导航:首页 > 生物信息 > 为什么生物电极可以测量生物电信号

为什么生物电极可以测量生物电信号

发布时间:2023-03-07 19:40:42

‘壹’ 电化学生物传感器的工作原理

电化学生物传感器

电化学生物传感器作为最早问世的—类生物传感器,主要是采用固体电极作为基础电极,将生物活性作为分子识别物固定在电极表面,然后通过生物分子间的特异性识别作用,使目标分子捕获到电极表面,基础电极将浓度信号转换成电势,电流,电阻或电容等可测量的电信号作为响应信号,从而实现对目标分析物的定量或者定性分析。

电化学生物传感器由 生物识别元件,信号转换器,数据分析仪组成:



┈┏离子选择电极

┏电位型电极┫

电化学电极┫┗氧化还原电极

┗电流型电极━氧电极


‘贰’ 生物电脉冲波的原理与控制

生物电脉冲波是电子刺激器刺激机体或离体组织细胞兴奋时产生的电信号,用于记录机体的生理活动。
生物电脉冲波的控制主要包括:刺激强度、刺激的持续时间、刺激强度(对时间)的变化率。

为使机体或离体组织细胞兴奋,需要给予刺激。常用的刺激装置为电子刺激器。当生理现象是生物电信号时,探测系统可以是引导电极,包括记录单细胞电活动的玻璃微电极和记录群细胞电活动的粗大金属电极。

电子刺激器是一种能产生一定波形的电脉冲仪。电子刺激器输出的电脉冲对生物组织的损伤较小,又可重复使用,刺激的参数便于控制。由于生物电信号较为微弱,所以必须经过放大器放大,才能在记录仪或示波器上记录或显示变化的波形。记录系统通常使用示波器或笔描式记录仪。

因方波波形简单,易于产生和严格控制,而且计算刺激量也比较容易,陡峭的前沿刺激电流也比较有效,故方波(矩形波)最为常用。

‘叁’ 介绍生物电信号的知识

上常见的生物电信号主要有:心电、脑电、肌电、胃电、视网膜电等。这些体表生物电信号通常能通过电极拾取,经适当的生物电放大器放大,记录而成为心电图、脑电图、肌电图、胃电图、视网膜电图等。
名称 幅值 频率范围 补充说明

