导航:首页 > 生物信息 > 现代生物技术可以解决哪些问题

现代生物技术可以解决哪些问题

发布时间:2023-03-08 16:23:38

Ⅰ 21世纪的最高技术核心是生物技术,这到底给我们带来了什么

目前生物技术最活跃的应用领域是生物医药行业,生物制药被投资者认为是成长性最高的产业之一。世界各大医药企业瞄准目标,纷纷投入巨额资金,开发生物药品,展开了面向21世纪的空前激烈竞争。

生物技术的发展可以划分为三个不同的阶段:传统生物技术、近代生物技术、现代生物技术。传统生物技术的技术特征是酿造技术,近代生物技术的技术特征是微生物发酵技术,现代生物技术的技术特征就是以基因工程为首要标志。本文所说的生物技术,是指现代生物技术,也可称之为生物工程。现代生物技术在70年代开始异军突起,近一、二十年来发展极为神速。它与微电子技术、新材料技术和新能源技术并列为影响未来国计民生的四大科学技术支柱,被认为是21世纪世界知识经济的核心。

Ⅱ 现代生物技术现实生活中有哪些具体应用

1、越来越多的现代生物技术公司开发家畜医疗产品。美国的动物保健品市场每年约40亿美元。美国农业部批准的动物生物制品约100种,主要是预防动物传染病和常见疾病的疫苗和治疗药物。

2、现代生物技术还应应用于保护珍稀野生动物,通过DNA鉴定鉴定动物物种,跟踪其活动区域等。
海洋生物技术的应用导致了过度捕捞对海洋生物生存的威胁。同时,为人类从丰富的海洋生物资源中发现新药提供了途径。例如,海螺中的毒素是一种有效的镇痛剂,海绵可以用作抗感染剂。

3、现代生物技术在航天发展中的应用,可以为宇航员提供长期太空探索所必需的生命支持环境。

4、现代生物技术还被用于人类考古学和刑事调查,DNA分析可用于研究人类种群的进化史。DNA技术在刑事侦查中的应用可以帮助执法人员识别犯罪分子。


(2)现代生物技术可以解决哪些问题扩展阅读:

现代生物技术是一个复杂的技术群体。基因工程只是现代生物技术的代表之一,其特点是在分子水平上创造或改变生物类型和生物功能。

此外,在染色体、细胞、组织、器官甚至个体有机体的层面上,创造或改变生物类型和功能的工程,如染色体工程、细胞工程、组织培养和器官培养、定量遗传工程等,都可以因此,这属于现代生物技术的范畴。

