是一个高能耗过程。而生物反应器则不同,在酶和微生物的参与下,在常温和常压下就可以进行化学合成。因此,生物反应器问世之后,就受到化工部门的重视。化学工程专家认为,应该尽可能多地让化学合成过程由生物去完成。设计理想的生物反应器,就成了现代生物技术产业的一个重要任务。
设计生物反应器时要考虑两点:一是选择特异性高的酶或适宜的活细胞作为催化剂,尽可能减少副产物,提高产品产量;二是尽可能提高产物的浓度,降低成本。
生物反应器首先在发酵工业中得到应用。发酵工业中使用的生物反应器,实际上是发酵罐。另一种是以固定化酶或固定化细胞为催化剂的酶反应器。世界上最大的发酵罐高达100米,直径7米,容积为4000立方米。它远远望去,犹如一座壮观的圆形塔。