心电 0.1-8mV 0-100Hz 主要带宽集中在0-33Hz

脑电 5-50μV 1-60Hz 诱发脑电的电位更小

肌电 20μV-30mV 10-3000Hz

胃电 50μV-2mV 0.001-20Hz

视网膜电 50μV-200μV DC-20Hz

‘肆’ 生物电信号有何特点对生物医学放大器有何基本要求

活动细胞或组织(如人体、动物组织)不论在静止状态还是活动状态,都会产生与生命状态密切相关的,有规律的电现象,称为生物电。生物电信号包括静息电位和动作电位,其本质是离子的跨膜流动。
静息电位(RP):细胞在安静的状态下,存在于细胞膜内外两端的电位差,称为静息电位或跨膜静息电位。这种电位差是由于细胞膜两侧的钠离子和钾离子分布不均匀造成的。生理学中常把膜外电位规定为"0",因此膜内电位为负。不同细胞的静息电位有所不同,如:神经细胞-86mV,心室肌细胞-90~-80mV,浦肯野纤维-100~-90mV,窦房结细胞-70~-40mV。静息电位又成为极化状态(polarization)。
动作电位(AP):当细胞受到外界刺激而兴奋时,受刺激部位的膜电位将发生一系列短暂的变化,最初发生膜电位升高,接着又慢慢恢复到静息电位,这种膜电位的变化,生理学上成为动作电位。该过程包含了去极化(depolarization)和复极化(repolarization)两个过程,前者指细胞受到刺激时,细胞膜对离子的通透性发生变化,大量Na迅速进入胞内,使得胞内电位迅速上升;后者指当去极化的电位达到峰值后,会逐渐回到静息状态的过程。
临床上常见的生物电信号主要有:心电、脑电、肌电、胃电、视网膜电等。这些体表生物电信号通常能通过电极拾取,经适当的生物电放大器放大,记录而成为心电图、脑电图、肌电图、胃电图、视网膜电图等。
心电图(ECG或者EKG)是利用心电图机从体表记录心脏每一心动周期所产生的电活动变化图形的技术。对整体心脏来说,心肌细胞从心内膜向心外膜顺序除极过程中的电位变化,由电流记录仪描记的电位曲线称为除极波,即体表心电图上心房的P波和心室的QRS波。
肌电图(EMG):通过测定运动单位电位的时限、波幅,安静情况下有无自发的电活动,以及肌肉大力收缩的波型及波幅,可区别神经源性损害和肌源性损害,诊断脊髓前角急、慢性损害(如脊髓前灰质炎、运动神经元疾病),神经根及周围神经病变(例如肌电图检查可以协助确定神经损伤的部位、程度、范围和预后)。
眼电图:目前只有使用较间接的方法,在内、外眦角皮肤上各置一氯化银电极,患者头部固定,眼注视一个在30度内作水平移动的红灯。因为眼球的电轴跟随眼球的转动而改变,所以内、外眦角电极的电位也不断变化,比较明、暗适应下的这种变化并将此电位加以放大及记录,即得眼电图。