为这些项目服务的一些新技术系统,如现代发酵工程、酶工程、生物反应器工程,也被纳入现代生物技术系统。

Ⅲ 说说现代生物科学技术在人类生活中的应用

生物技术在医药卫生领域的应用主要有以下三个方面: 1、是解决了过去用常规方法不能生产或者生产成本特别昂贵的药品的生产技术问题,开发出了一大批新的特效药物,如胰岛素、干扰素(IFN)、白细胞介素-2(IL-2)、组织血纤维蛋白溶酶原激活因子(TPA)、肿瘤坏死因子(TNF)、集落刺激因子(CSF)、人生长激素(HGH)、表皮生长因子(EGF)等等,这些药品可以分别用以防治诸如肿瘤、心脑肺血管、遗传性、免疫性、内分泌等严重威胁人类健康的疑难病症,而且在避免毒副作用方面明显优于传统药品。 2、是研制出了一些灵敏度高、性能专一、实用性强的临床诊断新设备,如体外诊断试剂、免疫诊断试剂盒等,并找到了某些疑难病症的发病原理和医治的崭新方法。我国的单克隆抗体诊断试剂市场前景良好。 3、是基因工程疫苗、菌苗的研制成功直至大规模生产为人类抵制传染病的侵袭,确保整个群体的优生优育展示了美好的前景。我国开发重点是乙肝基因疫苗。 现代生物技术以再生的生物资源为原料生产生物药品,从而可获得过去难以得到的足够数量用于临床的研究与治疗。如1克胰岛素(h-Insulin)要从7.5公斤新鲜猪或牛胰脏组织中提取得到,而目前世界上糖尿病患者有6000万人,每人每年约需1克胰岛素,这样总计需从45亿公斤新鲜胰脏中提取,这实际上办不到的,而生物技术则很容易解决这一难题,利用基因工程的"工程菌"生产1克胰岛素,只需20升发酵液,它的价值是不能用金钱来计算的。
20世纪70年代以来,生物科学的新进展,新成就层出不穷。从总体上看,当代生物科学主要朝着微观和宏观两个方面发展:在微观方面,生物学已经从细胞水平进入到分子水平去探索生命的本质;在宏观方面,生态学的发展正在为解决全球性的资源和环境等问题发挥着重要作用。 生物工程方面生物工程(也叫生物技术)是生物科学与工程技术有机结合而兴起的一门综合性的科学技术。也就是说,它是以生物科学为基础,运用先进的科学原理和工程技术手段来加工或改造生物材料,如DNA、蛋白质、染色体、细胞等,从而生产出人类所需要的生物或生物制品。生物工程在近些年来迅猛发展,硕果累累。 生物工程在医药方面有着广泛的应用。例如,长期以来,预防乙型肝炎的疫苗是从乙肝病毒携带者的血液中提取和研制的,这样的疫苗生产周期长,产量低,价格昂贵。现在,采用生物工程的方法,将乙肝病毒中的有关基因分离出来,引人细菌的细胞中,再采用发酵的方法,或者引人哺乳动物的细胞中,再采用细胞培养的方法,就能让细菌或哺乳动物的细胞生产出大量的疫苗。中国研制的生物工程乙肝疫苗已经在1992年投放市场,在预防乙型肝炎中发挥了重要作用。除乙肝疫苗以外,还有抑制病毒在细胞内增殖的干扰素等多种生物工程药物已经问世。知道,人类的许多疾病都与基因有关。在基因水平上对人类的疾病进行诊断和治疗,是科学家们正在探求的另一个重大课题。为了弄清人类约10万个基因的结构和功能,美国从1988年开始实施“人类基因组计划”,目前这项研究已经成为国际间合作的一项重大科研课题。 生物工程在农业生产上的应用前景更为诱人,1988年,中国科学家人工合成了抗黄瓜花叶病毒的基因,并且将这种基因导人烟草等作物的细胞中,得到了抵抗病毒能力很强的作物新系,1989年,中国科学家成功地将人的生长激素基因导人鲤鱼的受精卵中,培育成转基因鲤鱼。与非转基因鲤鱼相比,转基因鲤鱼的生长速度明显加快,1993年,中国研制的两系法杂交水稻开始大面积试种,与原来普遍种植的三系法杂交水稻相比,平均每公顷增产15%,1995年,中国科学家将某种细菌的抗虫基因导人棉花,培育出了抗棉铃虫效果明显的棉花新品种。 生物工程在开发能源和环境保护等方面同样有着广泛的应用。知道,煤炭、石油等能源终将枯竭,目前全世界已经面临着能源危机。使用煤炭、石油等能源,还造成严重的环境污染。因此,科学家们正在努力探索开发新的能源,其中很重要的一个方面就是用生物工程开发生物能源。美国科学家在1978年成功地培育出能直接生产能源物质的植物新品种——“石油草”,这种植物的茎秆被割开后,就会流出白色乳状的液体,经提炼就得到石油。在利用细菌治理石油污染方面,由于石油中的不同组成成分往往需要用不同的细菌来分解,科学家就将不同细菌的基因分离出来,集中到一种细菌内,从而得到了“超级菌”。这种“超级菌”分解石油的速度比普通细菌快得多,净化石油污染的能力得到明显的提高。 生态学方面生态学是研究生物与其生存环境之间相互关系的科学。20世纪60年代以来,人类社会面临的人口爆炸、环境污染、资源匮乏、能源短缺和粮食危机等问题日益突出。要解决这些问题,都离不开生态学。因此,生态学的研究受到高度重视,并且取得了显着的进展。生态系统的能量流动和物质循环的基本原理,已经成为人类谋求与大自然和谐共处、实现社会和经济可持续发展的理论基础;运用生态学原理,中国推行生态农业的建设,已经取得了令人瞩目的成就,涌现了一批生态村、生态农场和生态林场,为实现农业的可持续发展积累了经验。例如,安徽省颖上县小张庄,生态环境恶劣,旱涝灾害频繁,农业结构单一,粮食产量很低。70年代中期,小张庄开始进行生态农业的建设,整治土地,兴修水利,大力营造防护林,使当地生态环境得到了明显改善。小张庄在大力发展种植业和林业的同时,还利用当地的饲草资源和鱼塘,大力发展养殖业。养殖业为农田提供了大量的有机肥,从而改良了土壤。这个村还利用人畜粪便生产沼气,发展沼气能源。沼气池的渣液用来喂养鱼,塘泥肥田,从而建立起了良性循环的农业生态系统。 生物科学除了在生物工程和生态学领域以外,在其他许多领域也取得了令人鼓舞的进展,向人们展示出美好的前景。例如,脑科学的研究已经深入到分子水平,这不仅对脑病的防治和智力的开发有重要意义,而且将为研究生物计算机提供理论基础。光合作用和生物固氮的研究,细胞生物学的研究,等等,也都获得一系列的成就,在21世纪将会有更大的发展。由于生物科学的迅猛发展和它对人类社会所产生的巨大影响,许多科学家都认为,生物科学将是21世纪领先的学科之一。

Ⅳ 生物技术的好处和坏处是什么

生物技术的好处:

1、利用生物技术改良品质,提高作物产量,选育优良品种。包括粮食作物、烟草、经济作物、蔬菜瓜果、花卉、树草的抗病基因、高蛋白含量基因、固氮基因。还有快速繁殖,缩短繁殖期,较快获得较多产物。培育人工种子,可选育所需苗株,低成本,高收益。以及我们所了解的产生新物种。

2、在医药方面应用广泛,特别是贵重药物生产、疫苗生产、新的诊病技术、新的治疗方法有特殊意义。 利用基因工程和细胞工程生产药物。如,生长激素、生长激素释放抑制素、胰岛素、干扰素等。 另一方面,随着克隆技术的不断发展,一旦技术成熟,将给医疗卫生界带来翻天覆地的变革,大大提高人类健康水平。而且,试管婴儿的出现,给人类带来前所未有变化,给有相关需求的家庭带来了福音。此外,对于濒危物种,克隆技术在保护和恢复方面也有很大帮助。

3、发展洁净新能源是未来能源业建设的发展方向,现代生物技术的生产力发挥的更充分。发展新型燃料电池。燃料电池使用气体燃料,其效率高、污染低,是一种很有前途的能源利用方式。充分利用有机垃圾或有机废水为原料生产氢能源。据称,日本研究人员为制取氢气的生活垃圾可循环利用,还研制新型“发酵设备”更有利于提高生活垃圾制氢效力。我国哈尔滨建筑大学研究人员已建立以厌气活性污泥为原料的有机废水经微生物发酵法生产氢的技术。

4、环境保护方面的应用分为两大类,一是污染监测,二是污染治理。现代生物技术建立了一类新的快速准确监测与评价环境的有效方法,主要包括利用新的指示生物、利用核酸探针和生物传感器。另外,还有生物酶技术、金标免疫速测技术、FCR技术、生物发光检测技术、生物芯片技术和生物传感器。其中生物芯片技术和生物传感器应用最为广泛。在环境保护上,基因芯片也有广泛的用途,现代生物技术除了应用于环境监测以外,还应用于环境污染治理。现代生物治理采用纯培养的微生物菌株来降解污染物。