生物医学信号属于强噪声背景下的低频微弱信号,它是由复杂的生命体发出的不稳定的自然信号,从信号本身特征、检测方式到处理技术,都不同于一般的信号。

1 生物医学信号的特点

生物医学信号由于受到人体诸多因素的影响,因而有着一般信号所没有的特点。①信号弱,例如从母体腹部取到的胎儿心电信号10~50μV。脑干听觉诱发响应信号小于1μV。②噪声强,由于人体自身信号弱,加之人体又是一个复杂的整体,因此信号易受噪声的干扰。如胎儿心电混有很强噪声,它一方面来自肌电、工频等干扰,另一方面,在胎儿心电中不可避免地含有母亲心电,母亲心电相对我们要提取的胎儿心电则变成了噪声。③频率范围一般较低,除心音信号频谱成份稍高外,其他电生理信号频谱一般较低。④随机性强,生物医学信号不但是随机的,而且是非平稳的。正是因为生物医学信号的这些特点,使得生物医学信号处理成为当代信号处理技术最可发挥其威力的一个重要领域。

2 生物医学信号的分类

生物信号如从电的性质来讲,可以分成电信号和非电信号,如心电、肌电、脑电等属于电信号;其它如体温、血压、呼吸、血流量、脉博、心音等属于非电信号,非电信号又可分为:①机械量,如振动(心音、脉搏、心冲击、Korotkov音等)、压力(血压、气血和消化道内压等)、力(心肌张力等);②热学量,如体温;③光学量,如光透射性(光电脉波、血氧饱和度等);④化学量,如血液的pH值、血气、呼吸气体等。如从处理的维数来看,可以分成一维信号和二维信号,如体温、血压、呼吸、血流量、脉博、心音等属于一维信号;而脑电图、心电图、肌电图、X光片、超声图片、CT图片、核磁共振(MRI)图像等则属于二维信号。

3 生物医学信号的检测方法

生物医学信号检测是对生物体中包含生命现象、状态、性质、变量和成份等信息的信号进行检测和量化的技术。生物医学信号处理的研究,是根据生物医学信号的特点,对所采集到的生物医学信号进行分析、解释、分类、显示、存贮和传输,其研究目的一是对生物体系结构与功能的研究,二是协助对疾病进行诊断和治疗。生物医学信号检测技术是生物医学工程学科研究中的一个先导技术,由于研究者所站的立场、目的以及采用的检测方法不同,使生物医学信号的检测技术的分类呈现多样化,具体介绍如下:①无创检测、微创检测、有创检测;②在体检测、离体检测;③直接检测、间接检测;④非接触检测、体表检测、体内检测;⑤生物电检测、生物非电量检测;⑥形态检测、功能检测;⑦处于拘束状态下的生物体检测、处于自然状态下的生物体检测;⑧透射法检测、反射法检测;⑨一维信号检测、多 维信号检测;⑩遥感法检测、多 维信号检测;一次量检测、二次量分析检测;分子级检测、细胞级检测、系统级检测。

4 生物医学信号的处理

技术自然界中广泛的生物医学信号是连续的,人们处理生物医学信号的程序一般是先经A/D转换,将其转换成数字信号,然后送到计算机中进行处理。本文对一维信号的处理方法进行探讨。

4.1 时域方法——AEV方法AEV方法原是通信研究中用于提高信噪比的一种叠加平均法,在医学研究中也叫平均诱发反应法,简称AEV(averaged evoked response)方法。所谓诱发反应就是肌体对某个外加刺激所产生的反应,AEV方法常用来检测那些微弱的生物医学信号,如希氏束电图、脑电图、耳蜗电图等。希氏束电图的信号幅度仅1~10μV,它们在用AEV方法检测之前,几乎或完全淹没在很强的噪声中,这些噪声包括自发反应、外界干扰、仪器噪声。AEV方法要求噪声是随机的,并且其协方差为零,信号是周期或重复产生的,这样经过N平方次叠加,信噪比可提高N倍,使用AEV方法的关键是寻找叠加的时间基准点。

4.2 频域滤波方法频域滤波是数字滤波中常用的一种方法,是消除生物医学信号中噪声的另一种有效方法。当信号频谱与噪声频谱很小时,可用频域滤波的方法来消除干扰,频域滤波器可分为两类:FIR(Finite Impulse Response)滤波器,FIR滤波器的设计方法主要有:窗函数法,频率采样法;IIR(Infinite Impulse Response)滤波器,IIR滤波器的主要设计方法有:冲激响应不变法,双线性变换法。

4.3 自适应滤波方法自适应滤波器能够跟踪和适应系统或环境的动态变化,它不需要事先知道信号或噪声的特性,通过采用期望值和负反馈值进行综合判断的方法来改变滤波器的参数。自适应滤波器的设计有两种最优准则,一种准则是使滤波器的输出达到最大的信噪比,称为匹配滤波器;另一种准则是使滤波器的输出均方估计误差为最小,这就是维纳(Wiener)滤波器。维纳滤波器是从噪声中提取信号的一种有效的方法,它是根据全部过去和当前的观测数据来估计信号的当前值,维纳滤波器要求解着名的WienerHopf方程,它是期望存在情况下的线性最优滤波器。卡尔曼(Kalman)从状态空间模型出发,提出了基于状态空间模型的线性最优滤波器即卡尔曼滤波器。 Kalman滤波理论是Wiener滤波理论的发展,它最早用于随机过程的参数估计,后来很快在各最优滤波和最优控制问题中得到了广泛的应用。值得提出的Kalman滤波器提供了推导称作递推最小二乘滤波器的一大类自适应滤波器的统一框架,实际上广泛使用的最小二乘算法即是Kalman算法的一个特例。

4.4 混沌(Chaos)和分形(Fractal)方法混沌和分形理论是一种非线性动力学课题,混沌系统的最大特点是初值敏感性和参数敏感性,即所谓的蝴蝶效应。混沌学研究的是无序中的有序,许多现象即使遵循严格的确定性规则,但大体上仍是无法预测的,比如大气中的湍流、人心脏的跳动等。混沌事件在不同的时间标度下表现出相似的变化模式,与分形在空间标度下表现十分相象,但混沌主要讨论非线性动力系统的不稳、发散的过程。混沌与分形在脑电信号处理的应用中尤为引人注目。自本世纪二十年代发现脑电信号以来,人们对其已进行了大量的研究,然而由于脑电信号的随机性很强,始终难以找到其规律性,无法使脑电信号成为认识大脑思维以及某些属性的有用信息。究其原因是脑电信号是神经元动作电位的无规则的脑电活动,实际上只由少数独立的动力学变量控制着,因此可以用研究混沌动力学的方法来研究人脑的功能。