生物技术的坏处:
1、生物技术也可能引起生产方式和人类健康的退变。这种情况可能会随着需要特定处理的转基因作物的出现而产生,特别是抗除草剂的转基因作物出现。农民必须从同一公司购买种子和除草剂,否则除草剂起不了作用。同样的问题也可能在需人造肥料的转基因作物上出现,这些转基因作物会取代传统的依靠有机肥的作物,后者在发展中国家是很普遍的,并且也有利于环境保护。生物技术在食品上的应用对发展中国家的农民也会造成许多困难。生物技术也会对人类的健康制造麻烦。为了预防起见,转基因作物产品必须经免疫测定筛选后才能利用。
2、 生物技术也可能引发环境问题。人们利用生物技术生产出抗旱、耐盐、抗病虫害作物同时,也导致生物多样性遭受严重破坏,甚至导致一些物种灭绝。这一结果是由于生物技术促进农作物向它原本不适应的地域扩张而造成的。生物技术同样加速土壤侵蚀和沙漠化。农业,尤其是耕作农业的扩张会增加除草剂、杀虫剂、人造肥料的使用,农业中不断投入的能源促进全球变暖。

Ⅳ 在我们的生活中,生物技术主要有哪些方面的应用试举例说明。

医疗领域:在目前这方面的研究受到极大的注目。像是干细胞应用于再生医学领域,如人工脏器、神经修复等。或是以蛋白质结构解析数据,对于功能性区域(domain)来开发相对应的抑制剂(如:酵素抑制剂)。利用微阵列核酸晶片,或是蛋白质晶片,寻找致病基因。或是利用抗体技术,将毒素送入具有特殊标记的癌细胞。或利用基因转殖技术,进行基因治疗等。基因治疗(gene therapy)利用分子生物学方法将目的基因导入患者体内,使之表达目的基因产物,从而使疾病得到治疗,为现代医学和分子生物学相结合而诞生的新技术。基因治疗作为新疾病治疗的新手段,给一些难治疾病的根治带来了光明。
农学食粮:人口快速膨胀,食粮问题正是生物技术应用的切入点。在基因转殖农作物的开发下,除了转殖进入抗虫害基因、抗冻基因外,例如含有维生素A的稻米也问世。在有限耕地下,转殖农作物解决了品质上的问题。除此之外,观赏用的花卉等,也靠着组织培养的技术,将高品质的花卉复制生产,提高花卉价值。着名的像是台湾的蝴蝶兰。另外,经过遗传工程技术,能产生凝血因子的乳牛也提供医疗用途。生物肥料(biofertilizer)主要利用微生物技术制作的肥料种类。生物肥料不仅给作物提供养料、改善品质、增强抗寒抗虫害能力、还改善土壤通透性、保水性、酸碱度等理性化特性,可为作物根系创造良好生长环境,从而保证作物的增产。生物农药(biopesticide)利用微生物、抗生素和基因工程等产生有杀灭虫病效果的毒素物质,生产出广谱毒力强的微生物菌株制作而成的农药。它的特点有:1.不像化学农药般见效快,但效果持久。2.与化学农药比,害虫难以产生抗药性。3.对环境影响小。4.对人体和作物的危害性小。5.使用范围和方法有限制;等等。
军事科技:基因工程武器(genetic engineering weapon)简称基因武器,例子有:插入眼镜蛇毒液基因的流感病毒和含有炭疽病毒的大肠杆菌。基因武器的特点是:1.生产成本低、杀伤力大、作用时间长。2.对方使用难发现、难预防、难治疗。3.使用方肌丹冠柑攉纺圭尸氦建法简单,施放手段多。4.只伤害人,不破坏武器装备、设施。5.一旦使用会产生强烈的心理威慑作用。
工业应用:在工业上,利用工业菌种的特殊代谢路径,来替代一些化学反应。除了专一性提高,也在常温常压下,节约能源。也由于专一性高,产生的废弃物量低,也因此被称为绿色工业。
环境保护:当环境受到破坏,可以利用生物技术的处理方式,让环境免于第二次受害。生物具有高度专一性,能针对特殊的污染源进行排除。例如运输原油的邮轮,因事故,将重油污染海域,而利用分解重油的特殊微生物菌株,对于重油进行分解,代谢成环境可以接受的短练脂肪酸等,排解污染。此外,土壤遭受重金属污染,亦可利用特定植物吸收污染源。

Ⅵ 生物技术有何应用

生物技术,是20世纪70年代初开始兴起的一门新兴的综合性应用学科,尽管起步晚,但是发展迅速,是解开生命之谜、创造新物种的钥匙。比尔盖茨在1996年说过:“生物科技将像电脑软件一样改变这个世界。”科学家预言,生物将取代物理。未来的时代不再是矿物时代而是生物时代,谁掌握了先进的生物技术,谁就将主宰未来。

一、生物工程技术的基础

生物技术包含一系列的技术,它可利用生物体或细胞生产我们所需要的生物,这些新技术包括基因重组、细胞融合和一些生物制造程序等等。其实人类利用生物体或细胞生产我们所需要生物的历史已经非常悠久,例如在1万年前开始耕种和畜牧以提供稳定的粮食来源,6000年前利用发酵技术酿酒和做面包,2000年前利用霉菌来治疗伤口,1797年开始使用天花疫苗,1928年发现抗生素盘尼西林等。既然人类使用生物科技的历史这么久,为什么近年来生物技术又突然吸引大家的注意呢。这是因为20世纪中期,人类对构成生物体最小单位,即细胞及控制细胞遗传特征的基因有了更深入的了解,20世纪70年代又发展出基因重组和细胞融合技术。由于这两项技术可以更有效、更快速地让细胞或生物体生产出我们所需要的新物质,且适合工业或农业量产,因此从20世纪80年代开始,造就了一个新兴的生物科技产业。

生物工程技术包括五大工程,即基因工程、细胞工程、发酵工程、酶工程和生物反应器工程。在这五大领域中,前两者作用是将常规菌(或动植物细胞株)作为特定遗传物质受体,使它们获得外来基因,成为新物种。后三者的作用则为新物种创造良好的生长与繁殖条件,进行大规模的培养,以充分发挥其内在潜力,为人们提供巨大的经济效益和社会效益。