4.5 小波分析(Wavelet Analysis)方法小波分析是传统傅里叶变换的继承和发展。由于小波的多分辨分析(Multiresolution Analysis)具有良好的空间域和频率域局部化特性,对高频采用逐渐精细的时域或空域取样步长,可以聚焦到分析对象的任意细节,从这个意义上讲,它已被人们誉为数学显微镜。目前,在心电数据的压缩、生物医学信号的信噪分离、QRS波的综合检测、脑电图EEG的时频分析、信号的提取与奇异性检测等方面有了广泛的应用。

4.6 人工神经网络(Artificial Neural Networks)分析方法人工神经网络是

一种模仿生物神经元结构和神经信息传递机理的信号处理方法,是由大量简单的基本单元(神经元)相互广泛联接构成的自适应非线性动态系统,其特点是:①并行计算,因此处理速度快;②分布式存贮,因此容错能力较好;③自适应学习。生物医学工程工作者采用神经网络的方法来解释许多复杂的生理现象,例如心电和脑电的识别,心电信号的压缩和医学图像的识别和处理。神经网络在微弱生理电信号的检测和处理应用主要集中在对自发脑电EEG的分析和脑干听觉诱发电位的提取。

‘伍’ 不同个体的生物电信号差异能检测出来吗

生物信号可反映生物体的生命活动状态,因此,生物信号的采集与处理是生物科学研究的重要手段之一。
生物信号的表现形式具有多样性,如:既有物理的声、光、电、力等类的变化;又有化学的浓度、气体分压、PH等的变化,其特点是信号微弱、非线性、高内阻、干扰因素多等等。这些特征对于生物信号的采集与处理的研究及运用十分重要。
传统的生物信号采集与处理系统是由功能不同的电子仪器及手工测量工具组合而成,如:由前置放大器,示波器,记录仪,分割规,尺,计算器等构成。由于近年计算机工业的飞速发展,特别是微型计算机的广泛应用,以及计算机生物信号采集与处理软件的开发,使得经过放大的生物电信号输入计算机进行观察、测量、处理和储存成为可能,而且更为方便、精确。因此,生物信号采集与处理系统逐渐变为以计算机和相应软件为采集处理核心的数字化系统。
数字化生物信号采集与处理系统与传统的生物信号采集系统相比,生物信号的记录和分析的准确性、实时性、可靠性有了很大的提高。而且更多的参数可以灵活设置,并随时方便的改变,使采集的数据能够共享和进行复杂的多维处理,从而大大提高了系统的性能和实验质量,简化了实验过程。
一个完整的生物信号采集与处理系统一般包括:生物信号的引导;生物信号的放大;生物信号的采集;生物信号的记录与处理四部分。
(一)生物信号的引导
生物信号的一般可分为两类,一类是电信号,如心电、脑电、肌电和细胞电活动(动作电位,静息电位);另一类是非电信号,如体温、血压、呼吸、心音、肌肉的收缩、二氧化碳分压、氧分压、PH值等等。在一个生物信号的采集与处理系统中电信号的采集需要合适的电极引导,非电信号的采集需要合适换能器将其转换成电信号。因此,电极和换能器是各种生物医学测量中必不可少的关键部分,它们的特性往往决定了测量系统的质量。
1.电 极
电极是连接测量系统和生物体不可缺少的元件。采集生物电信号时需要合适的电极,电极的性能优良与否,电极的类型选择是否适合将直接影响电信号的采集结果。
(1)电极的种类:电极的种类很多。根据安放的位置,可分为体表电极、皮下电极及植入电极;根据电极形状,可分为板状电极、针状电极、螺旋电极、环状电极;根据电极的粗细,可分为,粗(宏)电极与微电极;根据制作材料,可分为金属电极、玻璃电极、乏极化电极等。在生物电信号的引导中,常根据各种实验的不同要求选用不同类型的电极。
(2)常用的电极:
① 普通金属电极? 这类电极一般用铂(白金)、金、银、合金(镍、铜、锌)、不锈钢等金属制作而成。金属电极的外形可以根据实验要求制成各种形状。ECG、EMG、EEG及神经干复合电位等的检测一般均用此类电极。
② 乏极化电极? 当电极进入生物体组织或与生物的组织表面相接触时,会在电极和组织之间出现半电池电动势。如果电极中有电流流过,则还会出现极化电位。极化电位可随电极中流过电流的大小而变化,电流越大、极化电位越大。半电池电位与极化电位的总和电位差称之为电极电位。这种电位影响生物信号的检测,使波形畸变、失真,也影响刺激的精度等。为了解决这一问题一般用Ag-AgCl乏极化电极。这类电极在电生理学实验中常作为刺激电极,也用于精确的生物电信号的检测。其工作原理是:当直流电通过Ag—AgCl电极刺激活组织时,正负离子分别向阴极及阳极移动。但不是吸附在电极表面使之极化,而是与电极发生化学反应。使极化现象不再发生,刺激脉冲或引导的生物电信号也就不会失真。Ag-Cl电极所发生的电化学反应表达式如下:
阳极上: Ag-e ————Ag+
??????? Ag+ ———— AgCl↓
阳极上:AgCl+e —--- Ag↓+Cl-
Cl-+Na+ —--- NaCl
银—氯化银电极的缺点是Ag-Cl对活组织有毒性作用,因而不能直接将它与活组织接触,而应通过琼脂盐桥或脱脂棉线中介,这样既能导电又避免直接与组织接触。
③ 微电极? 微电极是用于测量细胞生物电活动的微型电极。这种电极的尖端直径仅为0.5~5μm。微电极有两种类型:一类是金属微电极,另一类是充灌了电解质溶液的玻璃微电极。金属微电极多采用0.3~O.5mm不锈钢丝或钨丝,经过特殊方法处理而制成。这种电极除尖端外,其它部分是绝缘的。玻璃微电极一般选用高熔点、高电阻率和膨胀系数低的硬质毛细玻璃管,国外一般采用Pyrex毛细玻璃管,国内一般采用GG-17毛细玻璃管。经过净化处理后毛细玻璃管,用已经商业化的微电极拉制仪拉制成玻璃微电极,其内一般充以3M KCl溶液作为电解质。微电极通常有很高的电阻,一般在5~40MΩ范围。由于电学上的差异,玻璃微电极通常用来测量低频生物电信号,而金属微电极一般用来测量高频生物电信号和作为刺激电极。
(3)选择电极时应注意的事项:
A.电极材料与生物组织的相容性:一方面是要求电极材料对组织无害,另一方面是生物组织内环境对电极工作(尤其慢性实验时)没有影响。
B.使电极的接触阻抗尽可能的小。降低接触电阻相当于降低了信号源阻抗,使得对放大器输入阻抗的要求降低,放大器选择范围加宽。一般增大电极面积可以降低接触电阻,但同时会降低空间分辨率。
C.注意电极的机械性质和几何形状对生物体状态的影响。
D.尽量使用半电池电位和极化电压小的电极。使用双电极时应用同一种材料,使半电池电位近似相等。
2.换能器
换能器又称传感器,是将能量从一种形式转换成另一种形式的传感元件。换能器对于生物医学的基础研究和教学起着重要的作用,是非电信号精确测量不可缺少的部分。由于生物体的特殊性,所以生物换能器在性能和结构上必须满足下列要求:
(1)换能器本身具有良好的技术性能,如:灵敏度、信噪声比要高,线性好,零点漂移低等等。
(2)换能器对被测对象的影响要小,不会给被测对象的生理活动带来负担,其形状和结构应该符合被测对象的解剖结构。
(3)换能器本要有足够的绝缘和耐腐蚀及不会给生物体带来有害影响。
换能器的种类很多,原理各异。其选择参见相关章节内容。
二、生物电信号的放大
由于大多数生物电信号的电位幅值很小,通常需要经过放大才能被观察仪器及记录仪器测量到。因此,在生物信号的采集过程中必须对引导的生物信号进行放大。
放大器的选择
用于生物电信号放大的任何一个放大器,必须考虑其频率响应、噪声水平及输入阻抗三个基本
技术参数。这三个参数是保证所放大的信号清晰、真实的前提。在实际测量时,应根据被测信号的性质选择合适的放大器。例如,使用微电极记录生物电信号时,应选择低噪声、高输入阻抗(大于1 000 MΩ)的放大器。其次根据需要放大信号的大小、性质、选择恰当的灵敏度、时间常数、高频滤波,才能不失真地把生物电信号放大,并记录下来。
放大器灵敏度、时间常数和高频滤波的选择
(1)灵敏度? 应以观测仪器、记录仪器能清晰分辨所测信号的为准。
(2)时间常数? 时间常数是决定放大器低端频率主要指标。正确地选择时间常数,可使所需放大的信号逼真、清晰、稳定。一般测量快速交变信号时选择较小的时间常数,测量慢速交变信号时选择较大的时间常数。
(3)高频滤波? 可将所检测的生物电信号中不需要的高频成份或噪声滤掉。这样可使所测信号的主要频率成份能够得到很好的放大。正确的选择放大器高频滤波,可提高仪器的分辨率,使图像更为清晰。一般情况下,高频滤波的选择应是输入信号高频端的两倍左右。
部分生物电信号测量时放大器的灵敏度、时间常数、高频滤波的选择