1.基因工程

随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、揭示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性,这种分子水平的干预是这样实现的:将一种生物的DNA中的某个遗传密码片断,连接到另外一种生物的DNA链上去,将DNA重新组织一下,设计出新的遗传物质并创造出新的生物类型。这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。

基因工程在20世纪取得了很大的进展,这至少有两个成功典范。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”的母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。

2.细胞工程

指应用现代细胞生物学、发育生物学、遗传学和分子生物学的理论与方法,按照人们的需要和设计,在细胞水平上重组细胞的结构和内含物,以改变生物的结构和功能,快速繁殖和培养出人们所需要的新物种的生物工程技术。细胞工程的优势在于避免了分离、提纯、剪切、拼接等基因操作,只需将细胞遗传物质直接转移到受体细胞中就能够形成杂交细胞,因而能够提高基因的转移效率。通俗地讲,细胞工程是在细胞水平上动手术,也称细胞操作技术,包括细胞融合技术、细胞器移植、染色体工程和组织培养技术。通过细胞融合技术,可以培育出新物种,打破了传统的只有同种生物杂交的限制,实现物种间的杂交。这项技术不仅可以把不同种类或者不同来源的植物细胞或者动物细胞进行融合,还可以把动物细胞与植物细胞融合在一起。这对创造新的动植物和微生物品种具有前所未有的重大意义。

3.酶工程

酶工程又称生物转化反应,是利用生物学方法以酶为催化剂,使一种物质迅速转化为另一种物质的技术。它不需要传统的化学转化所必不可少的高温、高压、强酸、强碱等条件,节省能源,效率极高。酶工程最突出的成就是微生物发电。最原始的酶工程要追溯到人类的游牧时代。那时候的牧民已经会把牛奶制成奶酪,以便于贮存。他们从长期的实践中摸索出一套制奶酪的经验,其中关键的一点是要使用少量小牛犊的胃液。用现代的眼光看那就是在使用凝乳酶。此后,在开发使用酶的早期,人们使用的酶也多半来自动物的脏器和植物的器官。例如,从猪的胰脏中取得胰蛋白酶来软化皮革;从木瓜的汁液中取得木瓜蛋白酶来防止啤酒混浊;用大麦麦芽的多种酶来酿造啤酒;等等。然而,随着酶的开发应用的扩展,这些从动植物中取得的酶已经远远不能满足人们需要了。人们把眼光转向了微生物。

微生物是发酵工程的主力军。在发酵工程里(或者说在自然界也一样),微生物之所以有那么大的神通,能迅速地把一种物质转化为另一种物质,正是因为它们体内拥有神奇的酶,正是那些酶在大显神通。说到底,发酵作用也就是酶的作用。

微生物种类繁多,繁殖奇快。要发展酶工程,微生物自然应该是人们获取酶、生产酶的巨大宝库、巨大资源。事实上,目前酶工程中涉及的酶绝大部分来自于微生物。

酶工程,可以分为两部分。一部分是如何生产酶,一部分是如何应用酶。用微生物来生产酶,是酶工程的半壁江山。

4.发酵工程

指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种技术。发酵工程的内容包括菌种选育、灭菌、接种和产品的分离提纯(生物分离工程)等方面。

5.生物反应器工程

生物反应器是指为细胞增殖或生化反应提供适宜环境的设备,它是生物反应过程中的关键设备。生物反应器的结构、操作方式和操作条件的选定,对生物化工产品的质量、收率(转化率)和能耗有直接影响。生物反应器的设计、放大是生化反应工程的中心内容,也是生物化学工程的重要组成部分。从生物反应过程说,发酵过程用的生物反应器称为发酵罐;酶反应过程用的生物反应器则称为酶反应器。另一些专为动植物细胞大量培养用的生物反应器,专称为动植物细胞培养装置。顾名思义,生物反应器工程就是研制各种生物反应器的工程。

基因工程、细胞工程、酶工程和发酵工程不是孤立存在的,而是彼此互相关联、互相渗透。例如用基因重组技术和细胞融合技术可以创造出许多具有特殊功能和多功能的工程菌和超级菌,再通过微生物发酵来产生新的有用物质。再如酶工程和发酵工程相结合,可以改革发酵工艺,大大提高产量。

二、神秘的军事生物技术

在引发21世纪武器装备革命性变化的高新技术中,迅速兴起的生物技术发展势头正猛。未来的武器装备、后勤保障和军用医药等各个方面,都将离不开生物技术的支撑。有识之士认为,现代化生物武器是一支重要的威慑力量,在未来战场上,比原子弹更可怕。

以生命科学为基础的综合性技术——生物技术将成为军事高技术的制高点。

1.人称“种族武器”和“世界末日武器”的基因武器

基因武器就是在生物遗传工程技术的基础上,用人为的方法,按照军事上的需要,利用基因重组技术,复制大量致病微生物的遗传基因,并制成生物战剂放入施放装置内所构成的武器。它能改变非致病微生物的遗传物质,使其产生具有显着抗药性的致病菌,利用人种生化特征上的差异,使这种致病菌只对特定遗传特征的人们产生致病作用,从而有选择地消灭敌方有生力量。因此,科学家们也称这种“只对敌方具有残酷杀伤力,而对己方毫无影响”的新型生物武器为“种族武器”。按照美国国家人类基因组研究中心的报告,由多国联手开展的人类基因组计划,预计于2003年完成,届时将可排列出组成人类染色体的30亿个碱基对的DNA序列,揭开生命与疾病之谜。一旦不同种群的DNA被排列出来,就可以生产出针对不同人类种群的基因武器。