三、生物电信号的采集
在传统的生物信号处理系统中,经过放大的生物电信号可输送到示波器或记录仪进行观察、记录和测量。为了能正确重现被测生物信号,示波器、记录仪应具有足够高的频率响应、合适的振幅动态范围、良好的线性、适当的阻尼特性及足够高的灵敏度与良好的稳定性。记录器可选用墨水式记录仪、喷墨笔式记录仪、光线示波器或X-Y记录仪,也可选用多通道磁带记录仪、示波器专用照像机等。
基于计算机的生物信号采集与处理系统的数据采集是将电极及换能器引导、转换并放大的模拟信号转变为数字信号,并将其输入计算机的过程。在进行数据采集时,需注意以下问题:
1. 采样频率(fs)的选择:采样时间间隔的倒数为采样频率, 即fs=1/T。为使信号采样后能不失真的还原,fs的选择必须满足:采样频率必须不低于信号最高频率的两倍。即:fs≥2fH
例如:生物信号的频率范围是20Hz-20KHz,对其采样时,选取的采样频率应满足:fs≥40 KHz。
2.多路采样时通道数与采样频率的关系:由于计算机对多通道信号采集和处理是分时进行的,因此,通道数越多,同样的情况下每个通道可选择的最高采样频率就越低。
3.分辨率与输入信号的范围关系:分辨率,即,所能测出信号的最小变化量,该变化量越小,则称分辨率越高。因此,分辨率越高,可测量信号的最大值就越小,即,信号的输入范围越小。
四、生物信号的处理与记录
传统的生物信号处理主要是根据记录仪和示波器照相机等记录装置记录到的图形,通过分割规、米尺、积分仪、计算器等进行手工计算。基于计算机的生物信号采集与处理系统的数据处理,由于生物信号被转换成数字信号输入计算机,所以,对信号的处理都是以数字方式由计算机进行。计算机内部的存储器能够使数据暂时或长久存储,并可随时输出、显示或用于计算,使得被测信号能容易地进行多次处理、显示和比较,因此,与传统的信号处理方式相比,基于计算机的生物信号采集与处理系统的数据处理更快,更精确,更灵活。
基于计算机的生物信号采集与处理系统常用的信号处理方法:
1.信号运算:
(1)微分和积分:使用运算放大器,可实现模拟电路对信号的微分或积分,用计算机通过某种运算完成对信号的微分或积分则更为简单、直接。
(2)迭加平均:生物信号测量中常常出现信号幅质很小而噪声很大的情况,使得有用的信号淹没在噪声之中,难以测量和处理。如果信号和噪声频谱不一致,可以用滤波的方法分离出有效信号,但如果信噪比太小,效果不一定好;如果噪声和信号频谱重叠,滤波不在适用。这种情况使用迭加平均的方法可以抑制噪声,提高信噪比。
迭加平均是对具有确定参考点的重复信号多次迭加,然后取平均值。这种方法使用的条件是:噪声具有随机特性,信号具有重复特性,两者互不相关。由于信号是有规律的,所以,迭加后信号增强,而噪声是随机的,所以,迭加后大部分相互抵消。迭加N次后,信号幅度增加N倍,而噪声则衰减到原来的1/N。迭加平均法一般用于诱发生物电的测量。
(3)冻结显示:所谓冻结显示是可以使某一段波形在显示屏上做任意时间的停留。这种显示方式非常便于屏幕分析和测量。
(4)频谱分析:任何信号都可以看成是不同频率的正弦波的叠加,频谱分析就是以组成信号的正弦波的频率为变量研究信号特性的方法。
在生物信号的测量中,我们记录到的多数信号都是随时间变化的信号,在生物医学工程上称为时域信号。频谱分析中的信号是频域信号,在频域里分析信号可使一些在时域中无明显特征的信号在频域里能出现明显特征,这是频域分析的最大优点。除此之外,频域分析还有使复杂计算简单化等优点。
对于离散时间信号,从时域到频域的转换要进行繁琐的迭加计算,而使用计算机进行快速傅里叶变换(FFT)可方便完成这一运算过程。
频域分析广泛用于生物医学信号的处理之中,如脑电图的检查,心电信号的分析等等。
信号经过计算机处理以后,一般将处理结果输出到打印机,可打出具体数据或图形。
五、干扰的处理
干扰是生物信号采集过程经常遇到问题,尤其是在电生理实验中常见的、对生物电信号测量有着很大影响的电现象。轻者可使被测信号畸形,重者可导致实验无法正常进行,因此,排除干扰是电生理实验中经常遇到的、非常重要的工作之一。干扰的种类很多,排除干扰的基本原则是准确寻找出干扰源,然后采取相应的措施加以排除。电磁干扰是电生理实验中最常见的干扰之一,解决电磁干扰的最好办法是采用金属屏蔽。既可以将实验对象置于屏蔽装置之中,也可以将实验仪器加以屏蔽。其次,测量仪器良好的接地和采取合适的滤波也是解决电磁干扰的有效方法。