基因武器杀伤力极强,远非普通的生物战剂所能比拟。据估算,用5000万美元建造一个基因武器库,其杀伤效能远远超过50亿美元建造的核武器库。某国曾利用细胞中的脱氧核糖核酸的生物催化作用,把一种病毒的DNA分离出来,再与另一种病毒的DNA相结合,拼接成一种具有剧毒的“热毒素”基因战剂,用其万分之一毫克就能毒死100只猫;倘用其20g,就足以使全球55亿人死于一旦。正因为如此,国外有人将“基因武器”称为“世界末日武器”。科学家认为,不能排除随着基因操作等知识的日益普及,基因技术被用于制造基因武器的可能。甚至有人预测,基因武器将在5至10年内出现。

2.威力巨大的生物炸弹

利用生物技术制造炸药,生产过程简单,成本低,燃烧充分,爆炸力强,威力比常规炸药大3~6倍。用生物炸药制成的武器战斗可使武器的战术、技术性能提高一个数量级。

3.智能化的军用仿生导航系统

自然界中许多动物具有导航能力。研究发现,鸟体的导航系统只有几毫克,但精确度极高,探测误差小于0.03微瓦/平方米。目前已有一些国家在利用生物技术手段模拟动物的导航系统来简化军事导航系统,以提高精度,缩小体积,减轻重量,降低成本,增强在复杂条件下的导航能力。

4.敏锐的军用生物传感器

把生物活性物质,如受体、酶、细胞等与信号转换电子装置结合成生物传感器,不但能准确识别各种生化战剂,而且探测速度快、判断准确,与计算机配合可及时提出最佳的防护和治疗方案。美国国防部于1990年将生物传感器列入国防关键技术,2000年就制造出了机器人生物传感器。生物传感器还可通过测定炸药、火箭推进剂的降解情况来发现敌人库存的地雷、炮弹、炸弹、导弹等装备的数量和位置,它将成为实施战场侦察的有效手段。

5.取之不尽的军用生物能源

目前主战兵器的机动装备大都以汽油、柴油为燃料,跟踪补给任务重、要求高。生物技术可利用红极毛杆菌和淀粉制成氢,每消耗1克淀粉就可生产出1毫升氢。氢和少量燃料混合即可替代汽油、柴油。这样,机动装备只需要带少量的淀粉,就能进行长时间远距离的机动作战。日本、加拿大等国把细菌和真菌引入酵母,酶解纤维生产酒精,或用基因工程方法使大肠杆菌把葡萄糖转化为酒精,代替汽油或柴油,可随时为军队的机动装备提供大量的生物燃料。

6.奇异的军用生物装具

即利用生物技术就地取材提供高能量的作战军需品。如美国陆军研究发展和工程中心已经从织网蜘蛛中分离出合成蜘蛛丝的基因,从而能够生产蛛丝;还可将基因转移到细菌中生产可溶性丝蛋白,经浓缩后可纺成一种特殊的纤维,其强度超过钢,可用于生产防弹背心、防弹头盔、降落伞绳索和其他高强度轻型装备。

7.疗效快捷的军用生物医药

生物技术可以制造新的疫苗、药物和新的医疗方法。如利用生物技术生产血液代用品,已受到世界各国的重视,人造血液可望缓解战场上血浆的供需矛盾。利用生物技术生产的高效伤口愈合材料,有望进行大规模生产。科学家正研究用重组工程菌进一步提高壳多糖(有促进伤口愈合功能)的产量。美国一些公司与陆军医疗中心正在从事用生物技术合成“人造皮肤”的研制工作。

8.不可思议的军用仿生动力

人和动物的肌肉具有惊人的力量,人体全身的600余块肌肉朝一个方向收缩,其力量可达25吨!目前,军事仿生专家已用聚丙烯酸等聚合物制成了“人工肌肉”,把它放入碱或酸介质中,便能产生强烈的收缩或松弛,直接把化学能转变成机械能。为尽快制造出实用的肌肉发动机,专家们设想用胶原蛋白作材料。胶原蛋白分子呈螺旋状结构,类似弹簧。将其浸入溴化锂溶液后即迅速收缩,从而做功,用纯水洗去溴化锂,胶原蛋白就恢复到原来长度。这种“肌肉发动机”没有齿轮、活塞和杠杆,故体积小、重量轻、无噪音、操作简便,还省去了体大笨重易燃易爆的油箱,用来制造兵器,可大大提高机动力和生存力。

9.怪异的军用动物武器

训练动物参战,自古有之。但人们运用生物工程技术,创造一些“智商”高、体力强、动作敏捷和繁殖速度快、饲养简单的动物,去充当“战斗动物兵”并非遥远。1992年,世界上第一头带有人类遗传特征的短吻、小眼睛、大耳朵、被称为“阿斯特里德”的猪,在伦敦降生了。到第二年,英国就有37头猪带上了人类基因。科学家的目的是为了实现跨物种器官移植,以解决目前移植手术中器官来源不足的难题。但由此不难想象,随着基因技术的发展,用这一技术“杂交”出一些怪物,甚至“人造人”,完全是有可能的。

此外,生物加工处理技术在军事领域也有广泛的应用。目前正在研究的课题有:生化战剂的洗消、危险废物的生物降解、生物除雷、生物防核污染等。已经初步研制出了无腐蚀、低成本、高速度、便于携带的清洗生化战剂的生物酶,清除残余地雷、水雷,降解TNT炸药的生物体和能除去铀、镭、砷等有毒有害元素的微生物。

Ⅶ 现代生物技术在解决21世纪人类社会面临的重大方面所发挥的重要作用

加入WTO在我国经济生活中是件大事,它既带给我们巨大的发展机遇,也使我们遭遇到巨大的挑战。外贸形势说明:一场旷日持久的、空前惨烈的经济战已经打响。与生物技术密切相关的农业、医药等产业的状况也不容乐观。在这种激烈竞争形势下,中国企业必需学会积极发现并认真构筑自己赖以生存和发展的优势,在这当中打造企业自身的技术优势就具有特别重要的意义。