参考文献:
1.许熄铭等 译·生物医学换能器---原理与应用·第一版·上海:上海科学技术出版社,1984。
2.徐叔云,卞如濂,陈修主编·药理学实验方法·第三版·北京:人民卫生出版社,2002,3~145
3.周衍椒等 主编·生理学方法与技术·第一版·北京:科学技术出版社,1984。

物理疗法是指应用各种物理因素作用于人体,以防治疾病的方法,临床上常简称为理疗。物理疗法除有治疗作用外,也被广泛地应用于疾病的诊断,如超声波、肌电图、红外线热象图等。物理疗法历史悠久,三千多年前我国已有矿泉疗法的记载。本世纪70年代以来,磁疗法、激光疗法、射频疗法等发展超速,扩大了理疗的适应证。提高了疗效,特别是近年来生物反馈疗法的逐步推广及红外技术、纳米技术的发展与应用,可以预见,理疗在临床治疗与康复中的地位将进一步得到重视。根据物理因素的来源,理疗可以分为如下两大类:人工物理因素疗法和自然物理因素疗法。
回答者:grand_master - 魔法学徒 一级 8-24 17:46
评价已经被关闭

‘陆’ 生物中化学信号与电信号的区别

这应该在生物范围内呀。因为电信号变为化学信号时,在神经纤维上传导的电信号,传导到突触小体,进而刺激突触小泡,释放神经递质(化学信号)神经递质由胞吐的方式经过突触前膜,过突出间隙,再由突触后膜上的特异性受体接受神经递质,进入到下一个神经元,这时神经递质(化学信号)就会转化为电信号,又会在这个神经元上的神经纤维以电信号继续传导!

‘柒’ 什么是生物电极

生物(医学)电极一般是经过一定处理的金属板或金属丝、金属网等.作用:用电极引导生物电信号.原理:与电极直接接触的是电解质溶液,如导电膏、人体汗液或组织液等,因而形成一个金属—电解液界面.电化学原理:当 金属...

‘捌’ 细胞生物电测量的基本原理

生物电现象是 指生物机体在进行生理活动时所显示出的电现象,这种现象是普遍存在的.细胞膜内外都存在着电位差,当某些细胞(如神经细胞、肌肉细胞)兴奋时,可以产生动作电位,并沿细胞膜传播出去。

而另一些细胞(如腺细胞、巨噬细胞、纤毛细胞)的电位变化对于细胞完成种种功能也起着重要作用。随着科学技术的日益进展,生物电的研究取得了很大的进步。在理论上,单细胞电活动的特点,神经传导功能,生物电产生原理,特别是膜离子流理论的建立都取得了一系列的突破。在医学应用上,利用器官生物电的综合测定来判断器官的功能,给某些疾病的诊断和治疗提供了科学依据。我们的临床工作中经常遇到兴奋性、兴奋与兴奋传导这些概念,堵隔壁生物电有关。了解了生物电的现代基本理论,对于正确理解这些概念以及心电、脑电、肌电等的基本原理都有重要意义。细胞生物电现象有以下几种1、静息电位组织细胞安静状态下存在于膜两侧的电位差,称为静息电位,或称为膜电位。细胞在安静状态时,正电荷位于膜外一侧(膜外电位为正),负电荷位于膜内一侧(膜内电位为负,)这种状态称为极化。如果膜内外电位差增大,即静息电位的数值向膜内负值加大的方向变化时,称为超极化。相反地,如果膜内外电位差减小,即膜内电位向负值减小的方向变化,则称为去极化或极化。一般神经纤维的静息电位如以膜外电位为零,膜内电位为-70~-90m2、动作电位当细胞受刺激时,在静息电位的基础上可发生电位变化,这种电位变化称为动作电位。动作电位的波形可因记录方法不同而有所差异以微电极置于细胞内,记录到快速、可逆的变化,表现为锋电位;锋电位代睛细胞兴奋过程,是兴奋产生和传导的标志。锋电位在示波器上显示为灰锐的波形,它可分为上升支和一个下降支。上升支先是膜内的负电位迅速降低到零的过程,称为膜的去极化(除极),接着膜内电位继续上升超过膜外电位,出现膜外电位变负而膜内电位变正的状态,称为反极化。下降支是膜内电位恢复到原来的静息电位水平的过程,称为复极化。锋电位之后到完全恢复到静息电位水平之前,还有微小的连续缓慢的电变化,称为后电位。心肌细胞的生物电现象和神经纤维、骨骼肌等细胞一样,包括安静时的静息电位和兴奋时的动作电位,但有其特点。心肌细胞安静时,膜内电位约为-90mv。心肌细胞静息电位形成的原理基本上和神经纤维相同。主要是由于安静时细胞内高农度的K+向膜外扩散而造成的。当心肌细胞接受刺激由静息状态转

阅读全文

与为什么生物电极可以测量生物电信号相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:704
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1317
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1022
大学物理实验干什么用的到 浏览:1448
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:829
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1606
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017