令人欣慰的是,在新世纪向我们走来的时候,生物技术掀起了它的第三个浪潮。1999年在“Current Opinion in Microbiology”杂志的一篇文章中写到:继医药和农业之后,广泛认为工业生物催化将是生物技术的第三个浪潮。还有,1999年底在美国加利福尼亚召开了一个学术讨论会后出版了一本题为“新生物催化剂:21世纪化学工业的基本工具”的专门性书籍。这些迹象表明:以生物催化为核心内容的工业生物技术在支撑新世纪社会进步与经济发展的技术体系中的地位已经被提到空前的战略高度。笔者认为:正在向我们走来的“生物技术的第三个浪潮”对我国21世纪的经济发展将是个不可多得的机遇。本文将讨论这次技术革命的社会需求、技术内涵、具体实例以及这个新浪潮对产业结构所可能带来的影响。

人类几千年的文明史证明,一次技术革命的出现必然与以下两个因素有密切相关:首先要有对新技术革命的强烈的社会需求;其次是必需拥有充满活力的创新技术。

1 社会需求

恩格斯说过:“社会一旦有技术上的需要,则这种需要就会比10所大学更能把科学推向前进”。当今人类社会面临人口、环境、资源、疾病等多种危机。人类急需从这些危机中摆脱出来,进入一个理想的可持续发展的轨道。在这个过程中,包括生物技术在内的高技术的发展和应用将可能发挥重要作用。

1.1 环境压力

人类的生存环境正在迅速恶化,环境污染已经成为制约人类社会发展的重要因素。

在水环境方面,根据近年我国政府的环境公报的统计数据,我国年废水排放量达416亿吨,其中工业废水排放量和生活污水排放量各半。中国主要河流有机污染普遍,面源污染日益突出,主要湖泊富营养化严重。我国近岸海域海水污染严重,近海环境状况总体较差,海洋环境污染恶化的趋势仍未得到有效控制。作为海洋污染的综合指标之一的赤潮,仅1999年,中国海域共记录到15起。

在大气环境方面,全国废气中二氧化硫排放总量1857万吨、烟尘排放总量1159万吨、工业粉尘排放量1175万吨。中国的大气环境污染仍然以煤烟型为主,主要污染物为总悬浮颗粒物和二氧化硫。少数特大城市属煤烟与汽车尾气污染并重类型。酸雨污染范围大体未变,污染程度居高不下。

在陆地环境方面,全国工业固体废物产生量为7.8亿吨,工业固体废物累计贮存量64亿吨。工业固体废物的堆存占用大量土地,并对空气、地表水和地下水产生二次污染。削减工业固体废物产生量是我国污染物排放总量控制的重要内容之一。有些地区已经形成垃圾围城、蓝天绿水不再的可怕局面。

以上情况说明:我国环境污染的规模已经达到十分严重地步。寻求已污染环境的治理措施,发展防止新的污染发生的技术已经成为社会可持续发展的当务之急。

微生物是自然界基本的循环器,微生物及其酶系可以有效分解纤维素、木质素、脂肪、烷烃、芳香烃、某些人工多聚物等等,因此微生物可以在造纸、石油化工、纺织印染、食品加工、炸药、冶金、杀虫剂、除草剂、洗涤剂、电镀、生活污水等污染环境的治理中发挥巨大作用。例如最成熟的活性污泥废水处理技术就是依靠微生物的作用。毋庸置疑,生物技术是解决环境污染的一种基本工具,它能提供保护环境、恢复环境所必须的许多手段。

近30年来现代生物技术的多数内容已经渗透到环境工程领域中。有应用前景的领域包括废物的高效生物处理技术、污染事故的现场补救、污染场地的现场修复技术、可降解材料的生物合成技术等许多方面。具体环境生物技术内容包括构建高效降解杀虫剂、除草剂、多环芳烃类化合物等污染物的高效基因工程菌和具有抗污染特性的转基因植物,无废物、无污染的“绿色”生产工艺,高效污水处理生物反应器,废物资源化,PCR技术及其他环境监测技术等。以上内容涉及重组DNA技术、固定化技术、高效反应器技术等单元技术及其技术组合的应用。

环境污染治理产业已经形成了一个巨大的市场,1990年为1900亿美元;2000年为3100亿美元,世界市场平均增长率达5%。但是其中环境生物技术(主要指微生物菌剂和部分环境监控工程)所占市场分额还十分有限。

1.2 资源压力

当今人类社会面临的第二个问题是资源压力。我们应该十分清醒地意识到“一次性能源的末日已经不远”已成为一个无须更多争论的前景。石油剩余储量1400亿吨,而年开采量为32亿吨,计算下来43年告罄!

在交通运输能源结构中石油大约占97%,随着石油资源不可避免的枯竭,在过去20年中,无论政府或工业部门都在十分积极地开发交通运输的代替燃料。一个正在成长、但尚存争论的替代燃料是发酵法生产的乙醇。任何农业国家都可以用现行技术生产燃料乙醇,其中美国发酵生产燃料乙醇的原料是玉米葡萄糖,而巴西则是蔗糖。汽车制造商目前生产的汽车都可以用混合有10%或85%燃料酒精(E85)的燃料。巴西用甘蔗年生产120亿升乙醇,以22%比例与汽油混合,或者可用近100%的乙醇。美国用玉米年生产50亿升乙醇,上百个加油站能提供E85号燃油。

目前的问题是需要政府的财政补贴才能维持燃料乙醇的正常生产。令人高兴的是从非食品植物发酵生产燃料乙醇的研究取得可喜进展。通过预处理、酶的应用和发酵工艺的改进,把各种农业下脚料,诸如玉米、稻、麦秸秆、甘蔗废料、废纸等统称为“biomass”的一些物质转化为燃料乙醇。这样一来,有希望进一步降低燃料乙醇的生产成本。历史上酒精的价格曾经从每升1.22降到0.31美元。如果酶法加工和生物量利用技术得以进一步改进,预期到2015年,价格还会降到0.12—0.13美元。乐观地估计,到时候即使没有政府的价格补贴政策,乙醇也可以取代汽油。

现代化工中差不多全部人工高分子聚合物的出发原料都来自石油或煤炭。全球庞大的化学工业对一次性矿业资源的过分依赖,使人类社会所面临的资源短缺形势更加雪上加霜。2002年6月在加拿大多伦多刚刚闭幕的Bi02002国际大会上有一个专题讨论会,来自不同国家的科学家认为:一个全球性的产业革命正在朝着以碳水化合物为基础的经济发展。科学家们已经预测:当今高分子化工的碳氢化合物时代将逐步让位于碳水化合物时代。目前正在开发的多聚乳酸、多聚赖氨酸、多聚羟基丁酸、燃料乙醇以及各种功能寡糖等可视为这个碳水化合物时代来临的前奏。

2 技术平台

上个世纪70年代以来,在生物技术基础性研究工作的带动下已经建立了基因工程、蛋白质工程、代谢工程、组合生物合成、生物催化工程及其他一系列工程体系和技术平台。这是第三个浪潮又一个必要条件。以下本文以发现新酶为例,简述这类技术平台的科学内涵。

对于工业目的,生物催化剂的吸引力不外乎高效率的催化作用及对底物结构严格的选择性。

当然,另一方面,生物催化剂用于工业目的也面临着一些挑战。首先,酶虽然有其令人满意的周转数(turnover numbers),即单位活性位点在单位时间内可以催化产生较大数量的产物。可是大多数酶的分子量很大,却只有一个唯一的活性位点。这样一来,单位质量的催化剂的催化效率有时候就显得很低。其次,酶一般是不大稳定的,在大多数工业系统中则很难采用这种脆弱的催化剂。最后,现有技术水平尚难保证以工业规模生产出各种物美价廉的生物催化剂。以上三条可概括为酶的可用性、稳定性和可生产性。在考虑把生物催化剂用作工业酶之前,以上三个难点必须加以克服。因此人们急需发现或创造新一代生物催化剂。近年,由于在新技术方面取得了许多新突破,又重新燃起了人们对酶在工业上应用的巨大兴趣。

发现或创造新一代生物催化剂的技术平台包括天然生物多样性的筛选、基因组测序、定向进化、噬菌体展示、理性设计、化学修饰、催化性抗体和核酶等。这里仅就与发现和创造新工业酶密切相关的前四项内容作些介绍和讨论。

2.1 生物多样性

自然界蕴藏着巨大的微生物资源,但是人类至今对极端环境微生物(extremophiles)和未培养微生物(unculturable microorganisms)两个资源宝库涉足不深,所以研究开发潜力极大。

可以预期,人们能从嗜酸、嗜碱、嗜冷、嗜热、嗜盐、嗜压等等极端微生物中获得许多有价值的酶、蛋白质以及其他活性物质。在过去几年中,随着重组酶生产技术的开发,使人们有可能从更广泛的来源获取更廉价的酶。近年在这方面取得的进展在一定程度上得益于极端微生物培养技术的进步,更得益于把极端微生物的基因转移到常用受体微生物宿主能力的提高。如此一来,人们有理由相信:在温和、便宜的生长条件下就可以生产出对极端环境具有耐受性能的生物催化剂来。

另外据知,能够在实验室培养的微生物的种类仅占自然界中微生物总数的不到1%!也就是说,还有99%的不可培养的微生物等待着我们用非常规手段加以研究。作为微生物资源研究和开发领域里的一个重大探索,可以采用最新的分子生物学方法,绕过菌种分离纯化这一步骤,直接在自然界中寻找有开发价值的微生物基因。把来源于未经培养的微生物的DNA克隆到业经培养驯化的宿主生物体中,然后用高通量筛选技术从重组的克隆里筛选为新酶编码的基因。

微生物世界展示给人类如此巨大的机会使我们兴奋不已,一些有识之士指出:未知的微生物世界或许是地球上最大的未开发的自然资源,能充分利用这个微生物资源宝库的国家必将取得发展的先机。

2.2 基因组测序

随着DNA测序能力的提高,对序列的分析能力也得到加强,于是可以发现许多新的基因。通过同已知基因序列进行比较来推断新基因表达产物的基本酶活性。当然目前的技术水平还不足以推断出这些酶性质的许多细节。因此必须表达这些新发现的基因,以确定它们在一个特定的过程中是否确实有用。假定,从一种生物体来源的所有的酶在它的正常生长温度下都有功能,那么来自超级嗜热微生物的DNA序列就能成为寻找在沸点附近仍然有功能的酶的合理起点;同样可以认为,嗜冷微生物的基因则可能成为在零度仍然具有功能的酶的可能来源。

因特网最新资料表明:大约60种微生物的基因组序列已经完成,另外还有近200种微生物基因组预期很快就可以完成。测序工作的努力已经揭示了数万个新基因,主要的是编码酶的一些基因,其中大约三分之一可以被归到“有功能”的家族里,这是一个十分丰富、而且每天都在增加的新工业酶后选者的来源。相信随着基因组时代的到来,将会有大量新的工业酶被人类发现。

2.3 定向性进化

在以发现工业酶为主要目标的所有技术中,定向进化(directed evolution简称DE)可能是最强有力的一种。DE是一种快速而廉价的发现各种新酶的方法。这类新酶在特定的条件下应该比天然酶工作得更好。DE模拟自然进化,这种进化取决于从多样性群体中选择合适“个体”,这里的“个体”就是酶。DE是定向的,意思是研究者通过一步步改进使选择的各种酶要符合一定预期的标准。DE从克隆拟改进的酶的基因起始。分离到的基因通过体外突变使其多样性得到加强。然后,克隆这些突变株的DNA,并且在通常的受体中表达,分析表达产物的酶活力,选择最好的变异株克隆。它的基因又作为下一轮筛选的新起点。使用这一方法需要掌握两项重要的支撑技术,即DNA重排(DNA shaffling)和高通量筛选技术。

2.4 噬菌体展示

该技术最初是用于鉴定和分离蛋白质的一些结构域,该结构域能够牢固地结合到别的分子上。但是近年这个核心技术又经过进一步设计和发展,致使拟被改良的酶在理论上也可充当被鉴定和分离的靶子。噬菌体展示最简单的形式涉及把小段靶子DNA,(该DNA应该是突变和筛选的靶子)插入噬菌体的基因组中,其插入位置要求其编码的蛋白质结构域能够出现在噬菌体颗粒的表面上。靶子基因的突变导致各种不同的结构域在表面上展示,如果各种不同的结构域的任何一个能足够牢固地结合到一种固定化底物上,则编码这个结构域的颗粒便粘到这一固定相上,借以把它们从未结合的结构域分开。然后把结合的噬菌体从固定化的底物上洗脱下来,收集之,增殖之。重复这一过程则可以增加获得具有优良品质酶的几率。

3 两个实例

以下结合本实验室的研究工作举两个实例。一个是酶制剂L—天冬酰胺酶;另一个是氨基酸,L—天冬酸。这两个例子在我们讨论的生物技术第三个浪潮这个主题下有一定的代表性。

3.1 L-天冬酰胺酶

作为抗白血病首选药物的L—天冬酰胺酶早就用大肠杆菌发酵的方法生产,但是生产和应用至少存在两个问题。一个问题是细胞形成酶的能力很低;另一个问题是酶在体内半衰期短。这两个问题的存在导致药物生产成本过高,加大了患者的负担。

本实验室借助基因工程技术提高了酶合成能力,首先从大肠杆菌获得编码该酶的基因,体外重组之后再转化到大肠杆菌体内,不同的是强化了上游调控元件,便大大提高了酶合成能力40多倍!

本实验室解决半衰期短和稳定性差的策略是制备L—天冬酰胺酶—抗体的融合蛋白。首先从噬菌体抗体库中筛选得到L—天冬酰胺酶(ASNase)的保护性抗体scFv46,然后构建融合蛋白scFv-ASNase及ASNase—scFv。稳定性测定结果表明:这两种融合蛋白比天然ASNase的抗蛋白酶降解的能力强,并将天然ASNase的体外半衰期由2小时分别提高到9小时和6小时,另外,二者对高温及低pH条件都具有较强的抗性。通过计算机模拟技术,预测了融合蛋白ASNase—scFv及scFv—ASNase的三维结构,并与报道的天然ASNase的三维结构进行比较分析。通过结构分析并结合上述的实验结果,提出scFv的保护机制是scFv的空间阻碍效应(如封闭蛋白酶作用位点)与改变酶分子静电势表面的综合作用结果。

借助完全基因组序列信息进一步提高L—天冬酰胺酶的稳定性的新尝试。通过近年中国科学院一个科学家小组的不懈努力,完成了一种极端嗜热微生物长达2689443 bp全部基因组的测序研究工作。为进一步提高L—天冬酰胺酶的稳定性并延长该药的体内半衰期,我们在这方面作出了的新努力,即试图借助完全基因组序列信息,从一株极端嗜热微生物中寻找稳定性更好的L—天冬酰胺酶。

本实验室已经测知E.coli L—天冬酰胺酶的氨基酸序列及为其编码的基因核苷酸序列。在上述极端嗜热微生物的完全基因组序列数据库中搜寻E.coli L—天冬酰胺酶的结构类似物,结果在No.967号基因编码的蛋白质中,发现了一个一级结构与L—天冬酰胺酶十分相似的蛋白质。其中35%(115/323)的氨基酸完全一样,另有52%(171/323)的氨基酸相似。因此,有理由相信在这株极端嗜热微生物中很有可能存在一个与E.coli L—天冬酰胺酶有类似功能的蛋白质。又鉴于该基因来自极端嗜热微生物,预期这个蛋白质还将会具有更好的热稳定性。当然,一切结论将留待通过对该基因的克隆、表达、产物的分离和功能分析的结果予以最后的证实或澄清。

3.2 L—天冬酸

通常的生产方法是用富含L—天冬酸酶的微生物细胞,经过固定化处理后,将底物反丁烯二酸转化为L—天冬酸。本实验室早期也曾作过一些工作并且投入生产应用。在2000年柏林生物技术大会上得知,日本一个公司采取一系列改进措施,使生产工艺水平大大提升了一步。首先为解决酶合成能力低下问题,也是采用基因工程技术,提高合成能力50倍;固定化酶的通透性问题因采用离子交换性质的材料而得以解决;反应热—反应器设计及降低反应温度,从37℃降低到20℃;消除了污染环境的副产物硫酸铵,代之以能重复使用的反丁烯二酸铵;正在开辟L—天冬酸的新用途,用于制造多聚L—天冬酸酶。这个经过改进的新工艺既是先进的、高效的,又是绿色的、环保的。使这一产品的生产工艺几乎达到尽善尽美的地步,代表了21世纪传统产业改造的方向。

4 产业结构

我们正处在这样一个时代:社会经济发展所遇到的一些重大障碍有待工业生物技术去解决;科学技术的迅速发展形成了一批先进的技术平台;许许多多实例说明生物技术的第三个浪潮正在向我们走来。我们相信:在这第三个浪潮中,中国和世界工业生物技术产业结构将会发生巨大的变化。

上世纪工业生物技术产业格局大体上包括抗生素、维生素、氨基酸、有机酸、(醋酸、乳酸、柠檬酸、衣康酸、苹果酸、葡萄糖酸等)、酶制剂、单细胞蛋白、溶剂(丙酮、丁醇)、乙醇、核酸、核苷酸等等。传统产业的全面技术改造:向高产、优质、高效、资源节约、环境友好型过度,还肯定诞生一批新产业,包括生物材料产业、生物能源产业、生物化工产业及环境生物技术产业等等。

阅读全文

与现代生物技术可以解决哪些问题相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:704
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1317
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1022
大学物理实验干什么用的到 浏览:1448
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:829
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1606
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017